package Slic3r::TriangleMesh; use Moo; use Slic3r::Geometry qw(X Y Z A B unscale same_point); # public has 'vertices' => (is => 'ro', required => 1); # id => [$x,$y,$z] has 'facets' => (is => 'ro', required => 1); # id => [ $normal, $v1_id, $v2_id, $v3_id ] # private has 'edges' => (is => 'ro', default => sub { [] }); # id => [ $v1_id, $v2_id ] has 'facets_edges' => (is => 'ro', default => sub { [] }); # id => [ $e1_id, $e2_id, $e3_id ] has 'edges_facets' => (is => 'ro', default => sub { [] }); # id => [ $f1_id, $f2_id, (...) ] use constant MIN => 0; use constant MAX => 1; use constant I_B => 0; use constant I_A_ID => 1; use constant I_B_ID => 2; use constant I_FACET_INDEX => 3; use constant I_PREV_FACET_INDEX => 4; use constant I_NEXT_FACET_INDEX => 5; use constant I_FACET_EDGE => 6; use constant FE_NONE => 0; use constant FE_TOP => 1; use constant FE_BOTTOM => 2; # always make sure BUILD is idempotent sub BUILD { my $self = shift; @{$self->edges} = (); @{$self->facets_edges} = (); @{$self->edges_facets} = (); my %table = (); # edge_coordinates => edge_id for (my $facet_id = 0; $facet_id <= $#{$self->facets}; $facet_id++) { my $facet = $self->facets->[$facet_id]; $self->facets_edges->[$facet_id] = []; # reorder vertices so that the first one is the one with lowest Z # this is needed to get all intersection lines in a consistent order # (external on the right of the line) { my @z_order = sort { $self->vertices->[$facet->[$a]][Z] <=> $self->vertices->[$facet->[$b]][Z] } 1..3; @$facet[1..3] = (@$facet[$z_order[0]..3], @$facet[1..($z_order[0]-1)]); } # ignore the normal if provided my @vertices = @$facet[-3..-1]; foreach my $edge ($self->_facet_edges($facet_id)) { my $edge_coordinates = join ';', sort @$edge; my $edge_id = $table{$edge_coordinates}; if (!defined $edge_id) { # Note that the order of vertices in $self->edges is *casual* because it is only # good for one of the two adjacent facets. For this reason, it must not be used # when dealing with single facets. push @{$self->edges}, $edge; $edge_id = $#{$self->edges}; $table{$edge_coordinates} = $edge_id; $self->edges_facets->[$edge_id] = []; } push @{$self->facets_edges->[$facet_id]}, $edge_id; push @{$self->edges_facets->[$edge_id]}, $facet_id; } } } sub clone { my $self = shift; return (ref $self)->new( vertices => [ map [ @$_ ], @{$self->vertices} ], facets => [ map [ @$_ ], @{$self->facets} ], ); } sub _facet_edges { my $self = shift; my ($facet_id) = @_; my $facet = $self->facets->[$facet_id]; return ( [ $facet->[1], $facet->[2] ], [ $facet->[2], $facet->[3] ], [ $facet->[3], $facet->[1] ], ); } # This method is supposed to remove narrow triangles, but it actually doesn't # work much; I'm committing it for future reference but I'm going to remove it later. # Note: a 'clean' method should actually take care of non-manifold facets and remove # them. sub clean { my $self = shift; # retrieve all edges shared by more than two facets; my @weird_edges = grep { @{$self->edge_facets->{$_}} != 2 } keys %{$self->edge_facets}; # usually most of these facets are very narrow triangles whose two edges # are detected as collapsed, and thus added twice to the edge in edge_fasets table # let's identify these triangles my @narrow_facets_indexes = (); foreach my $edge_id (@weird_edges) { my %facet_count = (); $facet_count{$_}++ for @{$self->edge_facets->{$edge_id}}; @{$self->edge_facets->{$edge_id}} = grep $facet_count{$_} == 1, keys %facet_count; push @narrow_facets_indexes, grep $facet_count{$_} > 1, keys %facet_count; } # remove identified narrow facets foreach my $facet_id (@narrow_facets_indexes) {last; splice @{$self->facets}, $facet_id, 1; splice @{$self->facets_edges}, $facet_id, 1; foreach my $facet_ides (values %{$self->edge_facets}) { @$facet_ides = map { $_ > $facet_id ? ($_-1) : $_ } @$facet_ides; } } Slic3r::debugf "%d narrow facets removed\n", scalar(@narrow_facets_indexes) if @narrow_facets_indexes; } sub check_manifoldness { my $self = shift; # look for edges not connected to exactly two facets if (grep { @$_ != 2 } @{$self->edges_facets}) { my ($first_bad_edge_id) = grep { @{ $self->edges_facets->[$_] } != 2 } 0..$#{$self->edges_facets}; warn sprintf "Warning: The input file is not manifold near edge %f-%f. " . "You might want to check the resulting G-code before printing.\n", @{$self->edges->[$first_bad_edge_id]}; } } sub make_loops { my $self = shift; my ($layer) = @_; my @lines = @{$layer->lines}; # remove tangent edges { for (my $i = 0; $i <= $#lines; $i++) { next unless defined $lines[$i] && $lines[$i][I_FACET_EDGE]; # if the line is a facet edge, find another facet edge # having the same endpoints but in reverse order for (my $j = $i+1; $j <= $#lines; $j++) { next unless defined $lines[$j] && $lines[$j][I_FACET_EDGE]; # are these facets adjacent? (sharing a common edge on this layer) if ($lines[$i][I_A_ID] == $lines[$j][I_B_ID] && $lines[$i][I_B_ID] == $lines[$j][I_A_ID]) { # if they are both oriented upwards or downwards (like a 'V') # then we can remove both edges from this layer since it won't # affect the sliced shape if ($lines[$j][I_FACET_EDGE] && $lines[$j][I_FACET_EDGE] == $lines[$i][I_FACET_EDGE]) { $lines[$i] = undef; $lines[$j] = undef; last; } # if one of them is oriented upwards and the other is oriented # downwards, let's only keep one of them (it doesn't matter which # one since all 'top' lines were reversed at slicing) if ($lines[$i][I_FACET_EDGE] == FE_TOP && $lines[$j][I_FACET_EDGE] == FE_BOTTOM) { $lines[$j] = undef; last; } } } } } @lines = grep $_, @lines; # count relationships my %prev_count = (); # how many lines have the same prev_facet_index my %a_count = (); # how many lines have the same a_id foreach my $line (@lines) { if (defined $line->[I_PREV_FACET_INDEX]) { $prev_count{$line->[I_PREV_FACET_INDEX]}++; } if (defined $line->[I_A_ID]) { $a_count{$line->[I_A_ID]}++; } } foreach my $point_id (grep $a_count{$_} > 1, keys %a_count) { my @lines_starting_here = grep defined $_->[I_A_ID] && $_->[I_A_ID] == $point_id, @lines; Slic3r::debugf "%d lines start at point %d\n", scalar(@lines_starting_here), $point_id; # if two lines start at this point, one being a 'top' facet edge and the other being a 'bottom' one, # then remove the top one and those following it (removing the top or the bottom one is an arbitrary # choice) if (@lines_starting_here == 2 && join('', sort map $_->[I_FACET_EDGE], @lines_starting_here) eq FE_TOP.FE_BOTTOM) { my @to_remove = grep $_->[I_FACET_EDGE] == FE_TOP, @lines_starting_here; while (!grep defined $_->[I_B_ID] && $_->[I_B_ID] == $to_remove[-1]->[I_B_ID] && $_ ne $to_remove[-1], @lines) { push @to_remove, grep defined $_->[I_A_ID] && $_->[I_A_ID] == $to_remove[-1]->[I_B_ID], @lines; } my %to_remove = map {$_ => 1} @to_remove; @lines = grep !