#include "GLCanvas3D.hpp" #include "../../libslic3r/libslic3r.h" #include "../../slic3r/GUI/3DScene.hpp" #include "../../slic3r/GUI/GLShader.hpp" #include "../../slic3r/GUI/GUI.hpp" #include "../../slic3r/GUI/PresetBundle.hpp" #include "../../slic3r/GUI/GLGizmo.hpp" #include "../../libslic3r/ClipperUtils.hpp" #include "../../libslic3r/PrintConfig.hpp" #include "../../libslic3r/Print.hpp" #include "../../libslic3r/GCode/PreviewData.hpp" #include #include #include #include #include #include #include #include #include #include static const float TRACKBALLSIZE = 0.8f; static const float GIMBALL_LOCK_THETA_MAX = 180.0f; static const float GROUND_Z = -0.02f; // phi / theta angles to orient the camera. static const float VIEW_DEFAULT[2] = { 45.0f, 45.0f }; static const float VIEW_LEFT[2] = { 90.0f, 90.0f }; static const float VIEW_RIGHT[2] = { -90.0f, 90.0f }; static const float VIEW_TOP[2] = { 0.0f, 0.0f }; static const float VIEW_BOTTOM[2] = { 0.0f, 180.0f }; static const float VIEW_FRONT[2] = { 0.0f, 90.0f }; static const float VIEW_REAR[2] = { 180.0f, 90.0f }; static const float VARIABLE_LAYER_THICKNESS_BAR_WIDTH = 70.0f; static const float VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT = 22.0f; static const float UNIT_MATRIX[] = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; namespace Slic3r { namespace GUI { bool GeometryBuffer::set_from_triangles(const Polygons& triangles, float z, bool generate_tex_coords) { m_vertices.clear(); m_tex_coords.clear(); unsigned int v_size = 9 * (unsigned int)triangles.size(); unsigned int t_size = 6 * (unsigned int)triangles.size(); if (v_size == 0) return false; m_vertices = std::vector(v_size, 0.0f); if (generate_tex_coords) m_tex_coords = std::vector(t_size, 0.0f); float min_x = (float)unscale(triangles[0].points[0].x); float min_y = (float)unscale(triangles[0].points[0].y); float max_x = min_x; float max_y = min_y; unsigned int v_coord = 0; unsigned int t_coord = 0; for (const Polygon& t : triangles) { for (unsigned int v = 0; v < 3; ++v) { const Point& p = t.points[v]; float x = (float)unscale(p.x); float y = (float)unscale(p.y); m_vertices[v_coord++] = x; m_vertices[v_coord++] = y; m_vertices[v_coord++] = z; if (generate_tex_coords) { m_tex_coords[t_coord++] = x; m_tex_coords[t_coord++] = y; min_x = std::min(min_x, x); max_x = std::max(max_x, x); min_y = std::min(min_y, y); max_y = std::max(max_y, y); } } } if (generate_tex_coords) { float size_x = max_x - min_x; float size_y = max_y - min_y; if ((size_x != 0.0f) && (size_y != 0.0f)) { float inv_size_x = 1.0f / size_x; float inv_size_y = -1.0f / size_y; for (unsigned int i = 0; i < m_tex_coords.size(); i += 2) { m_tex_coords[i] *= inv_size_x; m_tex_coords[i + 1] *= inv_size_y; } } } return true; } bool GeometryBuffer::set_from_lines(const Lines& lines, float z) { m_vertices.clear(); m_tex_coords.clear(); unsigned int size = 6 * (unsigned int)lines.size(); if (size == 0) return false; m_vertices = std::vector(size, 0.0f); unsigned int coord = 0; for (const Line& l : lines) { m_vertices[coord++] = (float)unscale(l.a.x); m_vertices[coord++] = (float)unscale(l.a.y); m_vertices[coord++] = z; m_vertices[coord++] = (float)unscale(l.b.x); m_vertices[coord++] = (float)unscale(l.b.y); m_vertices[coord++] = z; } return true; } const float* GeometryBuffer::get_vertices() const { return m_vertices.data(); } const float* GeometryBuffer::get_tex_coords() const { return m_tex_coords.data(); } unsigned int GeometryBuffer::get_vertices_count() const { return (unsigned int)m_vertices.size() / 3; } Size::Size() : m_width(0) , m_height(0) { } Size::Size(int width, int height) : m_width(width) , m_height(height) { } int Size::get_width() const { return m_width; } void Size::set_width(int width) { m_width = width; } int Size::get_height() const { return m_height; } void Size::set_height(int height) { m_height = height; } Rect::Rect() : m_left(0.0f) , m_top(0.0f) , m_right(0.0f) , m_bottom(0.0f) { } Rect::Rect(float left, float top, float right, float bottom) : m_left(left) , m_top(top) , m_right(right) , m_bottom(bottom) { } float Rect::get_left() const { return m_left; } void Rect::set_left(float left) { m_left = left; } float Rect::get_top() const { return m_top; } void Rect::set_top(float top) { m_top = top; } float Rect::get_right() const { return m_right; } void Rect::set_right(float right) { m_right = right; } float Rect::get_bottom() const { return m_bottom; } void Rect::set_bottom(float bottom) { m_bottom = bottom; } GLCanvas3D::Camera::Camera() : type(Ortho) , zoom(1.0f) , phi(45.0f) // , distance(0.0f) , target(0.0, 0.0, 0.0) , m_theta(45.0f) { } std::string GLCanvas3D::Camera::get_type_as_string() const { switch (type) { default: case Unknown: return "unknown"; // case Perspective: // return "perspective"; case Ortho: return "ortho"; }; } float GLCanvas3D::Camera::get_theta() const { return m_theta; } void GLCanvas3D::Camera::set_theta(float theta) { m_theta = clamp(0.0f, GIMBALL_LOCK_THETA_MAX, theta); } GLCanvas3D::Bed::Bed() : m_type(Custom) { } bool GLCanvas3D::Bed::is_prusa() const { return (m_type == MK2) || (m_type == MK3); } bool GLCanvas3D::Bed::is_custom() const { return m_type == Custom; } const Pointfs& GLCanvas3D::Bed::get_shape() const { return m_shape; } void GLCanvas3D::Bed::set_shape(const Pointfs& shape) { m_shape = shape; m_type = _detect_type(); _calc_bounding_box(); ExPolygon poly; for (const Pointf& p : m_shape) { poly.contour.append(Point(scale_(p.x), scale_(p.y))); } _calc_triangles(poly); const BoundingBox& bed_bbox = poly.contour.bounding_box(); _calc_gridlines(poly, bed_bbox); m_polygon = offset_ex(poly.contour, (float)bed_bbox.radius() * 1.7f, jtRound, scale_(0.5))[0].contour; } const BoundingBoxf3& GLCanvas3D::Bed::get_bounding_box() const { return m_bounding_box; } bool GLCanvas3D::Bed::contains(const Point& point) const { return m_polygon.contains(point); } Point GLCanvas3D::Bed::point_projection(const Point& point) const { return m_polygon.point_projection(point); } void GLCanvas3D::Bed::render(float theta) const { switch (m_type) { case MK2: { _render_mk2(theta); break; } case MK3: { _render_mk3(theta); break; } default: case Custom: { _render_custom(); break; } } } void GLCanvas3D::Bed::_calc_bounding_box() { m_bounding_box = BoundingBoxf3(); for (const Pointf& p : m_shape) { m_bounding_box.merge(Pointf3(p.x, p.y, 0.0)); } } void GLCanvas3D::Bed::_calc_triangles(const ExPolygon& poly) { Polygons triangles; poly.triangulate(&triangles); if (!m_triangles.set_from_triangles(triangles, GROUND_Z, m_type != Custom)) printf("Unable to create bed triangles\n"); } void GLCanvas3D::Bed::_calc_gridlines(const ExPolygon& poly, const BoundingBox& bed_bbox) { Polylines axes_lines; for (coord_t x = bed_bbox.min.x; x <= bed_bbox.max.x; x += scale_(10.0)) { Polyline line; line.append(Point(x, bed_bbox.min.y)); line.append(Point(x, bed_bbox.max.y)); axes_lines.push_back(line); } for (coord_t y = bed_bbox.min.y; y <= bed_bbox.max.y; y += scale_(10.0)) { Polyline line; line.append(Point(bed_bbox.min.x, y)); line.append(Point(bed_bbox.max.x, y)); axes_lines.push_back(line); } // clip with a slightly grown expolygon because our lines lay on the contours and may get erroneously clipped Lines gridlines = to_lines(intersection_pl(axes_lines, offset(poly, SCALED_EPSILON))); // append bed contours Lines contour_lines = to_lines(poly); std::copy(contour_lines.begin(), contour_lines.end(), std::back_inserter(gridlines)); if (!m_gridlines.set_from_lines(gridlines, GROUND_Z)) printf("Unable to create bed grid lines\n"); } GLCanvas3D::Bed::EType GLCanvas3D::Bed::_detect_type() const { EType type = Custom; const PresetBundle* bundle = get_preset_bundle(); if (bundle != nullptr) { const Preset* curr = &bundle->printers.get_selected_preset(); while (curr != nullptr) { if (curr->config.has("bed_shape") && _are_equal(m_shape, dynamic_cast(curr->config.option("bed_shape"))->values)) { if ((curr->vendor != nullptr) && (curr->vendor->name == "Prusa Research")) { if (boost::contains(curr->name, "MK2")) { type = MK2; break; } else if (boost::contains(curr->name, "MK3")) { type = MK3; break; } } } curr = bundle->printers.get_preset_parent(*curr); } } return type; } void GLCanvas3D::Bed::_render_mk2(float theta) const { std::string filename = resources_dir() + "/icons/bed/mk2_top.png"; if ((m_top_texture.get_id() == 0) || (m_top_texture.get_source() != filename)) { if (!m_top_texture.load_from_file(filename, true)) { _render_custom(); return; } } filename = resources_dir() + "/icons/bed/mk2_bottom.png"; if ((m_bottom_texture.get_id() == 0) || (m_bottom_texture.get_source() != filename)) { if (!m_bottom_texture.load_from_file(filename, true)) { _render_custom(); return; } } _render_prusa(theta); } void GLCanvas3D::Bed::_render_mk3(float theta) const { std::string filename = resources_dir() + "/icons/bed/mk3_top.png"; if ((m_top_texture.get_id() == 0) || (m_top_texture.get_source() != filename)) { if (!m_top_texture.load_from_file(filename, true)) { _render_custom(); return; } } filename = resources_dir() + "/icons/bed/mk3_bottom.png"; if ((m_bottom_texture.get_id() == 0) || (m_bottom_texture.get_source() != filename)) { if (!m_bottom_texture.load_from_file(filename, true)) { _render_custom(); return; } } _render_prusa(theta); } void GLCanvas3D::Bed::_render_prusa(float theta) const { unsigned int triangles_vcount = m_triangles.get_vertices_count(); if (triangles_vcount > 0) { ::glEnable(GL_DEPTH_TEST); ::glEnable(GL_BLEND); ::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); ::glEnable(GL_TEXTURE_2D); ::glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); ::glEnableClientState(GL_VERTEX_ARRAY); ::glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (theta > 90.0f) ::glFrontFace(GL_CW); ::glBindTexture(GL_TEXTURE_2D, (theta <= 90.0f) ? (GLuint)m_top_texture.get_id() : (GLuint)m_bottom_texture.get_id()); ::glVertexPointer(3, GL_FLOAT, 0, (GLvoid*)m_triangles.get_vertices()); ::glTexCoordPointer(2, GL_FLOAT, 0, (GLvoid*)m_triangles.get_tex_coords()); ::glDrawArrays(GL_TRIANGLES, 0, (GLsizei)triangles_vcount); if (theta > 90.0f) ::glFrontFace(GL_CCW); ::glBindTexture(GL_TEXTURE_2D, 0); ::glDisableClientState(GL_TEXTURE_COORD_ARRAY); ::glDisableClientState(GL_VERTEX_ARRAY); ::glDisable(GL_TEXTURE_2D); ::glDisable(GL_BLEND); } } void GLCanvas3D::Bed::_render_custom() const { m_top_texture.reset(); m_bottom_texture.reset(); unsigned int triangles_vcount = m_triangles.get_vertices_count(); if (triangles_vcount > 0) { ::glEnable(GL_LIGHTING); ::glDisable(GL_DEPTH_TEST); ::glEnable(GL_BLEND); ::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); ::glEnableClientState(GL_VERTEX_ARRAY); ::glColor4f(0.8f, 0.6f, 0.5f, 0.4f); ::glNormal3d(0.0f, 0.0f, 1.0f); ::glVertexPointer(3, GL_FLOAT, 0, (GLvoid*)m_triangles.get_vertices()); ::glDrawArrays(GL_TRIANGLES, 0, (GLsizei)triangles_vcount); // draw grid unsigned int gridlines_vcount = m_gridlines.get_vertices_count(); // we need depth test for grid, otherwise it would disappear when looking the object from below ::glEnable(GL_DEPTH_TEST); ::glLineWidth(3.0f); ::glColor4f(0.2f, 0.2f, 0.2f, 0.4f); ::glVertexPointer(3, GL_FLOAT, 0, (GLvoid*)m_gridlines.get_vertices()); ::glDrawArrays(GL_LINES, 0, (GLsizei)gridlines_vcount); ::glDisableClientState(GL_VERTEX_ARRAY); ::glDisable(GL_BLEND); ::glDisable(GL_LIGHTING); } } bool GLCanvas3D::Bed::_are_equal(const Pointfs& bed_1, const Pointfs& bed_2) { if (bed_1.size() != bed_2.size()) return false; for (unsigned int i = 0; i < (unsigned int)bed_1.size(); ++i) { if (bed_1[i] != bed_2[i]) return false; } return true; } GLCanvas3D::Axes::Axes() : length(0.0f) { } void GLCanvas3D::Axes::render(bool depth_test) const { if (depth_test) ::glEnable(GL_DEPTH_TEST); else ::glDisable(GL_DEPTH_TEST); ::glLineWidth(2.0f); ::glBegin(GL_LINES); // draw line for x axis ::glColor3f(1.0f, 0.0f, 0.0f); ::glVertex3f((GLfloat)origin.x, (GLfloat)origin.y, (GLfloat)origin.z); ::glVertex3f((GLfloat)origin.x + length, (GLfloat)origin.y, (GLfloat)origin.z); // draw line for y axis ::glColor3f(0.0f, 1.0f, 0.0f); ::glVertex3f((GLfloat)origin.x, (GLfloat)origin.y, (GLfloat)origin.z); ::glVertex3f((GLfloat)origin.x, (GLfloat)origin.y + length, (GLfloat)origin.z); ::glEnd(); // draw line for Z axis // (re-enable depth test so that axis is correctly shown when objects are behind it) if (!depth_test) ::glEnable(GL_DEPTH_TEST); ::glBegin(GL_LINES); ::glColor3f(0.0f, 0.0f, 1.0f); ::glVertex3f((GLfloat)origin.x, (GLfloat)origin.y, (GLfloat)origin.z); ::glVertex3f((GLfloat)origin.x, (GLfloat)origin.y, (GLfloat)origin.z + length); ::glEnd(); } GLCanvas3D::CuttingPlane::CuttingPlane() : m_z(-1.0f) { } bool GLCanvas3D::CuttingPlane::set(float z, const ExPolygons& polygons) { m_z = z; // grow slices in order to display them better ExPolygons expolygons = offset_ex(polygons, scale_(0.1)); Lines lines = to_lines(expolygons); return m_lines.set_from_lines(lines, m_z); } void GLCanvas3D::CuttingPlane::render(const BoundingBoxf3& bb) const { _render_plane(bb); _render_contour(); } void GLCanvas3D::CuttingPlane::_render_plane(const BoundingBoxf3& bb) const { if (m_z >= 0.0f) { ::glDisable(GL_CULL_FACE); ::glEnable(GL_BLEND); ::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); float margin = 20.0f; float min_x = bb.min.x - margin; float max_x = bb.max.x + margin; float min_y = bb.min.y - margin; float max_y = bb.max.y + margin; ::glBegin(GL_QUADS); ::glColor4f(0.8f, 0.8f, 0.8f, 0.5f); ::glVertex3f(min_x, min_y, m_z); ::glVertex3f(max_x, min_y, m_z); ::glVertex3f(max_x, max_y, m_z); ::glVertex3f(min_x, max_y, m_z); ::glEnd(); ::glEnable(GL_CULL_FACE); ::glDisable(GL_BLEND); } } void GLCanvas3D::CuttingPlane::_render_contour() const { ::glEnableClientState(GL_VERTEX_ARRAY); if (m_z >= 0.0f) { unsigned int lines_vcount = m_lines.get_vertices_count(); ::glLineWidth(2.0f); ::glColor3f(0.0f, 0.0f, 0.0f); ::glVertexPointer(3, GL_FLOAT, 0, (GLvoid*)m_lines.get_vertices()); ::glDrawArrays(GL_LINES, 0, (GLsizei)lines_vcount); } ::glDisableClientState(GL_VERTEX_ARRAY); } GLCanvas3D::Shader::Shader() : m_shader(nullptr) { } GLCanvas3D::Shader::~Shader() { _reset(); } bool GLCanvas3D::Shader::init(const std::string& vertex_shader_filename, const std::string& fragment_shader_filename) { if (is_initialized()) return true; m_shader = new GLShader(); if (m_shader != nullptr) { if (!m_shader->load_from_file(fragment_shader_filename.c_str(), vertex_shader_filename.c_str())) { std::cout << "Compilaton of shader failed:" << std::endl; std::cout << m_shader->last_error << std::endl; _reset(); return false; } } return true; } bool GLCanvas3D::Shader::is_initialized() const { return (m_shader != nullptr); } bool GLCanvas3D::Shader::start_using() const { if (is_initialized()) { m_shader->enable(); return true; } else return false; } void GLCanvas3D::Shader::stop_using() const { if (m_shader != nullptr) m_shader->disable(); } void GLCanvas3D::Shader::set_uniform(const std::string& name, float value) const { if (m_shader != nullptr) m_shader->set_uniform(name.c_str(), value); } void GLCanvas3D::Shader::set_uniform(const std::string& name, const float* matrix) const { if (m_shader != nullptr) m_shader->set_uniform(name.c_str(), matrix); } const GLShader* GLCanvas3D::Shader::get_shader() const { return m_shader; } void GLCanvas3D::Shader::_reset() { if (m_shader != nullptr) { m_shader->release(); delete m_shader; m_shader = nullptr; } } GLCanvas3D::LayersEditing::LayersEditing() : m_use_legacy_opengl(false) , m_enabled(false) , m_z_texture_id(0) , state(Unknown) , band_width(2.0f) , strength(0.005f) , last_object_id(-1) , last_z(0.0f) , last_action(0) { } GLCanvas3D::LayersEditing::~LayersEditing() { if (m_z_texture_id != 0) { ::glDeleteTextures(1, &m_z_texture_id); m_z_texture_id = 0; } } bool GLCanvas3D::LayersEditing::init(const std::string& vertex_shader_filename, const std::string& fragment_shader_filename) { if (!m_shader.init(vertex_shader_filename, fragment_shader_filename)) return false; ::glGenTextures(1, (GLuint*)&m_z_texture_id); ::glBindTexture(GL_TEXTURE_2D, m_z_texture_id); ::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP); ::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); ::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); ::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST); ::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1); ::glBindTexture(GL_TEXTURE_2D, 0); return true; } bool GLCanvas3D::LayersEditing::is_allowed() const { return !m_use_legacy_opengl && m_shader.is_initialized(); } void GLCanvas3D::LayersEditing::set_use_legacy_opengl(bool use_legacy_opengl) { m_use_legacy_opengl = use_legacy_opengl; } bool GLCanvas3D::LayersEditing::is_enabled() const { return m_enabled; } void GLCanvas3D::LayersEditing::set_enabled(bool enabled) { m_enabled = is_allowed() && enabled; } unsigned int GLCanvas3D::LayersEditing::get_z_texture_id() const { return m_z_texture_id; } void GLCanvas3D::LayersEditing::render(const GLCanvas3D& canvas, const PrintObject& print_object, const GLVolume& volume) const { if (!m_enabled) return; const Rect& bar_rect = get_bar_rect_viewport(canvas); const Rect& reset_rect = get_reset_rect_viewport(canvas); ::glDisable(GL_DEPTH_TEST); // The viewport and camera are set to complete view and glOrtho(-$x / 2, $x / 2, -$y / 2, $y / 2, -$depth, $depth), // where x, y is the window size divided by $self->_zoom. ::glPushMatrix(); ::glLoadIdentity(); _render_tooltip_texture(canvas, bar_rect, reset_rect); _render_reset_texture(reset_rect); _render_active_object_annotations(canvas, volume, print_object, bar_rect); _render_profile(print_object, bar_rect); // Revert the matrices. ::glPopMatrix(); ::glEnable(GL_DEPTH_TEST); } int GLCanvas3D::LayersEditing::get_shader_program_id() const { const GLShader* shader = m_shader.get_shader(); return (shader != nullptr) ? shader->shader_program_id : -1; } float GLCanvas3D::LayersEditing::get_cursor_z_relative(const GLCanvas3D& canvas) { const Point& mouse_pos = canvas.get_local_mouse_position(); const Rect& rect = get_bar_rect_screen(canvas); float x = (float)mouse_pos.x; float y = (float)mouse_pos.y; float t = rect.get_top(); float b = rect.get_bottom(); return ((rect.get_left() <= x) && (x <= rect.get_right()) && (t <= y) && (y <= b)) ? // Inside the bar. (b - y - 1.0f) / (b - t - 1.0f) : // Outside the bar. -1000.0f; } bool GLCanvas3D::LayersEditing::bar_rect_contains(const GLCanvas3D& canvas, float x, float y) { const Rect& rect = get_bar_rect_screen(canvas); return (rect.get_left() <= x) && (x <= rect.get_right()) && (rect.get_top() <= y) && (y <= rect.get_bottom()); } bool GLCanvas3D::LayersEditing::reset_rect_contains(const GLCanvas3D& canvas, float x, float y) { const Rect& rect = get_reset_rect_screen(canvas); return (rect.get_left() <= x) && (x <= rect.get_right()) && (rect.get_top() <= y) && (y <= rect.get_bottom()); } Rect GLCanvas3D::LayersEditing::get_bar_rect_screen(const GLCanvas3D& canvas) { const Size& cnv_size = canvas.get_canvas_size(); float w = (float)cnv_size.get_width(); float h = (float)cnv_size.get_height(); return Rect(w - VARIABLE_LAYER_THICKNESS_BAR_WIDTH, 0.0f, w, h - VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT); } Rect GLCanvas3D::LayersEditing::get_reset_rect_screen(const GLCanvas3D& canvas) { const Size& cnv_size = canvas.get_canvas_size(); float w = (float)cnv_size.get_width(); float h = (float)cnv_size.get_height(); return Rect(w - VARIABLE_LAYER_THICKNESS_BAR_WIDTH, h - VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT, w, h); } Rect GLCanvas3D::LayersEditing::get_bar_rect_viewport(const GLCanvas3D& canvas) { const Size& cnv_size = canvas.get_canvas_size(); float half_w = 0.5f * (float)cnv_size.get_width(); float half_h = 0.5f * (float)cnv_size.get_height(); float zoom = canvas.get_camera_zoom(); float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f; return Rect((half_w - VARIABLE_LAYER_THICKNESS_BAR_WIDTH) * inv_zoom, half_h * inv_zoom, half_w * inv_zoom, (-half_h + VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT) * inv_zoom); } Rect GLCanvas3D::LayersEditing::get_reset_rect_viewport(const GLCanvas3D& canvas) { const Size& cnv_size = canvas.get_canvas_size(); float half_w = 0.5f * (float)cnv_size.get_width(); float half_h = 0.5f * (float)cnv_size.get_height(); float zoom = canvas.get_camera_zoom(); float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f; return Rect((half_w - VARIABLE_LAYER_THICKNESS_BAR_WIDTH) * inv_zoom, (-half_h + VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT) * inv_zoom, half_w * inv_zoom, -half_h * inv_zoom); } bool GLCanvas3D::LayersEditing::_is_initialized() const { return m_shader.is_initialized(); } void GLCanvas3D::LayersEditing::_render_tooltip_texture(const GLCanvas3D& canvas, const Rect& bar_rect, const Rect& reset_rect) const { if (m_tooltip_texture.get_id() == 0) { std::string filename = resources_dir() + "/icons/variable_layer_height_tooltip.png"; if (!m_tooltip_texture.load_from_file(filename, false)) return; } float zoom = canvas.get_camera_zoom(); float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f; float gap = 10.0f * inv_zoom; float bar_left = bar_rect.get_left(); float reset_bottom = reset_rect.get_bottom(); float l = bar_left - (float)m_tooltip_texture.get_width() * inv_zoom - gap; float r = bar_left - gap; float t = reset_bottom + (float)m_tooltip_texture.get_height() * inv_zoom + gap; float b = reset_bottom + gap; GLTexture::render_texture(m_tooltip_texture.get_id(), l, r, b, t); } void GLCanvas3D::LayersEditing::_render_reset_texture(const Rect& reset_rect) const { if (m_reset_texture.get_id() == 0) { std::string filename = resources_dir() + "/icons/variable_layer_height_reset.png"; if (!m_reset_texture.load_from_file(filename, false)) return; } GLTexture::render_texture(m_reset_texture.get_id(), reset_rect.get_left(), reset_rect.get_right(), reset_rect.get_bottom(), reset_rect.get_top()); } void GLCanvas3D::LayersEditing::_render_active_object_annotations(const GLCanvas3D& canvas, const GLVolume& volume, const PrintObject& print_object, const Rect& bar_rect) const { float max_z = print_object.model_object()->bounding_box().max.z; m_shader.start_using(); m_shader.set_uniform("z_to_texture_row", (float)volume.layer_height_texture_z_to_row_id()); m_shader.set_uniform("z_texture_row_to_normalized", 1.0f / (float)volume.layer_height_texture_height()); m_shader.set_uniform("z_cursor", max_z * get_cursor_z_relative(canvas)); m_shader.set_uniform("z_cursor_band_width", band_width); // The shader requires the original model coordinates when rendering to the texture, so we pass it the unit matrix m_shader.set_uniform("volume_world_matrix", UNIT_MATRIX); GLsizei w = (GLsizei)volume.layer_height_texture_width(); GLsizei h = (GLsizei)volume.layer_height_texture_height(); GLsizei half_w = w / 2; GLsizei half_h = h / 2; ::glPixelStorei(GL_UNPACK_ALIGNMENT, 1); ::glBindTexture(GL_TEXTURE_2D, m_z_texture_id); ::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0); ::glTexImage2D(GL_TEXTURE_2D, 1, GL_RGBA, half_w, half_h, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0); ::glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, volume.layer_height_texture_data_ptr_level0()); ::glTexSubImage2D(GL_TEXTURE_2D, 1, 0, 0, half_w, half_h, GL_RGBA, GL_UNSIGNED_BYTE, volume.layer_height_texture_data_ptr_level1()); // Render the color bar float l = bar_rect.get_left(); float r = bar_rect.get_right(); float t = bar_rect.get_top(); float b = bar_rect.get_bottom(); ::glBegin(GL_QUADS); ::glVertex3f(l, b, 0.0f); ::glVertex3f(r, b, 0.0f); ::glVertex3f(r, t, max_z); ::glVertex3f(l, t, max_z); ::glEnd(); ::glBindTexture(GL_TEXTURE_2D, 0); m_shader.stop_using(); } void GLCanvas3D::LayersEditing::_render_profile(const PrintObject& print_object, const Rect& bar_rect) const { // FIXME show some kind of legend. // Get a maximum layer height value. // FIXME This is a duplicate code of Slicing.cpp. double layer_height_max = DBL_MAX; const PrintConfig& print_config = print_object.print()->config; const std::vector& nozzle_diameters = dynamic_cast(print_config.option("nozzle_diameter"))->values; const std::vector& layer_heights_min = dynamic_cast(print_config.option("min_layer_height"))->values; const std::vector& layer_heights_max = dynamic_cast(print_config.option("max_layer_height"))->values; for (unsigned int i = 0; i < (unsigned int)nozzle_diameters.size(); ++i) { double lh_min = (layer_heights_min[i] == 0.0) ? 