#include "AppController.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Slic3r { class AppControllerBoilerplate::PriData { public: std::mutex m; std::thread::id ui_thread; inline explicit PriData(std::thread::id uit): ui_thread(uit) {} }; AppControllerBoilerplate::AppControllerBoilerplate() :pri_data_(new PriData(std::this_thread::get_id())) {} AppControllerBoilerplate::~AppControllerBoilerplate() { pri_data_.reset(); } bool AppControllerBoilerplate::is_main_thread() const { return pri_data_->ui_thread == std::this_thread::get_id(); } namespace GUI { PresetBundle* get_preset_bundle(); } static const PrintObjectStep STEP_SLICE = posSlice; static const PrintObjectStep STEP_PERIMETERS = posPerimeters; static const PrintObjectStep STEP_PREPARE_INFILL = posPrepareInfill; static const PrintObjectStep STEP_INFILL = posInfill; static const PrintObjectStep STEP_SUPPORTMATERIAL = posSupportMaterial; static const PrintStep STEP_SKIRT = psSkirt; static const PrintStep STEP_BRIM = psBrim; static const PrintStep STEP_WIPE_TOWER = psWipeTower; AppControllerBoilerplate::ProgresIndicatorPtr AppControllerBoilerplate::global_progress_indicator() { ProgresIndicatorPtr ret; pri_data_->m.lock(); ret = global_progressind_; pri_data_->m.unlock(); return ret; } void AppControllerBoilerplate::global_progress_indicator( AppControllerBoilerplate::ProgresIndicatorPtr gpri) { pri_data_->m.lock(); global_progressind_ = gpri; pri_data_->m.unlock(); } //void PrintController::make_skirt() //{ // assert(print_ != nullptr); // // prerequisites // for(auto obj : print_->objects) make_perimeters(obj); // for(auto obj : print_->objects) infill(obj); // for(auto obj : print_->objects) gen_support_material(obj); // if(!print_->state.is_done(STEP_SKIRT)) { // print_->state.set_started(STEP_SKIRT); // print_->skirt.clear(); // if(print_->has_skirt()) print_->_make_skirt(); // print_->state.set_done(STEP_SKIRT); // } //} //void PrintController::make_brim() //{ // assert(print_ != nullptr); // // prerequisites // for(auto obj : print_->objects) make_perimeters(obj); // for(auto obj : print_->objects) infill(obj); // for(auto obj : print_->objects) gen_support_material(obj); // make_skirt(); // if(!print_->state.is_done(STEP_BRIM)) { // print_->state.set_started(STEP_BRIM); // // since this method must be idempotent, we clear brim paths *before* // // checking whether we need to generate them // print_->brim.clear(); // if(print_->config.brim_width > 0) print_->_make_brim(); // print_->state.set_done(STEP_BRIM); // } //} //void PrintController::make_wipe_tower() //{ // assert(print_ != nullptr); // // prerequisites // for(auto obj : print_->objects) make_perimeters(obj); // for(auto obj : print_->objects) infill(obj); // for(auto obj : print_->objects) gen_support_material(obj); // make_skirt(); // make_brim(); // if(!print_->state.is_done(STEP_WIPE_TOWER)) { // print_->state.set_started(STEP_WIPE_TOWER); // // since this method must be idempotent, we clear brim paths *before* // // checking whether we need to generate them // print_->brim.clear(); // if(print_->has_wipe_tower()) print_->_make_wipe_tower(); // print_->state.set_done(STEP_WIPE_TOWER); // } //} //void PrintController::slice(PrintObject *pobj) //{ // assert(pobj != nullptr && print_ != nullptr); // if(pobj->state.is_done(STEP_SLICE)) return; // pobj->state.set_started(STEP_SLICE); // pobj->_slice(); // auto msg = pobj->_fix_slicing_errors(); // if(!msg.empty()) report_issue(IssueType::WARN, msg); // // simplify slices if required // if (print_->config.resolution) // pobj->_simplify_slices(scale_(print_->config.resolution)); // if(pobj->layers.empty()) // report_issue(IssueType::ERR, // L("No layers were detected. You might want to repair your " // "STL file(s) or check their size or thickness and retry") // ); // pobj->state.set_done(STEP_SLICE); //} //void PrintController::make_perimeters(PrintObject *pobj) //{ // assert(pobj != nullptr); // slice(pobj); // if (!pobj->state.is_done(STEP_PERIMETERS)) { // pobj->_make_perimeters(); // } //} //void PrintController::infill(PrintObject *pobj) //{ // assert(pobj != nullptr); // make_perimeters(pobj); // if (!pobj->state.is_done(STEP_PREPARE_INFILL)) { // pobj->state.set_started(STEP_PREPARE_INFILL); // pobj->_prepare_infill(); // pobj->state.set_done(STEP_PREPARE_INFILL); // } // pobj->_infill(); //} //void PrintController::gen_support_material(PrintObject *pobj) //{ // assert(pobj != nullptr); // // prerequisites // slice(pobj); // if(!pobj->state.is_done(STEP_SUPPORTMATERIAL)) { // pobj->state.set_started(STEP_SUPPORTMATERIAL); // pobj->clear_support_layers(); // if((pobj->config.support_material || pobj->config.raft_layers > 0) // && pobj->layers.size() > 1) { // pobj->_generate_support_material(); // } // pobj->state.set_done(STEP_SUPPORTMATERIAL); // } //} PrintController::PngExportData PrintController::query_png_export_data(const DynamicPrintConfig& conf) { PngExportData ret; auto zippath = query_destination_path("Output zip file", "*.zip", "out"); ret.zippath = zippath; ret.width_mm = conf.opt_float("display_width"); ret.height_mm = conf.opt_float("display_height"); ret.width_px = conf.opt_int("display_pixels_x"); ret.height_px = conf.opt_int("display_pixels_y"); auto opt_corr = conf.opt("printer_correction"); if(opt_corr) { ret.corr_x = opt_corr->values[0]; ret.corr_y = opt_corr->values[1]; ret.corr_z = opt_corr->values[2]; } ret.exp_time_first_s = conf.opt_float("initial_exposure_time"); ret.exp_time_s = conf.opt_float("exposure_time"); return ret; } void PrintController::slice(AppControllerBoilerplate::ProgresIndicatorPtr pri) { auto st = pri->state(); Slic3r::trace(3, "Starting the slicing process."); pri->update(st+20, L("Generating perimeters")); // for(auto obj : print_->objects) make_perimeters(obj); pri->update(st+60, L("Infilling layers")); // for(auto obj : print_->objects) infill(obj); pri->update(st+70, L("Generating support material")); // for(auto obj : print_->objects) gen_support_material(obj); // pri->message_fmt(L("Weight: %.1fg, Cost: %.1f"), // print_->total_weight, print_->total_cost); pri->state(st+85); pri->update(st+88, L("Generating skirt")); make_skirt(); pri->update(st+90, L("Generating brim")); make_brim(); pri->update(st+95, L("Generating wipe tower")); make_wipe_tower(); pri->update(st+100, L("Done")); // time to make some statistics.. Slic3r::trace(3, L("Slicing process finished.")); } void PrintController::slice() { auto pri = global_progress_indicator(); if(!pri) pri = create_progress_indicator(100, L("Slicing")); slice(pri); } template<> class LayerWriter { Zipper m_zip; public: inline LayerWriter(const std::string& zipfile_path): m_zip(zipfile_path) {} inline void next_entry(const std::string& fname) { m_zip.next_entry(fname); } inline std::string get_name() const { return m_zip.get_name(); } template inline LayerWriter& operator<<(const T& arg) { m_zip.stream() << arg; return *this; } inline void close() { m_zip.close(); } }; void PrintController::slice_to_png() { using Pointf3 = Vec3d; auto presetbundle = GUI::get_preset_bundle(); assert(presetbundle); auto pt = presetbundle->printers.get_selected_preset().printer_technology(); if(pt != ptSLA) { report_issue(IssueType::ERR, L("Printer technology is not SLA!"), L("Error")); return; } auto conf = presetbundle->full_config(); conf.validate(); auto exd = query_png_export_data(conf); if(exd.zippath.empty()) return; Print *print = print_; try { print->apply_config(conf); print->validate(); } catch(std::exception& e) { report_issue(IssueType::ERR, e.what(), "Error"); return; } // TODO: copy the model and work with the copy only bool correction = false; if(exd.corr_x != 1.0 || exd.corr_y != 1.0 || exd.corr_z != 1.0) { correction = true; // print->invalidate_all_steps(); // for(auto po : print->objects) { // po->model_object()->scale( // Pointf3(exd.corr_x, exd.corr_y, exd.corr_z) // ); // po->model_object()->invalidate_bounding_box(); // po->reload_model_instances(); // po->invalidate_all_steps(); // } } // Turn