$to_remove{$_}, @lines; } else { Slic3r::debugf " this shouldn't happen and should be further investigated\n"; if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output(undef, "same_point.svg", lines => [ map $_->line, grep !$_->[I_FACET_EDGE], @lines ], red_lines => [ map $_->line, grep $_->[I_FACET_EDGE], @lines ], points => [ $self->vertices->[$point_id] ], no_arrows => 0, ); } } } # optimization: build indexes of lines my %by_facet_index = map { $lines[$_][I_FACET_INDEX] => $_ } grep defined $lines[$_][I_FACET_INDEX], (0..$#lines); my %by_a_id = map { $lines[$_][I_A_ID] => $_ } grep defined $lines[$_][I_A_ID], (0..$#lines); my (@polygons, %visited_lines) = (); CYCLE: for (my $i = 0; $i <= $#lines; $i++) { my $line = $lines[$i]; next if $visited_lines{$line}; my @points = (); my $first_facet_index = $line->[I_FACET_INDEX]; do { my $next_line; if (defined $line->[I_NEXT_FACET_INDEX] && exists $by_facet_index{$line->[I_NEXT_FACET_INDEX]}) { $next_line = $lines[$by_facet_index{$line->[I_NEXT_FACET_INDEX]}]; } elsif (defined $line->[I_B_ID] && exists $by_a_id{$line->[I_B_ID]}) { $next_line = $lines[$by_a_id{$line->[I_B_ID]}]; } else { Slic3r::debugf " line has no next_facet_index or b_id\n"; $layer->slicing_errors(1); next CYCLE; } if (!$next_line || $visited_lines{$next_line}) { Slic3r::debugf " failed to close this loop\n"; $layer->slicing_errors(1); next CYCLE; } elsif (defined $next_line->[I_PREV_FACET_INDEX] && $next_line->[I_PREV_FACET_INDEX] != $line->[I_FACET_INDEX]) { Slic3r::debugf " wrong prev_facet_index\n"; $layer->slicing_errors(1); next CYCLE; } elsif (defined $next_line->[I_A_ID] && $next_line->[I_A_ID] != $line->[I_B_ID]) { Slic3r::debugf " wrong a_id\n"; $layer->slicing_errors(1); next CYCLE; } push @points, $next_line->[I_B]; $visited_lines{$next_line} = 1; $line = $next_line; } while ($first_facet_index != $line->[I_FACET_INDEX]); push @polygons, Slic3r::Polygon->new(@points); Slic3r::debugf " Discovered %s polygon of %d points\n", ($polygons[-1]->is_counter_clockwise ? 'ccw' : 'cw'), scalar(@points) if $Slic3r::debug; } return [@polygons]; } sub rotate { my $self = shift; my ($deg) = @_; return if $deg == 0; my $rad = Slic3r::Geometry::deg2rad($deg); # transform vertex coordinates foreach my $vertex (@{$self->vertices}) { @$vertex = (@{ +(Slic3r::Geometry::rotate_points($rad, undef, [ $vertex->[X], $vertex->[Y] ]))[0] }, $vertex->[Z]); } } sub scale { my $self = shift; my ($factor) = @_; return if $factor == 1; # transform vertex coordinates foreach my $vertex (@{$self->vertices}) { $vertex->[$_] *= $factor for X,Y,Z; } } sub move { my $self = shift; my (@shift) = @_; # transform vertex coordinates foreach my $vertex (@{$self->vertices}) { $vertex->[$_] += $shift[$_] || 0 for X,Y,Z; } } sub align_to_origin { my $self = shift; # calculate the displacements needed to # have lowest value for each axis at coordinate 0 my @extents = $self->bounding_box; $self->move(map -$extents[$_][MIN], X,Y,Z); } sub duplicate { my $self = shift; my (@shifts) = @_; my @new_facets = (); foreach my $facet (@{$self->facets}) { # transform vertex coordinates my ($normal, @vertices) = @$facet; foreach my $shift (@shifts) { push @new_facets, [ $normal ]; foreach my $vertex (@vertices) { push @{$self->vertices}, [ map $self->vertices->[$vertex][$_] + ($shift->[$_] || 0), (X,Y,Z) ]; push @{$new_facets[-1]}, $#{$self->vertices}; } } } push @{$self->facets}, @new_facets; $self->BUILD; } sub bounding_box { my $self = shift; my @extents = (map [undef, undef], X,Y,Z); foreach my $vertex (@{$self->vertices}) { for (X,Y,Z) { $extents[$_][MIN] = $vertex->[$_] if !defined $extents[$_][MIN] || $vertex->[$_] < $extents[$_][MIN]; $extents[$_][MAX] = $vertex->[$_] if !defined $extents[$_][MAX] || $vertex->[$_] > $extents[$_][MAX]; } } return @extents; } sub size { my $self = shift; my @extents = $self->bounding_box; return map $extents[$_][MAX] - $extents[$_][MIN], (X,Y,Z); } sub slice_facet { my $self = shift; my ($print_object, $facet_id) = @_; my ($normal, @vertices) = @{$self->facets->[$facet_id]}; Slic3r::debugf "\n==> FACET %d (%f,%f,%f - %f,%f,%f - %f,%f,%f):\n", $facet_id, map @{$self->vertices->[$_]}, @vertices if $Slic3r::debug; # find the vertical extents of the facet my ($min_z, $max_z) = (99999999999, -99999999999); foreach my $vertex (@vertices) { my $vertex_z = $self->vertices->[$vertex][Z]; $min_z = $vertex_z if $vertex_z < $min_z; $max_z = $vertex_z if $vertex_z > $max_z; } Slic3r::debugf "z: min = %.0f, max = %.0f\n", $min_z, $max_z; if ($max_z == $min_z) { Slic3r::debugf "Facet is horizontal; ignoring\n"; return; } # calculate the layer extents my $first_layer_height = $Slic3r::layer_height * $Slic3r::first_layer_height_ratio; my $min_layer = int((unscale($min_z) - ($first_layer_height + $Slic3r::layer_height / 2)) / $Slic3r::layer_height) - 2; $min_layer = 0 if $min_layer < 0; my $max_layer = int((unscale($max_z) - ($first_layer_height + $Slic3r::layer_height / 2)) / $Slic3r::layer_height) + 2; Slic3r::debugf "layers: min = %s, max = %s\n", $min_layer, $max_layer; my $lines = {}; # layer_id => [ lines ] for (my $layer_id = $min_layer; $layer_id <= $max_layer; $layer_id++) { my $layer = $print_object->layer($layer_id); $lines->{$layer_id} ||= []; push @{ $lines->{$layer_id} }, $self->intersect_facet($facet_id, $layer->slice_z); } return $lines; } sub intersect_facet { my $self = shift; my ($facet_id, $z) = @_; my @vertices_ids = @{$self->facets->[$facet_id]}[1..3]; my @edge_ids = @{$self->facets_edges->[$facet_id]}; my @edge_vertices_ids = $self->_facet_edges($facet_id); my (@lines, @points, @intersection_points, @points_on_layer) = (); for my $e (0..2) { my $edge_id = $edge_ids[$e]; my ($a_id, $b_id) = @{$edge_vertices_ids[$e]}; my ($a, $b) = map $self->vertices->[$_], ($a_id, $b_id); #printf "Az = %f, Bz = %f, z = %f\n", $a->[Z], $b->[Z], $z; if ($a->[Z] == $b->[Z] && $a->[Z] == $z) { # edge is horizontal and belongs to the current layer my $edge_type = (grep $self->vertices->[$_][Z] < $z, @vertices_ids) ? FE_TOP : FE_BOTTOM; if ($edge_type == FE_TOP) { ($a, $b) = ($b, $a); ($a_id, $b_id) = ($b_id, $a_id); } push @lines, [ [$b->[X], $b->[Y]], # I_B $a_id, # I_A_ID $b_id, # I_B_ID $facet_id, # I_FACET_INDEX undef, # I_PREV_FACET_INDEX undef, # I_NEXT_FACET_INDEX $edge_type, # I_FACET_EDGE # Unused data: # a => [$a->[X], $a->[Y]], ]; #print "Horizontal edge at $z!