0.07 : std::max(0.01, layer_heights_min[i]); double lh_max = (layer_heights_max[i] == 0.0) ? (0.75 * nozzle_diameters[i]) : layer_heights_max[i]; layer_height_max = std::min(layer_height_max, std::max(lh_min, lh_max)); } // Make the vertical bar a bit wider so the layer height curve does not touch the edge of the bar region. layer_height_max *= 1.12; coordf_t max_z = unscale(print_object.size.z); double layer_height = dynamic_cast(print_object.config.option("layer_height"))->value; float l = bar_rect.get_left(); float w = bar_rect.get_right() - l; float b = bar_rect.get_bottom(); float t = bar_rect.get_top(); float h = t - b; float scale_x = w / (float)layer_height_max; float scale_y = h / (float)max_z; float x = l + (float)layer_height * scale_x; // Baseline ::glColor3f(0.0f, 0.0f, 0.0f); ::glBegin(GL_LINE_STRIP); ::glVertex2f(x, b); ::glVertex2f(x, t); ::glEnd(); // Curve const ModelObject* model_object = print_object.model_object(); if (model_object->layer_height_profile_valid) { const std::vector& profile = model_object->layer_height_profile; ::glColor3f(0.0f, 0.0f, 1.0f); ::glBegin(GL_LINE_STRIP); for (unsigned int i = 0; i < profile.size(); i += 2) { ::glVertex2f(l + (float)profile[i + 1] * scale_x, b + (float)profile[i] * scale_y); } ::glEnd(); } } const Point GLCanvas3D::Mouse::Drag::Invalid_2D_Point(INT_MAX, INT_MAX); const Pointf3 GLCanvas3D::Mouse::Drag::Invalid_3D_Point(DBL_MAX, DBL_MAX, DBL_MAX); GLCanvas3D::Mouse::Drag::Drag() : start_position_2D(Invalid_2D_Point) , start_position_3D(Invalid_3D_Point) , move_with_shift(false) , move_volume_idx(-1) , gizmo_volume_idx(-1) { } GLCanvas3D::Mouse::Mouse() : dragging(false) , position(DBL_MAX, DBL_MAX) { } void GLCanvas3D::Mouse::set_start_position_2D_as_invalid() { drag.start_position_2D = Drag::Invalid_2D_Point; } void GLCanvas3D::Mouse::set_start_position_3D_as_invalid() { drag.start_position_3D = Drag::Invalid_3D_Point; } bool GLCanvas3D::Mouse::is_start_position_2D_defined() const { return (drag.start_position_2D != Drag::Invalid_2D_Point); } bool GLCanvas3D::Mouse::is_start_position_3D_defined() const { return (drag.start_position_3D != Drag::Invalid_3D_Point); } const float GLCanvas3D::Gizmos::OverlayTexturesScale = 0.75f; const float GLCanvas3D::Gizmos::OverlayOffsetX = 10.0f * OverlayTexturesScale; const float GLCanvas3D::Gizmos::OverlayGapY = 5.0f * OverlayTexturesScale; GLCanvas3D::Gizmos::Gizmos() : m_enabled(false) , m_current(Undefined) , m_dragging(false) { } GLCanvas3D::Gizmos::~Gizmos() { _reset(); } bool GLCanvas3D::Gizmos::init() { GLGizmoBase* gizmo = new GLGizmoScale; if (gizmo == nullptr) return false; if (!gizmo->init()) return false; m_gizmos.insert(GizmosMap::value_type(Scale, gizmo)); gizmo = new GLGizmoRotate; if (gizmo == nullptr) { _reset(); return false; } if (!gizmo->init()) { _reset(); return false; } m_gizmos.insert(GizmosMap::value_type(Rotate, gizmo)); return true; } bool GLCanvas3D::Gizmos::is_enabled() const { return m_enabled; } void GLCanvas3D::Gizmos::set_enabled(bool enable) { m_enabled = enable; } void GLCanvas3D::Gizmos::update_hover_state(const GLCanvas3D& canvas, const Pointf& mouse_pos) { if (!m_enabled) return; float cnv_h = (float)canvas.get_canvas_size().get_height(); float height = _get_total_overlay_height(); float top_y = 0.5f * (cnv_h - height); for (GizmosMap::const_iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it) { if (it->second == nullptr) continue; float tex_size = (float)it->second->get_textures_size() * OverlayTexturesScale; float half_tex_size = 0.5f * tex_size; // we currently use circular icons for gizmo, so we check the radius if (it->second->get_state() != GLGizmoBase::On) { bool inside = length(Pointf(OverlayOffsetX + half_tex_size, top_y + half_tex_size).vector_to(mouse_pos)) < half_tex_size; it->second->set_state(inside ? GLGizmoBase::Hover : GLGizmoBase::Off); } top_y += (tex_size + OverlayGapY); } } void GLCanvas3D::Gizmos::update_on_off_state(const GLCanvas3D& canvas, const Pointf& mouse_pos) { if (!m_enabled) return; float cnv_h = (float)canvas.get_canvas_size().get_height(); float height = _get_total_overlay_height(); float top_y = 0.5f * (cnv_h - height); for (GizmosMap::const_iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it) { if (it->second == nullptr) continue; float tex_size = (float)it->second->get_textures_size() * OverlayTexturesScale; float half_tex_size = 0.5f * tex_size; // we currently use circular icons for gizmo, so we check the radius if (length(Pointf(OverlayOffsetX + half_tex_size, top_y + half_tex_size).vector_to(mouse_pos)) < half_tex_size) { if ((it->second->get_state() == GLGizmoBase::On)) { it->second->set_state(GLGizmoBase::Off); m_current = Undefined; } else { it->second->set_state(GLGizmoBase::On); m_current = it->first; } } else it->second->set_state(GLGizmoBase::Off); top_y += (tex_size + OverlayGapY); } } void GLCanvas3D::Gizmos::reset_all_states() { if (!m_enabled) return; for (GizmosMap::const_iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it) { if (it->second != nullptr) { it->second->set_state(GLGizmoBase::Off); it->second->set_hover_id(-1); } } m_current = Undefined; } void GLCanvas3D::Gizmos::set_hover_id(int id) { if (!m_enabled) return; for (GizmosMap::const_iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it) { if ((it->second != nullptr) && (it->second->get_state() == GLGizmoBase::On)) it->second->set_hover_id(id); } } bool GLCanvas3D::Gizmos::overlay_contains_mouse(const GLCanvas3D& canvas, const Pointf& mouse_pos) const { if (!m_enabled) return false; float cnv_h = (float)canvas.get_canvas_size().get_height(); float height = _get_total_overlay_height(); float top_y = 0.5f * (cnv_h - height); for (GizmosMap::const_iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it) { if (it->second == nullptr) continue; float tex_size = (float)it->second->get_textures_size() * OverlayTexturesScale; float half_tex_size = 0.5f * tex_size; // we currently use circular icons for gizmo, so we check the radius if (length(Pointf(OverlayOffsetX + half_tex_size, top_y + half_tex_size).vector_to(mouse_pos)) < half_tex_size) return true; top_y += (tex_size + OverlayGapY); } return false; } bool GLCanvas3D::Gizmos::grabber_contains_mouse() const { if (!m_enabled) return false; GLGizmoBase* curr = _get_current(); return (curr != nullptr) ? (curr->get_hover_id() != -1) : false; } void GLCanvas3D::Gizmos::update(const Pointf& mouse_pos) { if (!m_enabled) return; GLGizmoBase* curr = _get_current(); if (curr != nullptr) curr->update(mouse_pos); } void GLCanvas3D::Gizmos::refresh() { if (!m_enabled) return; GLGizmoBase* curr = _get_current(); if (curr != nullptr) curr->refresh(); } GLCanvas3D::Gizmos::EType GLCanvas3D::Gizmos::get_current_type() const { return m_current; } bool GLCanvas3D::Gizmos::is_running() const { if (!m_enabled) return false; GLGizmoBase* curr = _get_current(); return (curr != nullptr) ? (curr->get_state() == GLGizmoBase::On) : false; } bool GLCanvas3D::Gizmos::is_dragging() const { return m_dragging; } void GLCanvas3D::Gizmos::start_dragging() { m_dragging = true; GLGizmoBase* curr = _get_current(); if (curr != nullptr) curr->start_dragging(); } void GLCanvas3D::Gizmos::stop_dragging() { m_dragging = false; GLGizmoBase* curr = _get_current(); if (curr != nullptr) curr->stop_dragging(); } float GLCanvas3D::Gizmos::get_scale() const { if (!m_enabled) return 1.0f; GizmosMap::const_iterator it = m_gizmos.find(Scale); return (it != m_gizmos.end()) ? reinterpret_cast(it->second)->get_scale() : 1.0f; } void GLCanvas3D::Gizmos::set_scale(float scale) { if (!m_enabled) return; GizmosMap::const_iterator it = m_gizmos.find(Scale); if (it != m_gizmos.end()) reinterpret_cast(it->second)->set_scale(scale); } float GLCanvas3D::Gizmos::get_angle_z() const { if (!m_enabled) return 0.0f; GizmosMap::const_iterator it = m_gizmos.find(Rotate); return (it != m_gizmos.end()) ? reinterpret_cast(it->second)->get_angle_z() : 0.0f; } void GLCanvas3D::Gizmos::set_angle_z(float angle_z) { if (!m_enabled) return; GizmosMap::const_iterator it = m_gizmos.find(Rotate); if (it != m_gizmos.end()) reinterpret_cast(it->second)->set_angle_z(angle_z); } void GLCanvas3D::Gizmos::render(const GLCanvas3D& canvas, const BoundingBoxf3& box) const { if (!m_enabled) return; ::glDisable(GL_DEPTH_TEST); if (box.radius() > 0.0) _render_current_gizmo(box); ::glPushMatrix(); ::glLoadIdentity(); _render_overlay(canvas); ::glPopMatrix(); } void GLCanvas3D::Gizmos::render_current_gizmo_for_picking_pass(const BoundingBoxf3& box) const { if (!m_enabled) return; ::glDisable(GL_DEPTH_TEST); GLGizmoBase* curr = _get_current(); if (curr != nullptr) curr->render_for_picking(box); } void GLCanvas3D::Gizmos::_reset() { for (GizmosMap::value_type& gizmo : m_gizmos) { delete gizmo.second; gizmo.second = nullptr; } m_gizmos.clear(); } void GLCanvas3D::Gizmos::_render_overlay(const GLCanvas3D& canvas) const { if (m_gizmos.empty()) return; float cnv_w = (float)canvas.get_canvas_size().get_width(); float zoom = canvas.get_camera_zoom(); float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f; float height = _get_total_overlay_height(); float top_x = (OverlayOffsetX - 0.5f * cnv_w) * inv_zoom; float top_y = 0.5f * height * inv_zoom; float scaled_gap_y = OverlayGapY * inv_zoom; for (GizmosMap::const_iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it) { float tex_size = (float)it->second->get_textures_size() * OverlayTexturesScale * inv_zoom; GLTexture::render_texture(it->second->get_texture_id(), top_x, top_x + tex_size, top_y - tex_size, top_y); top_y -= (tex_size + scaled_gap_y); } } void GLCanvas3D::Gizmos::_render_current_gizmo(const BoundingBoxf3& box) const { GLGizmoBase* curr = _get_current(); if (curr != nullptr) curr->render(box); } float GLCanvas3D::Gizmos::_get_total_overlay_height() const { float height = 0.0f; for (GizmosMap::const_iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it) { height += (float)it->second->get_textures_size(); if (std::distance(it, m_gizmos.end()) > 1) height += OverlayGapY; } return height; } GLGizmoBase* GLCanvas3D::Gizmos::_get_current() const { GizmosMap::const_iterator it = m_gizmos.find(m_current); return (it != m_gizmos.end()) ? it->second : nullptr; } GLCanvas3D::GLCanvas3D(wxGLCanvas* canvas) : m_canvas(canvas) , m_context(nullptr) , m_timer(nullptr) , m_config(nullptr) , m_print(nullptr) , m_model(nullptr) , m_dirty(true) , m_initialized(false) , m_use_VBOs(false) , m_force_zoom_to_bed_enabled(false) , m_apply_zoom_to_volumes_filter(false) , m_hover_volume_id(-1) , m_warning_texture_enabled(false) , m_legend_texture_enabled(false) , m_picking_enabled(false) , m_moving_enabled(false) , m_shader_enabled(false) , m_multisample_allowed(false) , m_color_by("volume") , m_select_by("object") , m_drag_by("instance") , m_reload_delayed(false) { if (m_canvas != nullptr) { m_context = new wxGLContext(m_canvas); m_timer = new wxTimer(m_canvas); } } GLCanvas3D::~GLCanvas3D() { reset_volumes(); if (m_timer != nullptr) { delete m_timer; m_timer = nullptr; } if (m_context != nullptr) { delete m_context; m_context = nullptr; } _deregister_callbacks(); } bool GLCanvas3D::init(bool useVBOs, bool use_legacy_opengl) { if (m_initialized) return true; if ((m_canvas == nullptr) || (m_context == nullptr)) return false; ::glClearColor(1.0f, 1.0f, 1.0f, 1.0f); ::glClearDepth(1.0f); ::glDepthFunc(GL_LESS); ::glEnable(GL_DEPTH_TEST); ::glEnable(GL_CULL_FACE); ::glEnable(GL_BLEND); ::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Set antialiasing / multisampling ::glDisable(GL_LINE_SMOOTH); ::glDisable(GL_POLYGON_SMOOTH); // ambient lighting GLfloat ambient[4] = { 0.3f, 0.3f, 0.3f, 1.0f }; ::glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambient); ::glEnable(GL_LIGHT0); ::glEnable(GL_LIGHT1); // light from camera GLfloat specular_cam[4] = { 0.3f, 0.3f, 0.3f, 1.0f }; ::glLightfv(GL_LIGHT1, GL_SPECULAR, specular_cam); GLfloat diffuse_cam[4] = { 0.2f, 0.2f, 0.2f, 1.0f }; ::glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuse_cam); // light from above GLfloat specular_top[4] = { 0.2f, 0.2f, 0.2f, 1.0f }; ::glLightfv(GL_LIGHT0, GL_SPECULAR, specular_top); GLfloat