back the correction scaling on the model. auto scale_back = [this, print, correction, exd]() { if(correction) { // scale the model back // print->invalidate_all_steps(); // for(auto po : print->objects) { // po->model_object()->scale( // Pointf3(1.0/exd.corr_x, 1.0/exd.corr_y, 1.0/exd.corr_z) // ); // po->model_object()->invalidate_bounding_box(); // po->reload_model_instances(); // po->invalidate_all_steps(); // } } }; auto print_bb = print->bounding_box(); Vec2d punsc = unscale(print_bb.size()); // If the print does not fit into the print area we should cry about it. if(px(punsc) > exd.width_mm || py(punsc) > exd.height_mm) { std::stringstream ss; ss << L("Print will not fit and will be truncated!") << "\n" << L("Width needed: ") << px(punsc) << " mm\n" << L("Height needed: ") << py(punsc) << " mm\n"; if(!report_issue(IssueType::WARN_Q, ss.str(), L("Warning"))) { scale_back(); return; } } auto pri = create_progress_indicator( 200, L("Slicing to zipped png files...")); pri->on_cancel([&print](){ print->cancel(); }); try { pri->update(0, L("Slicing...")); slice(pri); } catch (std::exception& e) { report_issue(IssueType::ERR, e.what(), L("Exception occurred")); scale_back(); if(print->canceled()) print->restart(); return; } auto initstate = unsigned(pri->state()); print->set_status_callback([pri, initstate](int st, const std::string& msg) { pri->update(initstate + unsigned(st), msg); }); try { print_to( *print, exd.zippath, exd.width_mm, exd.height_mm, exd.width_px, exd.height_px, exd.exp_time_s, exd.exp_time_first_s); } catch (std::exception& e) { report_issue(IssueType::ERR, e.what(), L("Exception occurred")); } scale_back(); if(print->canceled()) print->restart(); print->set_status_default(); } const PrintConfig &PrintController::config() const { return print_->config(); } void ProgressIndicator::message_fmt( const std::string &fmtstr, ...) { std::stringstream ss; va_list args; va_start(args, fmtstr); auto fmt = fmtstr.begin(); while (*fmt != '\0') { if (*fmt == 'd') { int i = va_arg(args, int); ss << i << '\n'; } else if (*fmt == 'c') { // note automatic conversion to integral type int c = va_arg(args, int); ss << static_cast(c) << '\n'; } else if (*fmt == 'f') { double d = va_arg(args, double); ss << d << '\n'; } ++fmt; } va_end(args); message(ss.str()); } void AppController::arrange_model() { using Coord = libnest2d::TCoord; if(arranging_.load()) return; // to prevent UI reentrancies arranging_.store(true); unsigned count = 0; for(auto obj : model_->objects) count += obj->instances.size(); auto pind = global_progress_indicator(); float pmax = 1.0; if(pind) { pmax = pind->max(); // Set the range of the progress to the object count pind->max(count); pind->on_cancel([this](){ arranging_.store(false); }); } auto dist = print_ctl()->config().min_object_distance(); // Create the arranger config auto min_obj_distance = static_cast(dist/SCALING_FACTOR); auto& bedpoints = print_ctl()->config().bed_shape.values; Polyline bed; bed.points.reserve(bedpoints.size()); for(auto& v : bedpoints) bed.append(Point::new_scale(v(0), v(1))); if(pind) pind->update(0, L("Arranging objects...")); try { arr::BedShapeHint hint; // TODO: from Sasha from GUI hint.type = arr::BedShapeType::WHO_KNOWS; arr::arrange(*model_, min_obj_distance, bed, hint, false, // create many piles not just one pile [this, pind, count](unsigned rem) { if(pind) pind->update(count - rem, L("Arranging objects...")); process_events(); }, [this] () { return !arranging_.load(); }); } catch(std::exception& e) { std::cerr << e.what() << std::endl; report_issue(IssueType::ERR, L("Could not arrange model objects! " "Some geometries may be invalid."), L("Exception occurred")); } // Restore previous max value if(pind) { pind->max(pmax); pind->update(0, arranging_.load() ? L("Arranging done.") : L("Arranging canceled.")); pind->on_cancel(/*remove cancel function*/); } arranging_.store(false); } }