\n"; } elsif ($a->[Z] == $z) { #print "A point on plane $z!\n"; push @points, [ $a->[X], $a->[Y], $a_id ]; push @points_on_layer, $#points; } elsif ($b->[Z] == $z) { #print "B point on plane $z!\n"; push @points, [ $b->[X], $b->[Y], $b_id ]; push @points_on_layer, $#points; } elsif (($a->[Z] < $z && $b->[Z] > $z) || ($b->[Z] < $z && $a->[Z] > $z)) { # edge intersects the current layer; calculate intersection push @points, [ $b->[X] + ($a->[X] - $b->[X]) * ($z - $b->[Z]) / ($a->[Z] - $b->[Z]), $b->[Y] + ($a->[Y] - $b->[Y]) * ($z - $b->[Z]) / ($a->[Z] - $b->[Z]), undef, $edge_id, ]; push @intersection_points, $#points; #print "Intersects at $z!\n"; } } return @lines if @lines; if (@points_on_layer == 2 && @intersection_points == 1) { $points[ $points_on_layer[1] ] = undef; @points = grep $_, @points; } if (@points_on_layer == 2 && @intersection_points == 0) { if (same_point(map $points[$_], @points_on_layer)) { return (); } } if (@points) { # defensive programming: die "Facets must intersect each plane 0 or 2 times" if @points != 2; # connect points: my ($prev_facet_index, $next_facet_index) = (undef, undef); $prev_facet_index = +(grep $_ != $facet_id, @{$self->edges_facets->[$points[B][3]]})[0] if defined $points[B][3]; $next_facet_index = +(grep $_ != $facet_id, @{$self->edges_facets->[$points[A][3]]})[0] if defined $points[A][3]; return [ [$points[A][X], $points[A][Y]], # I_B $points[B][2], # I_A_ID $points[A][2], # I_B_ID $facet_id, # I_FACET_INDEX $prev_facet_index, # I_PREV_FACET_INDEX $next_facet_index, # I_NEXT_FACET_INDEX FE_NONE, # I_FACET_EDGE # Unused data: # a => [$points[B][X], $points[B][Y]], # prev_edge_id => $points[B][3], # next_edge_id => $points[A][3], ]; #printf " intersection points at z = %f: %f,%f - %f,%f\n", $z, map @$_, @intersection_points; } return (); } sub get_connected_facets { my $self = shift; my ($facet_id) = @_; my %facets = (); foreach my $edge_id (@{$self->facets_edges->[$facet_id]}) { $facets{$_} = 1 for @{$self->edges_facets->[$edge_id]}; } delete $facets{$facet_id}; return keys %facets; } sub split_mesh { my $self = shift; my @meshes = (); # loop while we have remaining facets while (1) { # get the first facet my @facet_queue = (); my @facets = (); for (my $i = 0; $i <= $#{$self->facets}; $i++) { if (defined $self->facets->[$i]) { push @facet_queue, $i; last; } } last if !@facet_queue; while (defined (my $facet_id = shift @facet_queue)) { next unless defined $self->facets->[$facet_id]; push @facets, map [ @$_ ], $self->facets->[$facet_id]; push @facet_queue, $self->get_connected_facets($facet_id); $self->facets->[$facet_id] = undef; } my %vertices = map { $_ => 1 } map @$_[1,2,3], @facets; my @new_vertices = keys %vertices; my %new_vertices = map { $new_vertices[$_] => $_ } 0..$#new_vertices; foreach my $facet (@facets) { $facet->[$_] = $new_vertices{$facet->[$_]} for 1,2,3; } push @meshes, Slic3r::TriangleMesh->new( facets => \@facets, vertices => [ map $self->vertices->[$_], keys %vertices ], ); } return @meshes; } 1;