diffuse_top[4] = { 0.5f, 0.5f, 0.5f, 1.0f }; ::glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse_top); // Enables Smooth Color Shading; try GL_FLAT for (lack of) fun. ::glShadeModel(GL_SMOOTH); // A handy trick -- have surface material mirror the color. ::glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE); ::glEnable(GL_COLOR_MATERIAL); if (m_multisample_allowed) ::glEnable(GL_MULTISAMPLE); if (useVBOs && !m_shader.init("gouraud.vs", "gouraud.fs")) return false; if (useVBOs && !m_layers_editing.init("variable_layer_height.vs", "variable_layer_height.fs")) return false; m_use_VBOs = useVBOs; m_layers_editing.set_use_legacy_opengl(use_legacy_opengl); // on linux the gl context is not valid until the canvas is not shown on screen // we defer the geometry finalization of volumes until the first call to render() if (!m_volumes.empty()) m_volumes.finalize_geometry(m_use_VBOs); if (m_gizmos.is_enabled() && !m_gizmos.init()) return false; m_initialized = true; return true; } bool GLCanvas3D::set_current() { if ((m_canvas != nullptr) && (m_context != nullptr)) return m_canvas->SetCurrent(*m_context); return false; } void GLCanvas3D::set_as_dirty() { m_dirty = true; } unsigned int GLCanvas3D::get_volumes_count() const { return (unsigned int)m_volumes.volumes.size(); } void GLCanvas3D::reset_volumes() { if (!m_volumes.empty()) { // ensures this canvas is current if (!set_current()) return; m_volumes.release_geometry(); m_volumes.clear(); m_dirty = true; } } void GLCanvas3D::deselect_volumes() { for (GLVolume* vol : m_volumes.volumes) { if (vol != nullptr) vol->selected = false; } } void GLCanvas3D::select_volume(unsigned int id) { if (id < (unsigned int)m_volumes.volumes.size()) { GLVolume* vol = m_volumes.volumes[id]; if (vol != nullptr) vol->selected = true; } } void GLCanvas3D::update_volumes_selection(const std::vector& selections) { if (m_model == nullptr) return; for (unsigned int obj_idx = 0; obj_idx < (unsigned int)m_model->objects.size(); ++obj_idx) { if ((selections[obj_idx] == 1) && (obj_idx < (unsigned int)m_objects_volumes_idxs.size())) { const std::vector& volume_idxs = m_objects_volumes_idxs[obj_idx]; for (int v : volume_idxs) { select_volume(v); } } } } bool GLCanvas3D::check_volumes_outside_state(const DynamicPrintConfig* config) const { return m_volumes.check_outside_state(config, nullptr); } bool GLCanvas3D::move_volume_up(unsigned int id) { if ((id > 0) && (id < (unsigned int)m_volumes.volumes.size())) { std::swap(m_volumes.volumes[id - 1], m_volumes.volumes[id]); std::swap(m_volumes.volumes[id - 1]->composite_id, m_volumes.volumes[id]->composite_id); std::swap(m_volumes.volumes[id - 1]->select_group_id, m_volumes.volumes[id]->select_group_id); std::swap(m_volumes.volumes[id - 1]->drag_group_id, m_volumes.volumes[id]->drag_group_id); return true; } return false; } bool GLCanvas3D::move_volume_down(unsigned int id) { if ((id >= 0) && (id + 1 < (unsigned int)m_volumes.volumes.size())) { std::swap(m_volumes.volumes[id + 1], m_volumes.volumes[id]); std::swap(m_volumes.volumes[id + 1]->composite_id, m_volumes.volumes[id]->composite_id); std::swap(m_volumes.volumes[id + 1]->select_group_id, m_volumes.volumes[id]->select_group_id); std::swap(m_volumes.volumes[id + 1]->drag_group_id, m_volumes.volumes[id]->drag_group_id); return true; } return false; } void GLCanvas3D::set_objects_selections(const std::vector& selections) { m_objects_selections = selections; } void GLCanvas3D::set_config(DynamicPrintConfig* config) { m_config = config; } void GLCanvas3D::set_print(Print* print) { m_print = print; } void GLCanvas3D::set_model(Model* model) { m_model = model; } void GLCanvas3D::set_bed_shape(const Pointfs& shape) { m_bed.set_shape(shape); // Set the origin and size for painting of the coordinate system axes. m_axes.origin = Pointf3(0.0, 0.0, (coordf_t)GROUND_Z); set_axes_length(0.3f * (float)m_bed.get_bounding_box().max_size()); m_dirty = true; } void GLCanvas3D::set_auto_bed_shape() { // draw a default square bed around object center const BoundingBoxf3& bbox = volumes_bounding_box(); coordf_t max_size = bbox.max_size(); const Pointf3& center = bbox.center(); Pointfs bed_shape; bed_shape.reserve(4); bed_shape.emplace_back(center.x - max_size, center.y - max_size); bed_shape.emplace_back(center.x + max_size, center.y - max_size); bed_shape.emplace_back(center.x + max_size, center.y + max_size); bed_shape.emplace_back(center.x - max_size, center.y + max_size); set_bed_shape(bed_shape); // Set the origin for painting of the coordinate system axes. m_axes.origin = Pointf3(center.x, center.y, (coordf_t)GROUND_Z); } void GLCanvas3D::set_axes_length(float length) { m_axes.length = length; } void GLCanvas3D::set_cutting_plane(float z, const ExPolygons& polygons) { m_cutting_plane.set(z, polygons); } void GLCanvas3D::set_color_by(const std::string& value) { m_color_by = value; } void GLCanvas3D::set_select_by(const std::string& value) { m_select_by = value; } void GLCanvas3D::set_drag_by(const std::string& value) { m_drag_by = value; } float GLCanvas3D::get_camera_zoom() const { return m_camera.zoom; } BoundingBoxf3 GLCanvas3D::volumes_bounding_box() const { BoundingBoxf3 bb; for (const GLVolume* volume : m_volumes.volumes) { if (!m_apply_zoom_to_volumes_filter || ((volume != nullptr) && volume->zoom_to_volumes)) bb.merge(volume->transformed_bounding_box()); } return bb; } bool GLCanvas3D::is_layers_editing_enabled() const { return m_layers_editing.is_enabled(); } bool GLCanvas3D::is_layers_editing_allowed() const { return m_layers_editing.is_allowed(); } bool GLCanvas3D::is_shader_enabled() const { return m_shader_enabled; } bool GLCanvas3D::is_reload_delayed() const { return m_reload_delayed; } void GLCanvas3D::enable_layers_editing(bool enable) { m_layers_editing.set_enabled(enable); } void GLCanvas3D::enable_warning_texture(bool enable) { m_warning_texture_enabled = enable; } void GLCanvas3D::enable_legend_texture(bool enable) { m_legend_texture_enabled = enable; } void GLCanvas3D::enable_picking(bool enable) { m_picking_enabled = enable; } void GLCanvas3D::enable_moving(bool enable) { m_moving_enabled = enable; } void GLCanvas3D::enable_gizmos(bool enable) { m_gizmos.set_enabled(enable); } void GLCanvas3D::enable_shader(bool enable) { m_shader_enabled = enable; } void GLCanvas3D::enable_force_zoom_to_bed(bool enable) { m_force_zoom_to_bed_enabled = enable; } void GLCanvas3D::allow_multisample(bool allow) { m_multisample_allowed = allow; } void GLCanvas3D::zoom_to_bed() { _zoom_to_bounding_box(m_bed.get_bounding_box()); } void GLCanvas3D::zoom_to_volumes() { m_apply_zoom_to_volumes_filter = true; _zoom_to_bounding_box(volumes_bounding_box()); m_apply_zoom_to_volumes_filter = false; } void GLCanvas3D::select_view(const std::string& direction) { const float* dir_vec = nullptr; if (direction == "iso") dir_vec = VIEW_DEFAULT; else if (direction == "left") dir_vec = VIEW_LEFT; else if (direction == "right") dir_vec = VIEW_RIGHT; else if (direction == "top") dir_vec = VIEW_TOP; else if (direction == "bottom") dir_vec = VIEW_BOTTOM; else if (direction == "front") dir_vec = VIEW_FRONT; else if (direction == "rear") dir_vec = VIEW_REAR; if ((dir_vec != nullptr) && !empty(volumes_bounding_box())) { m_camera.phi = dir_vec[0]; m_camera.set_theta(dir_vec[1]); m_on_viewport_changed_callback.call(); if (m_canvas != nullptr) m_canvas->Refresh(); } } void GLCanvas3D::set_viewport_from_scene(const GLCanvas3D& other) { m_camera.phi = other.m_camera.phi; m_camera.set_theta(other.m_camera.get_theta()); m_camera.target = other.m_camera.target; m_camera.zoom = other.m_camera.zoom; m_dirty = true; } void GLCanvas3D::update_volumes_colors_by_extruder() { if (m_config != nullptr) m_volumes.update_colors_by_extruder(m_config); } void GLCanvas3D::update_gizmos_data() { if (!m_gizmos.is_running()) return; int id = _get_first_selected_object_id(); if ((id != -1) && (m_model != nullptr)) { ModelObject* model_object = m_model->objects[id]; if (model_object != nullptr) { ModelInstance* model_instance = model_object->instances[0]; if (model_instance != nullptr) { m_gizmos.set_scale(model_instance->scaling_factor); m_gizmos.set_angle_z(model_instance->rotation); } } } else { m_gizmos.set_scale(1.0f); m_gizmos.set_angle_z(0.0f); } } void GLCanvas3D::render() { if (m_canvas == nullptr) return; if (!_is_shown_on_screen()) return; // ensures this canvas is current and initialized if (!set_current() || !_3DScene::init(m_canvas)) return; if (m_force_zoom_to_bed_enabled) _force_zoom_to_bed(); _camera_tranform(); GLfloat position_cam[4] = { 1.0f, 0.0f, 1.0f, 0.0f }; ::glLightfv(GL_LIGHT1, GL_POSITION, position_cam); GLfloat position_top[4] = { -0.5f, -0.5f, 1.0f, 0.0f }; ::glLightfv(GL_LIGHT0, GL_POSITION, position_top); float theta = m_camera.get_theta(); bool is_custom_bed = m_bed.is_custom(); _picking_pass(); _render_background(); // untextured bed needs to be rendered before objects if (is_custom_bed) { _render_bed(theta); // disable depth testing so that axes are not covered by ground _render_axes(false); } _render_objects(); // textured bed needs to be rendered after objects if (!is_custom_bed) { _render_axes(true); _render_bed(theta); } _render_cutting_plane(); _render_warning_texture(); _render_legend_texture(); _render_gizmo(); _render_layer_editing_overlay(); m_canvas->SwapBuffers(); } std::vector GLCanvas3D::get_current_print_zs(bool active_only) const { return m_volumes.get_current_print_zs(active_only); } void GLCanvas3D::set_toolpaths_range(double low, double high) { m_volumes.set_range(low, high); } std::vector GLCanvas3D::load_object(const ModelObject& model_object, int obj_idx, std::vector instance_idxs) { if (instance_idxs.empty()) { for (unsigned int i = 0; i < model_object.instances.size(); ++i) { instance_idxs.push_back(i); } } return m_volumes.load_object(&model_object, obj_idx, instance_idxs, m_color_by, m_select_by, m_drag_by, m_use_VBOs && m_initialized); } std::vector GLCanvas3D::load_object(const Model& model, int obj_idx) { if ((0 <= obj_idx) && (obj_idx < (int)model.objects.size())) { const ModelObject* model_object = model.objects[obj_idx]; if (model_object != nullptr) return load_object(*model_object, obj_idx, std::vector()); } return std::vector(); } void GLCanvas3D::reload_scene(bool force) { if ((m_canvas == nullptr) || (m_config == nullptr) || (m_model == nullptr)) return; reset_volumes(); // ensures this canvas is current if (!set_current()) return; set_bed_shape(dynamic_cast(m_config->option("bed_shape"))->values); if (!m_canvas->IsShown() && !force) { m_reload_delayed = true; return; } m_reload_delayed = false; m_objects_volumes_idxs.clear(); for (unsigned int obj_idx = 0; obj_idx < (unsigned int)m_model->objects.size(); ++obj_idx) { m_objects_volumes_idxs.push_back(load_object(*m_model, obj_idx)); } update_gizmos_data(); update_volumes_selection(m_objects_selections); if (m_config->has("nozzle_diameter")) { // Should the wipe tower be visualized ? unsigned int extruders_count = (unsigned int)dynamic_cast(m_config->option("nozzle_diameter"))->values.size(); bool semm = dynamic_cast(m_config->option("single_extruder_multi_material"))->value; bool wt = dynamic_cast(m_config->option("wipe_tower"))->value; bool co = dynamic_cast(m_config->option("complete_objects"))->value; if ((extruders_count > 1) && semm && wt && !co) { // Height of a print (Show at least a slab) coordf_t height = std::max(m_model->bounding_box().max.z, 10.0); float x = dynamic_cast(m_config->option("wipe_tower_x"))->value; float y = dynamic_cast(m_config->option("wipe_tower_y"))->value; float w = dynamic_cast(m_config->option("wipe_tower_width"))->value; float a = dynamic_cast(m_config->option("wipe_tower_rotation_angle"))->value; m_volumes.load_wipe_tower_preview(1000, x, y, w, 15.0f * (float)(extruders_count - 1), (float)height, a, m_use_VBOs && m_initialized); } } update_volumes_colors_by_extruder(); // checks for geometry outside the print volume to render it accordingly if (!m_volumes.empty()) { ModelInstance::EPrintVolumeState state; bool contained = m_volumes.check_outside_state(m_config, &state); if (!contained) { enable_warning_texture(true); _3DScene::generate_warning_texture(L("Detected object outside print volume")); m_on_enable_action_buttons_callback.call(state == ModelInstance::PVS_Fully_Outside); } else { enable_warning_texture(false); m_volumes.reset_outside_state(); _3DScene::reset_warning_texture(); m_on_enable_action_buttons_callback.call(!m_model->objects.empty()); } } else { enable_warning_texture(false); _3DScene::reset_warning_texture(); m_on_enable_action_buttons_callback.call(false); } } void GLCanvas3D::load_print_toolpaths() { // ensures this canvas is current if (!set_current()) return; if (m_print == nullptr) return; if (!m_print->state.is_done(psSkirt) || !m_print->state.is_done(psBrim)) return; if (!m_print->has_skirt() && (m_print->config.brim_width.value == 0)) return; const float color[] = { 0.5f, 1.0f, 0.5f, 1.0f }; // greenish // number of skirt layers size_t total_layer_count = 0; for (const PrintObject* print_object : m_print->objects) { total_layer_count = std::max(total_layer_count, print_object->total_layer_count()); } size_t skirt_height = m_print->has_infinite_skirt() ? total_layer_count : std::min(m_print->config.skirt_height.value, total_layer_count); if ((skirt_height == 0) && (m_print->config.brim_width.value > 0)) skirt_height = 1; // get first skirt_height layers (maybe this should be moved to a PrintObject method?) const PrintObject* object0 = m_print->objects.front(); std::vector print_zs; print_zs.reserve(skirt_height * 2); for (size_t i = 0; i < std::min(skirt_height, object0->layers.size()); ++i) { print_zs.push_back(float(object0->layers[i]->print_z)); } //FIXME why there are support layers? for (size_t i = 0; i < std::min(skirt_height, object0->support_layers.size()); ++i) { print_zs.push_back(float(object0->support_layers[i]->print_z)); } sort_remove_duplicates(print_zs); if (print_zs.size() > skirt_height) print_zs.erase(print_zs.begin() + skirt_height, print_zs.end()); m_volumes.volumes.emplace_back(new GLVolume(color)); GLVolume& volume = *m_volumes.volumes.back(); for (size_t i = 0; i < skirt_height; ++i) { volume.print_zs.push_back(print_zs[i]); volume.offsets.push_back(volume.indexed_vertex_array.quad_indices.size()); volume.offsets.push_back(volume.indexed_vertex_array.triangle_indices.size()); if (i == 0) _3DScene::extrusionentity_to_verts(m_print->brim, print_zs[i], Point(0, 0), volume); _3DScene::extrusionentity_to_verts(m_print->skirt, print_zs[i], Point(0, 0), volume); } volume.bounding_box = volume.indexed_vertex_array.bounding_box(); volume.indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized); } void GLCanvas3D::load_print_object_toolpaths(const PrintObject& print_object, const std::vector& str_tool_colors) { std::vector tool_colors = _parse_colors(str_tool_colors); struct Ctxt { const Points *shifted_copies; std::vector layers; bool has_perimeters; bool has_infill; bool has_support; const std::vector* tool_colors; // Number of vertices (each vertex is 6x4=24 bytes long) static const size_t alloc_size_max() { return 131072; } // 3.15MB // static const size_t alloc_size_max () { return 65536; } // 1.57MB // static const size_t alloc_size_max () { return 32768; } // 786kB static const size_t alloc_size_reserve() { return alloc_size_max() * 2; } static const float* color_perimeters() { static float color[4] = { 1.0f, 1.0f, 0.0f, 1.f }; return color; } // yellow static const float* color_infill() { static float color[4] = { 1.0f, 0.5f, 0.5f, 1.f }; return color; } // redish static const float* color_support() { static float color[4] = { 0.5f, 1.0f, 0.5f, 1.f }; return color; } // greenish // For cloring by a tool, return a parsed color. bool color_by_tool() const { return tool_colors != nullptr; } size_t number_tools() const { return this->color_by_tool() ? tool_colors->size() / 4 : 0; } const float* color_tool(size_t tool) const { return tool_colors->data() + tool * 4; } int volume_idx(int extruder, int feature) const { return this->color_by_tool() ? std::min(this->number_tools() - 1, std::max(extruder - 1, 0)) : feature; } } ctxt; ctxt.shifted_copies = &print_object._shifted_copies; // order layers by print_z ctxt.layers.reserve(print_object.layers.size() + print_object.support_layers.size()); for (const Layer *layer : print_object.layers) ctxt.layers.push_back(layer); for (const Layer *layer : print_object.support_layers) ctxt.layers.push_back(layer); std::sort(ctxt.layers.begin(), ctxt.layers.end(), [](const Layer *l1, const Layer *l2) { return l1->print_z < l2->print_z; }); // Maximum size of an allocation block: 32MB / sizeof(float) ctxt.has_perimeters = print_object.state.is_done(posPerimeters); ctxt.has_infill = print_object.state.is_done(posInfill); ctxt.has_support = print_object.state.is_done(posSupportMaterial); ctxt.tool_colors = tool_colors.empty() ? nullptr : &tool_colors; BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - start"; //FIXME Improve the heuristics for a grain size. size_t grain_size = std::max(ctxt.layers.size() / 16, size_t(1)); tbb::spin_mutex new_volume_mutex; auto new_volume = [this, &new_volume_mutex](const float *color) -> GLVolume* { auto *volume = new GLVolume(color); new_volume_mutex.lock(); volume->outside_printer_detection_enabled = false; m_volumes.volumes.emplace_back(volume); new_volume_mutex.unlock(); return volume; }; const size_t volumes_cnt_initial = m_volumes.volumes.size(); std::vector volumes_per_thread(ctxt.layers.size()); tbb::parallel_for( tbb::blocked_range(0, ctxt.layers.size(), grain_size), [&ctxt, &new_volume](const tbb::blocked_range& range) { std::vector vols; if (ctxt.color_by_tool()) { for (size_t i = 0; i < ctxt.number_tools(); ++i) vols.emplace_back(new_volume(ctxt.color_tool(i))); } else vols = { new_volume(ctxt.color_perimeters()), new_volume(ctxt.color_infill()), new_volume(ctxt.color_support()) }; for (GLVolume *vol : vols) vol->indexed_vertex_array.reserve(ctxt.alloc_size_reserve()); for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++idx_layer) { const Layer *layer = ctxt.layers[idx_layer]; for (size_t i = 0; i < vols.size(); ++i) { GLVolume &vol = *vols[i]; if (vol.print_zs.empty() || vol.print_zs.back() != layer->print_z) { vol.print_zs.push_back(layer->print_z); vol.offsets.push_back(vol.indexed_vertex_array.quad_indices.size()); vol.offsets.push_back(vol.indexed_vertex_array.triangle_indices.size()); } } for (const Point © : *ctxt.shifted_copies) { for (const LayerRegion *layerm : layer->regions) { if (ctxt.has_perimeters) _3DScene::extrusionentity_to_verts(layerm->perimeters, float(layer->print_z), copy, *vols[ctxt.volume_idx(layerm->region()->config.perimeter_extruder.value, 0)]); if (ctxt.has_infill) { for (const ExtrusionEntity *ee : layerm->fills.entities) { // fill represents infill extrusions of a single island. const auto *fill = dynamic_cast(ee); if (!fill->entities.empty()) _3DScene::extrusionentity_to_verts(*fill, float(layer->print_z), copy, *vols[ctxt.volume_idx( is_solid_infill(fill->entities.front()->role()) ? layerm->region()->config.solid_infill_extruder : layerm->region()->config.infill_extruder, 1)]); } } } if (ctxt.has_support) { const SupportLayer *support_layer = dynamic_cast(layer); if (support_layer) { for (const ExtrusionEntity *extrusion_entity : support_layer->support_fills.entities) _3DScene::extrusionentity_to_verts(extrusion_entity, float(layer->print_z), copy, *vols[ctxt.volume_idx( (extrusion_entity->role() == erSupportMaterial) ? support_layer->object()->config.support_material_extruder : support_layer->object()->config.support_material_interface_extruder, 2)]); } } } for (size_t i = 0; i < vols.size(); ++i) { GLVolume &vol = *vols[i]; if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() / 6 > ctxt.alloc_size_max()) { // Store the vertex arrays and restart their containers, vols[i] = new_volume(vol.color); GLVolume &vol_new = *vols[i]; // Assign the large pre-allocated buffers to the new GLVolume. vol_new.indexed_vertex_array = std::move(vol.indexed_vertex_array); // Copy the content back to the old GLVolume. vol.indexed_vertex_array = vol_new.indexed_vertex_array; // Finalize a bounding box of the old GLVolume. vol.bounding_box = vol.indexed_vertex_array.bounding_box(); // Clear the buffers, but keep them pre-allocated. vol_new.indexed_vertex_array.clear(); // Just make sure that clear did not clear the reserved memory. vol_new.indexed_vertex_array.reserve(ctxt.alloc_size_reserve()); } } } for (GLVolume *vol : vols) { vol->bounding_box = vol->indexed_vertex_array.bounding_box(); vol->indexed_vertex_array.shrink_to_fit(); } }); BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - finalizing results"; // Remove empty volumes from the newly added volumes. m_volumes.volumes.erase( std::remove_if(m_volumes.volumes.begin() + volumes_cnt_initial, m_volumes.volumes.end(), [](const GLVolume *volume) { return volume->empty(); }), m_volumes.volumes.end()); for (size_t i = volumes_cnt_initial; i < m_volumes.volumes.size(); ++i) m_volumes.volumes[i]->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized); BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - end"; } void GLCanvas3D::load_wipe_tower_toolpaths(const std::vector& str_tool_colors) { if ((m_print == nullptr) || m_print->m_wipe_tower_tool_changes.empty()) return; if (!m_print->state.is_done(psWipeTower)) return; std::vector tool_colors = _parse_colors(str_tool_colors); struct Ctxt { const Print *print; const std::vector *tool_colors; // Number of vertices (each vertex is 6x4=24 bytes long) static const size_t alloc_size_max() { return 131072; } // 3.15MB static const size_t alloc_size_reserve() { return alloc_size_max() * 2; } static const float* color_support() { static float color[4] = { 0.5f, 1.0f, 0.5f, 1.f }; return color; } // greenish // For cloring by a tool, return a parsed color. bool color_by_tool() const { return tool_colors != nullptr; } size_t number_tools() const { return this->color_by_tool() ? tool_colors->size() / 4 : 0; } const float* color_tool(size_t tool) const { return tool_colors->data() + tool * 4; } int volume_idx(int tool, int feature) const { return this->color_by_tool() ? std::min(this->number_tools() - 1, std::max(tool, 0)) : feature; } const std::vector& tool_change(size_t idx) { return priming.empty() ? ((idx == print->m_wipe_tower_tool_changes.size()) ? final : print->m_wipe_tower_tool_changes[idx]) : ((idx == 0) ? priming : (idx == print->m_wipe_tower_tool_changes.size() + 1) ? final : print->m_wipe_tower_tool_changes[idx - 1]); } std::vector priming; std::vector final; } ctxt; ctxt.print = m_print; ctxt.tool_colors = tool_colors.empty() ? nullptr : &tool_colors; if (m_print->m_wipe_tower_priming) ctxt.priming.emplace_back(*m_print->m_wipe_tower_priming.get()); if (m_print->m_wipe_tower_final_purge) ctxt.final.emplace_back(*m_print->m_wipe_tower_final_purge.get()); BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - start"; //FIXME Improve the heuristics for a grain size. size_t n_items = m_print->m_wipe_tower_tool_changes.size() + (ctxt.priming.empty() ? 0 : 1); size_t grain_size = std::max(n_items / 128, size_t(1)); tbb::spin_mutex new_volume_mutex; auto new_volume = [this, &new_volume_mutex](const float *color) -> GLVolume* { auto *volume = new GLVolume(color); new_volume_mutex.lock(); volume->outside_printer_detection_enabled = false; m_volumes.volumes.emplace_back(volume); new_volume_mutex.unlock(); return volume; }; const size_t volumes_cnt_initial = m_volumes.volumes.size(); std::vector volumes_per_thread(n_items); tbb::parallel_for( tbb::blocked_range(0, n_items, grain_size), [&ctxt, &new_volume](const tbb::blocked_range& range) { // Bounding box of this slab of a wipe tower. std::vector vols; if (ctxt.color_by_tool()) { for (size_t i = 0; i < ctxt.number_tools(); ++i) vols.emplace_back(new_volume(ctxt.color_tool(i))); } else vols = { new_volume(ctxt.color_support()) }; for (GLVolume *volume : vols) volume->indexed_vertex_array.reserve(ctxt.alloc_size_reserve()); for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++idx_layer) { const std::vector &layer = ctxt.tool_change(idx_layer); for (size_t i = 0; i < vols.size(); ++i) { GLVolume &vol = *vols[i]; if (vol.print_zs.empty() || vol.print_zs.back() != layer.front().print_z) { vol.print_zs.push_back(layer.front().print_z); vol.offsets.push_back(vol.indexed_vertex_array.quad_indices.size()); vol.offsets.push_back(vol.indexed_vertex_array.triangle_indices.size()); } } for (const WipeTower::ToolChangeResult &extrusions : layer) { for (size_t i = 1; i < extrusions.extrusions.size();) { const WipeTower::Extrusion &e = extrusions.extrusions[i]; if (e.width == 0.) { ++i; continue; } size_t j = i + 1; if (ctxt.color_by_tool()) for (; j < extrusions.extrusions.size() && extrusions.extrusions[j].tool == e.tool && extrusions.extrusions[j].width > 0.f; ++j); else for (; j < extrusions.extrusions.size() && extrusions.extrusions[j].width > 0.f; ++j); size_t n_lines = j - i; Lines lines; std::vector widths; std::vector heights; lines.reserve(n_lines); widths.reserve(n_lines); heights.assign(n_lines, extrusions.layer_height); for (; i < j; ++i) { const WipeTower::Extrusion &e = extrusions.extrusions[i]; assert(e.width > 0.f); const WipeTower::Extrusion &e_prev = *(&e - 1); lines.emplace_back(Point::new_scale(e_prev.pos.x, e_prev.pos.y), Point::new_scale(e.pos.x, e.pos.y)); widths.emplace_back(e.width); } _3DScene::thick_lines_to_verts(lines, widths, heights, lines.front().a == lines.back().b, extrusions.print_z, *vols[ctxt.volume_idx(e.tool, 0)]); } } } for (size_t i = 0; i < vols.size(); ++i) { GLVolume &vol = *vols[i]; if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() / 6 > ctxt.alloc_size_max()) { // Store the vertex arrays and restart their containers, vols[i] = new_volume(vol.color); GLVolume &vol_new = *vols[i]; // Assign the large pre-allocated buffers to the new GLVolume. vol_new.indexed_vertex_array = std::move(vol.indexed_vertex_array); // Copy the content back to the old GLVolume. vol.indexed_vertex_array = vol_new.indexed_vertex_array; // Finalize a bounding box of the old GLVolume. vol.bounding_box = vol.indexed_vertex_array.bounding_box(); // Clear the buffers, but keep them pre-allocated. vol_new.indexed_vertex_array.clear(); // Just make sure that clear did not clear the reserved memory. vol_new.indexed_vertex_array.reserve(ctxt.alloc_size_reserve()); } } for (GLVolume *vol : vols) { vol->bounding_box = vol->indexed_vertex_array.bounding_box(); vol->indexed_vertex_array.shrink_to_fit(); } }); BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - finalizing results"; // Remove empty volumes from the newly added volumes. m_volumes.volumes.erase( std::remove_if(m_volumes.volumes.begin() + volumes_cnt_initial, m_volumes.volumes.end(), [](const GLVolume *volume) { return volume->empty(); }), m_volumes.volumes.end()); for (size_t i = volumes_cnt_initial; i < m_volumes.volumes.size(); ++i) m_volumes.volumes[i]->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized); BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - end"; } void GLCanvas3D::load_gcode_preview(const GCodePreviewData& preview_data, const std::vector& str_tool_colors) { if ((m_canvas != nullptr) && (m_print != nullptr)) { // ensures that this canvas is current if (!set_current()) return; if (m_volumes.empty()) { std::vector tool_colors = _parse_colors(str_tool_colors); m_gcode_preview_volume_index.reset(); _load_gcode_extrusion_paths(preview_data, tool_colors); _load_gcode_travel_paths(preview_data, tool_colors); _load_gcode_retractions(preview_data); _load_gcode_unretractions(preview_data); if (m_volumes.empty()) _3DScene::reset_legend_texture(); else { _3DScene::generate_legend_texture(preview_data, tool_colors); // removes empty volumes m_volumes.volumes.erase(std::remove_if(m_volumes.volumes.begin(), m_volumes.volumes.end(), [](const GLVolume* volume) { return volume->print_zs.empty(); }), m_volumes.volumes.end()); _load_shells(); } } _update_gcode_volumes_visibility(preview_data); } } void GLCanvas3D::register_on_viewport_changed_callback(void* callback) { if (callback != nullptr) m_on_viewport_changed_callback.register_callback(callback); } void GLCanvas3D::register_on_double_click_callback(void* callback) { if (callback != nullptr) m_on_double_click_callback.register_callback(callback); } void GLCanvas3D::register_on_right_click_callback(void* callback) { if (callback != nullptr) m_on_right_click_callback.register_callback(callback); } void GLCanvas3D::register_on_select_object_callback(void* callback) { if (callback != nullptr) m_on_select_object_callback.register_callback(callback); } void GLCanvas3D::register_on_model_update_callback(void* callback) { if (callback != nullptr) m_on_model_update_callback.register_callback(callback); } void GLCanvas3D::register_on_remove_object_callback(void* callback) { if (callback != nullptr) m_on_remove_object_callback.register_callback(callback); } void GLCanvas3D::register_on_arrange_callback(void* callback) { if (callback != nullptr) m_on_arrange_callback.register_callback(callback); } void GLCanvas3D::register_on_rotate_object_left_callback(void* callback) { if (callback != nullptr) m_on_rotate_object_left_callback.register_callback(callback); } void GLCanvas3D::register_on_rotate_object_right_callback(void* callback) { if (callback != nullptr) m_on_rotate_object_right_callback.register_callback(callback); } void GLCanvas3D::register_on_scale_object_uniformly_callback(void* callback) { if (callback != nullptr) m_on_scale_object_uniformly_callback.register_callback(callback); } void GLCanvas3D::register_on_increase_objects_callback(void* callback) { if (callback != nullptr) m_on_increase_objects_callback.register_callback(callback); } void GLCanvas3D::register_on_decrease_objects_callback(void* callback) { if (callback != nullptr) m_on_decrease_objects_callback.register_callback(callback); } void GLCanvas3D::register_on_instance_moved_callback(void* callback) { if (callback != nullptr) m_on_instance_moved_callback.register_callback(callback); } void GLCanvas3D::register_on_wipe_tower_moved_callback(void* callback) { if (callback != nullptr) m_on_wipe_tower_moved_callback.register_callback(callback); } void GLCanvas3D::register_on_enable_action_buttons_callback(void* callback) { if (callback != nullptr) m_on_enable_action_buttons_callback.register_callback(callback); } void GLCanvas3D::register_on_gizmo_scale_uniformly_callback(void* callback) { if (callback != nullptr) m_on_gizmo_scale_uniformly_callback.register_callback(callback); } void GLCanvas3D::register_on_gizmo_rotate_callback(void* callback) { if (callback != nullptr) m_on_gizmo_rotate_callback.register_callback(callback); } void GLCanvas3D::register_on_update_geometry_info_callback(void* callback) { if (callback != nullptr) m_on_update_geometry_info_callback.register_callback(callback); } void GLCanvas3D::bind_event_handlers() { if (m_canvas != nullptr) { m_canvas->Bind(wxEVT_SIZE, &GLCanvas3D::on_size, this); m_canvas->Bind(wxEVT_IDLE, &GLCanvas3D::on_idle, this); m_canvas->Bind(wxEVT_CHAR, &GLCanvas3D::on_char, this); m_canvas->Bind(wxEVT_MOUSEWHEEL, &GLCanvas3D::on_mouse_wheel, this); m_canvas->Bind(wxEVT_TIMER, &GLCanvas3D::on_timer, this); m_canvas->Bind(wxEVT_LEFT_DOWN, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_LEFT_UP, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_MIDDLE_DOWN, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_MIDDLE_UP, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_RIGHT_DOWN, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_RIGHT_UP, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_MOTION, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_ENTER_WINDOW, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_LEAVE_WINDOW, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_LEFT_DCLICK, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_MIDDLE_DCLICK, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_RIGHT_DCLICK, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_PAINT, &GLCanvas3D::on_paint, this); m_canvas->Bind(wxEVT_KEY_DOWN, &GLCanvas3D::on_key_down, this); } } void GLCanvas3D::unbind_event_handlers() { if (m_canvas != nullptr) { m_canvas->Unbind(wxEVT_SIZE, &GLCanvas3D::on_size, this); m_canvas->Unbind(wxEVT_IDLE, &GLCanvas3D::on_idle, this); m_canvas->Unbind(wxEVT_CHAR, &GLCanvas3D::on_char, this); m_canvas->Unbind(wxEVT_MOUSEWHEEL, &GLCanvas3D::on_mouse_wheel, this); m_canvas->Unbind(wxEVT_TIMER, &GLCanvas3D::on_timer, this); m_canvas->Unbind(wxEVT_LEFT_DOWN, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_LEFT_UP, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_MIDDLE_DOWN, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_MIDDLE_UP, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_RIGHT_DOWN, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_RIGHT_UP, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_MOTION, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_ENTER_WINDOW, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_LEAVE_WINDOW, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_LEFT_DCLICK, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_MIDDLE_DCLICK, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_RIGHT_DCLICK, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_PAINT, &GLCanvas3D::on_paint, this); m_canvas->Unbind(wxEVT_KEY_DOWN, &GLCanvas3D::on_key_down, this); } } void GLCanvas3D::on_size(wxSizeEvent& evt) { m_dirty = true; } void GLCanvas3D::on_idle(wxIdleEvent& evt) { if (!m_dirty) return; _refresh_if_shown_on_screen(); } void GLCanvas3D::on_char(wxKeyEvent& evt) { if (evt.HasModifiers()) evt.Skip(); else { int keyCode = evt.GetKeyCode(); switch (keyCode - 48) { // numerical input case 0: { select_view("iso"); break; } case 1: { select_view("top"); break; } case 2: { select_view("bottom"); break; } case 3: { select_view("front"); break; } case 4: { select_view("rear"); break; } case 5: { select_view("left"); break; } case 6: { select_view("right"); break; } default: { // text input switch (keyCode) { // key + case 43: { m_on_increase_objects_callback.call(); break; } // key - case 45: { m_on_decrease_objects_callback.call(); break; } // key A/a case 65: case 97: { m_on_arrange_callback.call(); break; } // key B/b case 66: case 98: { zoom_to_bed(); break; } // key L/l case 76: case 108: { m_on_rotate_object_left_callback.call(); break; } // key R/r case 82: case 114: { m_on_rotate_object_right_callback.call(); break; } // key S/s case 83: case 115: { m_on_scale_object_uniformly_callback.call(); break; } // key Z/z case 90: case 122: { zoom_to_volumes(); break; } default: { evt.Skip(); break; } } } } } } void GLCanvas3D::on_mouse_wheel(wxMouseEvent& evt) { // Ignore the wheel events if the middle button is pressed. if (evt.MiddleIsDown()) return; // Performs layers editing updates, if enabled if (is_layers_editing_enabled()) { int object_idx_selected = _get_first_selected_object_id(); if (object_idx_selected != -1) { // A volume is selected. Test, whether hovering over a layer thickness bar. if (m_layers_editing.bar_rect_contains(*this, (float)evt.GetX(), (float)evt.GetY())) { // Adjust the width of the selection. m_layers_editing.band_width = std::max(std::min(m_layers_editing.band_width * (1.0f + 0.1f * (float)evt.GetWheelRotation() / (float)evt.GetWheelDelta()), 10.0f), 1.5f); if (m_canvas != nullptr) m_canvas->Refresh(); return; } } } // Calculate the zoom delta and apply it to the current zoom factor float zoom = (float)evt.GetWheelRotation() / (float)evt.GetWheelDelta(); zoom = std::max(std::min(zoom, 4.0f), -4.0f) / 10.0f; zoom = get_camera_zoom() / (1.0f - zoom); // Don't allow to zoom too far outside the scene. float zoom_min = _get_zoom_to_bounding_box_factor(_max_bounding_box()); if (zoom_min > 0.0f) zoom = std::max(zoom, zoom_min * 0.8f); m_camera.zoom = zoom; m_on_viewport_changed_callback.call(); _refresh_if_shown_on_screen(); } void GLCanvas3D::on_timer(wxTimerEvent& evt) { if (m_layers_editing.state != LayersEditing::Editing) return; _perform_layer_editing_action(); } void GLCanvas3D::on_mouse(wxMouseEvent& evt) { Point pos(evt.GetX(), evt.GetY()); int selected_object_idx = _get_first_selected_object_id(); int layer_editing_object_idx = is_layers_editing_enabled() ? selected_object_idx : -1; m_layers_editing.last_object_id = layer_editing_object_idx; bool gizmos_overlay_contains_mouse = m_gizmos.overlay_contains_mouse(*this, m_mouse.position); if (evt.Entering()) { #if defined(__WXMSW__) || defined(__linux__) // On Windows and Linux needs focus in order to catch key events if (m_canvas != nullptr) m_canvas->SetFocus(); m_mouse.set_start_position_2D_as_invalid(); #endif } else if (evt.LeftDClick() && (m_hover_volume_id != -1)) m_on_double_click_callback.call(); else if (evt.LeftDown() || evt.RightDown()) { // If user pressed left or right button we first check whether this happened // on a volume or not. int volume_idx = m_hover_volume_id; m_layers_editing.state = LayersEditing::Unknown; if ((layer_editing_object_idx != -1) && m_layers_editing.bar_rect_contains(*this, pos.x, pos.y)) { // A volume is selected and the mouse is inside the layer thickness bar. // Start editing the layer height. m_layers_editing.state = LayersEditing::Editing; _perform_layer_editing_action(&evt); } else if ((layer_editing_object_idx != -1) && m_layers_editing.reset_rect_contains(*this, pos.x, pos.y)) { if (evt.LeftDown()) { // A volume is selected and the mouse is inside the reset button. m_print->get_object(layer_editing_object_idx)->reset_layer_height_profile(); // Index 2 means no editing, just wait for mouse up event. m_layers_editing.state = LayersEditing::Completed; m_dirty = true; } } else if ((selected_object_idx != -1) && gizmos_overlay_contains_mouse) { update_gizmos_data(); m_gizmos.update_on_off_state(*this, m_mouse.position); m_dirty = true; } else if ((selected_object_idx != -1) && m_gizmos.grabber_contains_mouse()) { update_gizmos_data(); m_gizmos.start_dragging(); m_mouse.drag.gizmo_volume_idx = _get_first_selected_volume_id(); m_dirty = true; } else { // Select volume in this 3D canvas. // Don't deselect a volume if layer editing is enabled. We want the object to stay selected // during the scene manipulation. if (m_picking_enabled && ((volume_idx != -1) || !is_layers_editing_enabled())) { if (volume_idx != -1) { deselect_volumes(); select_volume(volume_idx); int group_id = m_volumes.volumes[volume_idx]->select_group_id; if (group_id != -1) { for (GLVolume* vol : m_volumes.volumes) { if ((vol != nullptr) && (vol->select_group_id == group_id)) vol->selected = true; } } update_gizmos_data(); m_gizmos.refresh(); m_dirty = true; } } // propagate event through callback if (m_picking_enabled && (volume_idx != -1)) _on_select(volume_idx); if (volume_idx != -1) { if (evt.LeftDown() && m_moving_enabled) { // The mouse_to_3d gets the Z coordinate from the Z buffer at the screen coordinate pos x, y, // an converts the screen space coordinate to unscaled object space. Pointf3 pos3d = (volume_idx == -1) ? Pointf3(DBL_MAX, DBL_MAX) : _mouse_to_3d(pos); // Only accept the initial position, if it is inside the volume bounding box. BoundingBoxf3 volume_bbox = m_volumes.volumes[volume_idx]->transformed_bounding_box(); volume_bbox.offset(1.0); if (volume_bbox.contains(pos3d)) { // The dragging operation is initiated. m_mouse.drag.move_with_shift = evt.ShiftDown(); m_mouse.drag.move_volume_idx = volume_idx; m_mouse.drag.start_position_3D = pos3d; // Remember the shift to to the object center.The object center will later be used // to limit the object placement close to the bed. m_mouse.drag.volume_center_offset = pos3d.vector_to(volume_bbox.center()); } } else if (evt.RightDown()) { // if right clicking on volume, propagate event through callback if (m_volumes.volumes[volume_idx]->hover) m_on_right_click_callback.call(pos.x, pos.y); } } } } else if (evt.Dragging() && evt.LeftIsDown() && !gizmos_overlay_contains_mouse && (m_layers_editing.state == LayersEditing::Unknown) && (m_mouse.drag.move_volume_idx != -1)) { m_mouse.dragging = true; // Get new position at the same Z of the initial click point. float z0 = 0.0f; float z1 = 1.0f; Pointf3 cur_pos = Linef3(_mouse_to_3d(pos, &z0), _mouse_to_3d(pos, &z1)).intersect_plane(m_mouse.drag.start_position_3D.z); // Clip the new position, so the object center remains close to the bed. cur_pos.translate(m_mouse.drag.volume_center_offset); Point cur_pos2(scale_(cur_pos.x), scale_(cur_pos.y)); if (!m_bed.contains(cur_pos2)) { Point ip = m_bed.point_projection(cur_pos2); cur_pos.x = unscale(ip.x); cur_pos.y = unscale(ip.y); } cur_pos.translate(m_mouse.drag.volume_center_offset.negative()); // Calculate the translation vector. Vectorf3 vector = m_mouse.drag.start_position_3D.vector_to(cur_pos); // Get the volume being dragged. GLVolume* volume = m_volumes.volumes[m_mouse.drag.move_volume_idx]; // Get all volumes belonging to the same group, if any. std::vector volumes; int group_id = m_mouse.drag.move_with_shift ? volume->select_group_id : volume->drag_group_id; if (group_id == -1) volumes.push_back(volume); else { for (GLVolume* v : m_volumes.volumes) { if (v != nullptr) { if ((m_mouse.drag.move_with_shift && (v->select_group_id == group_id)) || (v->drag_group_id == group_id)) volumes.push_back(v); } } } // Apply new temporary volume origin and ignore Z. for (GLVolume* v : volumes) { Pointf3 origin = v->get_origin(); origin.translate(vector.x, vector.y, 0.0); v->set_origin(origin); } m_mouse.drag.start_position_3D = cur_pos; m_gizmos.refresh(); m_dirty = true; } else if (evt.Dragging() && m_gizmos.is_dragging()) { m_mouse.dragging = true; const Pointf3& cur_pos = _mouse_to_bed_3d(pos); m_gizmos.update(Pointf(cur_pos.x, cur_pos.y)); std::vector volumes; if (m_mouse.drag.gizmo_volume_idx != -1) { GLVolume* volume = m_volumes.volumes[m_mouse.drag.gizmo_volume_idx]; // Get all volumes belonging to the same group, if any. if (volume->select_group_id == -1) volumes.push_back(volume); else { for (GLVolume* v : m_volumes.volumes) { if ((v != nullptr) && (v->select_group_id == volume->select_group_id)) volumes.push_back(v); } } } switch (m_gizmos.get_current_type()) { case Gizmos::Scale: { // Apply new temporary scale factor float scale_factor = m_gizmos.get_scale(); for (GLVolume* v : volumes) { v->set_scale_factor(scale_factor); } break; } case Gizmos::Rotate: { // Apply new temporary angle_z float angle_z = m_gizmos.get_angle_z(); for (GLVolume* v : volumes) { v->set_angle_z(angle_z); } break; } default: break; } if (!volumes.empty()) { const BoundingBoxf3& bb = volumes[0]->transformed_bounding_box(); const Pointf3& size = bb.size(); m_on_update_geometry_info_callback.call(size.x, size.y, size.z, m_gizmos.get_scale()); } if ((m_gizmos.get_current_type() != Gizmos::Rotate) && (volumes.size() > 1)) m_gizmos.refresh(); m_dirty = true; } else if (evt.Dragging() && !gizmos_overlay_contains_mouse) { m_mouse.dragging = true; if ((m_layers_editing.state != LayersEditing::Unknown) && (layer_editing_object_idx != -1)) { if (m_layers_editing.state == LayersEditing::Editing) _perform_layer_editing_action(&evt); } else if (evt.LeftIsDown()) { // if dragging over blank area with left button, rotate if (m_mouse.is_start_position_3D_defined()) { const Pointf3& orig = m_mouse.drag.start_position_3D; m_camera.phi += (((float)pos.x - (float)orig.x) * TRACKBALLSIZE); m_camera.set_theta(m_camera.get_theta() - ((float)pos.y - (float)orig.y) * TRACKBALLSIZE); m_on_viewport_changed_callback.call(); m_dirty = true; } m_mouse.drag.start_position_3D = Pointf3((coordf_t)pos.x, (coordf_t)pos.y, 0.0); } else if (evt.MiddleIsDown() || evt.RightIsDown()) { // If dragging over blank area with right button, pan. if (m_mouse.is_start_position_2D_defined()) { // get point in model space at Z = 0 float z = 0.0f; const Pointf3& cur_pos = _mouse_to_3d(pos, &z); Pointf3 orig = _mouse_to_3d(m_mouse.drag.start_position_2D, &z); Pointf3 camera_target = m_camera.target; camera_target.translate(orig.vector_to(cur_pos).negative()); m_camera.target = camera_target; m_on_viewport_changed_callback.call(); m_dirty = true; } m_mouse.drag.start_position_2D = pos; } } else if (evt.LeftUp() || evt.MiddleUp() || evt.RightUp()) { if (m_layers_editing.state != LayersEditing::Unknown) { m_layers_editing.state = LayersEditing::Unknown; _stop_timer(); if (layer_editing_object_idx != -1) m_on_model_update_callback.call(); } else if ((m_mouse.drag.move_volume_idx != -1) && m_mouse.dragging) { // get all volumes belonging to the same group, if any std::vector volume_idxs; int vol_id = m_mouse.drag.move_volume_idx; int group_id = m_mouse.drag.move_with_shift ? m_volumes.volumes[vol_id]->select_group_id : m_volumes.volumes[vol_id]->drag_group_id; if (group_id == -1) volume_idxs.push_back(vol_id); else { for (int i = 0; i < (int)m_volumes.volumes.size(); ++i) { if ((m_mouse.drag.move_with_shift && (m_volumes.volumes[i]->select_group_id == group_id)) || (m_volumes.volumes[i]->drag_group_id == group_id)) volume_idxs.push_back(i); } } _on_move(volume_idxs); } else if (!m_mouse.dragging && (m_hover_volume_id == -1) && !gizmos_overlay_contains_mouse && !m_gizmos.is_dragging() && !is_layers_editing_enabled()) { // deselect and propagate event through callback if (m_picking_enabled) { deselect_volumes(); _on_select(-1); } } else if (evt.LeftUp() && m_gizmos.is_dragging()) { switch (m_gizmos.get_current_type()) { case Gizmos::Scale: { m_on_gizmo_scale_uniformly_callback.call((double)m_gizmos.get_scale()); break; } case Gizmos::Rotate: { m_on_gizmo_rotate_callback.call((double)m_gizmos.get_angle_z()); break; } default: break; } m_gizmos.stop_dragging(); } m_mouse.drag.move_volume_idx = -1; m_mouse.drag.gizmo_volume_idx = -1; m_mouse.set_start_position_3D_as_invalid(); m_mouse.set_start_position_2D_as_invalid(); m_mouse.dragging = false; m_dirty = true; } else if (evt.Moving()) { m_mouse.position = Pointf((coordf_t)pos.x, (coordf_t)pos.y); // Only refresh if picking is enabled, in that case the objects may get highlighted if the mouse cursor hovers over. if (m_picking_enabled) m_dirty = true; } else evt.Skip(); } void GLCanvas3D::on_paint(wxPaintEvent& evt) { render(); } void GLCanvas3D::on_key_down(wxKeyEvent& evt) { if (evt.HasModifiers()) evt.Skip(); else { int key = evt.GetKeyCode(); if (key == WXK_DELETE) m_on_remove_object_callback.call(); else evt.Skip(); } } Size GLCanvas3D::get_canvas_size() const { int w = 0; int h = 0; if (m_canvas != nullptr) m_canvas->GetSize(&w, &h); return Size(w, h); } Point GLCanvas3D::get_local_mouse_position() const { if (m_canvas == nullptr) return Point(); wxPoint mouse_pos = m_canvas->ScreenToClient(wxGetMousePosition()); return Point(mouse_pos.x, mouse_pos.y); } bool GLCanvas3D::_is_shown_on_screen() const { return (m_canvas != nullptr) ? m_canvas->IsShownOnScreen() : false; } void GLCanvas3D::_force_zoom_to_bed() { zoom_to_bed(); m_force_zoom_to_bed_enabled = false; } void GLCanvas3D::_resize(unsigned int w, unsigned int h) { if ((m_canvas == nullptr) && (m_context == nullptr)) return; // ensures that this canvas is current set_current(); ::glViewport(0, 0, w, h); ::glMatrixMode(GL_PROJECTION); ::glLoadIdentity(); const BoundingBoxf3& bbox = _max_bounding_box(); switch (m_camera.type) { case Camera::Ortho: { float w2 = w; float h2 = h; float two_zoom = 2.0f * get_camera_zoom(); if (two_zoom != 0.0f) { float inv_two_zoom = 1.0f / two_zoom; w2 *= inv_two_zoom; h2 *= inv_two_zoom; } // FIXME: calculate a tighter value for depth will improve z-fighting float depth = 5.0f * (float)bbox.max_size(); ::glOrtho(-w2, w2, -h2, h2, -depth, depth); break; } // case Camera::Perspective: // { // float bbox_r = (float)bbox.radius(); // float fov = PI * 45.0f / 180.0f; // float fov_tan = tan(0.5f * fov); // float cam_distance = 0.5f * bbox_r / fov_tan; // m_camera.distance = cam_distance; // // float nr = cam_distance - bbox_r * 1.1f; // float fr = cam_distance + bbox_r * 1.1f; // if (nr < 1.0f) // nr = 1.0f; // // if (fr < nr + 1.0f) // fr = nr + 1.0f; // // float h2 = fov_tan * nr; // float w2 = h2 * w / h; // ::glFrustum(-w2, w2, -h2, h2, nr, fr); // // break; // } default: { throw std::runtime_error("Invalid camera type."); break; } } ::glMatrixMode(GL_MODELVIEW); m_dirty = false; } BoundingBoxf3 GLCanvas3D::_max_bounding_box() const { BoundingBoxf3 bb = m_bed.get_bounding_box(); bb.merge(volumes_bounding_box()); return bb; } BoundingBoxf3 GLCanvas3D::_selected_volumes_bounding_box() const { BoundingBoxf3 bb; for (const GLVolume* volume : m_volumes.volumes) { if ((volume != nullptr) && !volume->is_wipe_tower && volume->selected) bb.merge(volume->transformed_bounding_box()); } return bb; } void GLCanvas3D::_zoom_to_bounding_box(const BoundingBoxf3& bbox) { // Calculate the zoom factor needed to adjust viewport to bounding box. float zoom = _get_zoom_to_bounding_box_factor(bbox); if (zoom > 0.0f) { m_camera.zoom = zoom; // center view around bounding box center m_camera.target = bbox.center(); m_on_viewport_changed_callback.call(); _refresh_if_shown_on_screen(); } } float GLCanvas3D::_get_zoom_to_bounding_box_factor(const BoundingBoxf3& bbox) const { float max_bb_size = bbox.max_size(); if (max_bb_size == 0.0f) return -1.0f; // project the bbox vertices on a plane perpendicular to the camera forward axis // then calculates the vertices coordinate on this plane along the camera xy axes // we need the view matrix, we let opengl calculate it (same as done in render()) _camera_tranform(); // get the view matrix back from opengl GLfloat matrix[16]; ::glGetFloatv(GL_MODELVIEW_MATRIX, matrix); // camera axes Pointf3 right((coordf_t)matrix[0], (coordf_t)matrix[4], (coordf_t)matrix[8]); Pointf3 up((coordf_t)matrix[1], (coordf_t)matrix[5], (coordf_t)matrix[9]); Pointf3 forward((coordf_t)matrix[2], (coordf_t)matrix[6], (coordf_t)matrix[10]); Pointf3 bb_min = bbox.min; Pointf3 bb_max = bbox.max; Pointf3 bb_center = bbox.center(); // bbox vertices in world space std::vector vertices; vertices.reserve(8); vertices.push_back(bb_min); vertices.emplace_back(bb_max.x, bb_min.y, bb_min.z); vertices.emplace_back(bb_max.x, bb_max.y, bb_min.z); vertices.emplace_back(bb_min.x, bb_max.y, bb_min.z); vertices.emplace_back(bb_min.x, bb_min.y, bb_max.z); vertices.emplace_back(bb_max.x, bb_min.y, bb_max.z); vertices.push_back(bb_max); vertices.emplace_back(bb_min.x, bb_max.y, bb_max.z); coordf_t max_x = 0.0; coordf_t max_y = 0.0; // margin factor to give some empty space around the bbox coordf_t margin_factor = 1.25; for (const Pointf3 v : vertices) { // project vertex on the plane perpendicular to camera forward axis Pointf3 pos(v.x - bb_center.x, v.y - bb_center.y, v.z - bb_center.z); Pointf3 proj_on_plane = pos - dot(pos, forward) * forward; // calculates vertex coordinate along camera xy axes coordf_t x_on_plane = dot(proj_on_plane, right); coordf_t y_on_plane = dot(proj_on_plane, up); max_x = std::max(max_x, margin_factor * std::abs(x_on_plane)); max_y = std::max(max_y, margin_factor * std::abs(y_on_plane)); } if ((max_x == 0.0) || (max_y == 0.0)) return -1.0f; max_x *= 2.0; max_y *= 2.0; const Size& cnv_size = get_canvas_size(); return (float)std::min((coordf_t)cnv_size.get_width() / max_x, (coordf_t)cnv_size.get_height() / max_y); } void GLCanvas3D::_deregister_callbacks() { m_on_viewport_changed_callback.deregister_callback(); m_on_double_click_callback.deregister_callback(); m_on_right_click_callback.deregister_callback(); m_on_select_object_callback.deregister_callback(); m_on_model_update_callback.deregister_callback(); m_on_remove_object_callback.deregister_callback(); m_on_arrange_callback.deregister_callback(); m_on_rotate_object_left_callback.deregister_callback(); m_on_rotate_object_right_callback.deregister_callback(); m_on_scale_object_uniformly_callback.deregister_callback(); m_on_increase_objects_callback.deregister_callback(); m_on_decrease_objects_callback.deregister_callback(); m_on_instance_moved_callback.deregister_callback(); m_on_wipe_tower_moved_callback.deregister_callback(); m_on_enable_action_buttons_callback.deregister_callback(); m_on_gizmo_scale_uniformly_callback.deregister_callback(); m_on_gizmo_rotate_callback.deregister_callback(); m_on_update_geometry_info_callback.deregister_callback(); } void GLCanvas3D::_mark_volumes_for_layer_height() const { if (m_print == nullptr) return; for (GLVolume* vol : m_volumes.volumes) { int object_id = int(vol->select_group_id / 1000000); int shader_id = m_layers_editing.get_shader_program_id(); if (is_layers_editing_enabled() && (shader_id != -1) && vol->selected && vol->has_layer_height_texture() && (object_id < (int)m_print->objects.size())) { vol->set_layer_height_texture_data(m_layers_editing.get_z_texture_id(), shader_id, m_print->get_object(object_id), _get_layers_editing_cursor_z_relative(), m_layers_editing.band_width); } else vol->reset_layer_height_texture_data(); } } void GLCanvas3D::_refresh_if_shown_on_screen() { if (_is_shown_on_screen()) { const Size& cnv_size = get_canvas_size(); _resize((unsigned int)cnv_size.get_width(), (unsigned int)cnv_size.get_height()); if (m_canvas != nullptr) m_canvas->Refresh(); } } void GLCanvas3D::_camera_tranform() const { ::glMatrixMode(GL_MODELVIEW); ::glLoadIdentity(); ::glRotatef(-m_camera.get_theta(), 1.0f, 0.0f, 0.0f); // pitch ::glRotatef(m_camera.phi, 0.0f, 0.0f, 1.0f); // yaw Pointf3 neg_target = m_camera.target.negative(); ::glTranslatef((GLfloat)neg_target.x, (GLfloat)neg_target.y, (GLfloat)neg_target.z); } void GLCanvas3D::_picking_pass() const { const Pointf& pos = m_mouse.position; if (m_picking_enabled && !m_mouse.dragging && (pos != Pointf(DBL_MAX, DBL_MAX))) { // Render the object for picking. // FIXME This cannot possibly work in a multi - sampled context as the color gets mangled by the anti - aliasing. // Better to use software ray - casting on a bounding - box hierarchy. if (m_multisample_allowed) ::glDisable(GL_MULTISAMPLE); ::glDisable(GL_BLEND); ::glEnable(GL_DEPTH_TEST); ::glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); _render_volumes(true); m_gizmos.render_current_gizmo_for_picking_pass(_selected_volumes_bounding_box()); if (m_multisample_allowed) ::glEnable(GL_MULTISAMPLE); const Size& cnv_size = get_canvas_size(); GLubyte color[4]; ::glReadPixels(pos.x, cnv_size.get_height() - pos.y - 1, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, (void*)color); int volume_id = color[0] + color[1] * 256 + color[2] * 256 * 256; m_hover_volume_id = -1; for (GLVolume* vol : m_volumes.volumes) { vol->hover = false; } if (volume_id < (int)m_volumes.volumes.size()) { m_hover_volume_id = volume_id; m_volumes.volumes[volume_id]->hover = true; int group_id = m_volumes.volumes[volume_id]->select_group_id; if (group_id != -1) { for (GLVolume* vol : m_volumes.volumes) { if (vol->select_group_id == group_id) vol->hover = true; } } m_gizmos.set_hover_id(-1); } else m_gizmos.set_hover_id(254 - (int)color[2]); // updates gizmos overlay if (_get_first_selected_object_id() != -1) m_gizmos.update_hover_state(*this, pos); else m_gizmos.reset_all_states(); } } void GLCanvas3D::_render_background() const { ::glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); static const float COLOR[3] = { 10.0f / 255.0f, 98.0f / 255.0f, 144.0f / 255.0f }; ::glPushMatrix(); ::glLoadIdentity(); ::glMatrixMode(GL_PROJECTION); ::glPushMatrix(); ::glLoadIdentity(); // Draws a bluish bottom to top gradient over the complete screen. ::glDisable(GL_DEPTH_TEST); ::glBegin(GL_QUADS); ::glColor3f(0.0f, 0.0f, 0.0f); ::glVertex3f(-1.0f, -1.0f, 1.0f); ::glVertex3f(1.0f, -1.0f, 1.0f); ::glColor3f(COLOR[0], COLOR[1], COLOR[2]); ::glVertex3f(1.0f, 1.0f, 1.0f); ::glVertex3f(-1.0f, 1.0f, 1.0f); ::glEnd(); ::glEnable(GL_DEPTH_TEST); ::glPopMatrix(); ::glMatrixMode(GL_MODELVIEW); ::glPopMatrix(); } void GLCanvas3D::_render_bed(float theta) const { m_bed.render(theta); } void GLCanvas3D::_render_axes(bool depth_test) const { m_axes.render(depth_test); } void GLCanvas3D::_render_objects() const { if (m_volumes.empty()) return; ::glEnable(GL_LIGHTING); if (!m_shader_enabled) _render_volumes(false); else if (m_use_VBOs) { if (m_picking_enabled) { _mark_volumes_for_layer_height(); if (m_config != nullptr) { const BoundingBoxf3& bed_bb = m_bed.get_bounding_box(); m_volumes.set_print_box((float)bed_bb.min.x, (float)bed_bb.min.y, 0.0f, (float)bed_bb.max.x, (float)bed_bb.max.y, (float)m_config->opt_float("max_print_height")); m_volumes.check_outside_state(m_config, nullptr); } // do not cull backfaces to show broken geometry, if any ::glDisable(GL_CULL_FACE); } m_shader.start_using(); m_volumes.render_VBOs(); m_shader.stop_using(); if (m_picking_enabled) ::glEnable(GL_CULL_FACE); } else { // do not cull backfaces to show broken geometry, if any if (m_picking_enabled) ::glDisable(GL_CULL_FACE); m_volumes.render_legacy(); if (m_picking_enabled) ::glEnable(GL_CULL_FACE); } ::glDisable(GL_LIGHTING); } void GLCanvas3D::_render_cutting_plane() const { m_cutting_plane.render(volumes_bounding_box()); } void GLCanvas3D::_render_warning_texture() const { if (!m_warning_texture_enabled) return; // If the warning texture has not been loaded into the GPU, do it now. unsigned int tex_id = _3DScene::get_warning_texture_id(); if (tex_id > 0) { unsigned int w = _3DScene::get_warning_texture_width(); unsigned int h = _3DScene::get_warning_texture_height(); if ((w > 0) && (h > 0)) { ::glDisable(GL_DEPTH_TEST); ::glPushMatrix(); ::glLoadIdentity(); const Size& cnv_size = get_canvas_size(); float zoom = get_camera_zoom(); float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f; float l = (-0.5f * (float)w) * inv_zoom; float t = (-0.5f * (float)cnv_size.get_height() + (float)h) * inv_zoom; float r = l + (float)w * inv_zoom; float b = t - (float)h * inv_zoom; GLTexture::render_texture(tex_id, l, r, b, t); ::glPopMatrix(); ::glEnable(GL_DEPTH_TEST); } } } void GLCanvas3D::_render_legend_texture() const { if (!m_legend_texture_enabled) return; // If the legend texture has not been loaded into the GPU, do it now. unsigned int tex_id = _3DScene::get_legend_texture_id(); if (tex_id > 0) { unsigned int w = _3DScene::get_legend_texture_width(); unsigned int h = _3DScene::get_legend_texture_height(); if ((w > 0) && (h > 0)) { ::glDisable(GL_DEPTH_TEST); ::glPushMatrix(); ::glLoadIdentity(); const Size& cnv_size = get_canvas_size(); float zoom = get_camera_zoom(); float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f; float l = (-0.5f * (float)cnv_size.get_width()) * inv_zoom; float t = (0.5f * (float)cnv_size.get_height()) * inv_zoom; float r = l + (float)w * inv_zoom; float b = t - (float)h * inv_zoom; GLTexture::render_texture(tex_id, l, r, b, t); ::glPopMatrix(); ::glEnable(GL_DEPTH_TEST); } } } void GLCanvas3D::_render_layer_editing_overlay() const { if (m_print == nullptr) return; GLVolume* volume = nullptr; for (GLVolume* vol : m_volumes.volumes) { if ((vol != nullptr) && vol->selected && vol->has_layer_height_texture()) { volume = vol; break; } } if (volume == nullptr) return; // If the active object was not allocated at the Print, go away.This should only be a momentary case between an object addition / deletion // and an update by Platter::async_apply_config. int object_idx = int(volume->select_group_id / 1000000); if ((int)m_print->objects.size() < object_idx) return; const PrintObject* print_object = m_print->get_object(object_idx); if (print_object == nullptr) return; m_layers_editing.render(*this, *print_object, *volume); } void GLCanvas3D::_render_volumes(bool fake_colors) const { static const GLfloat INV_255 = 1.0f / 255.0f; if (!fake_colors) ::glEnable(GL_LIGHTING); // do not cull backfaces to show broken geometry, if any ::glDisable(GL_CULL_FACE); ::glEnable(GL_BLEND); ::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); ::glEnableClientState(GL_VERTEX_ARRAY); ::glEnableClientState(GL_NORMAL_ARRAY); unsigned int volume_id = 0; for (GLVolume* vol : m_volumes.volumes) { if (fake_colors) { // Object picking mode. Render the object with a color encoding the object index. unsigned int r = (volume_id & 0x000000FF) >> 0; unsigned int g = (volume_id & 0x0000FF00) >> 8; unsigned int b = (volume_id & 0x00FF0000) >> 16; ::glColor3f((GLfloat)r * INV_255, (GLfloat)g * INV_255, (GLfloat)b * INV_255); } else { vol->set_render_color(); ::glColor4f(vol->render_color[0], vol->render_color[1], vol->render_color[2], vol->render_color[3]); } vol->render(); ++volume_id; } ::glDisableClientState(GL_NORMAL_ARRAY); ::glDisableClientState(GL_VERTEX_ARRAY); ::glDisable(GL_BLEND); ::glEnable(GL_CULL_FACE); if (!fake_colors) ::glDisable(GL_LIGHTING); } void GLCanvas3D::_render_gizmo() const { m_gizmos.render(*this, _selected_volumes_bounding_box()); } float GLCanvas3D::_get_layers_editing_cursor_z_relative() const { return m_layers_editing.get_cursor_z_relative(*this); } void GLCanvas3D::_perform_layer_editing_action(wxMouseEvent* evt) { int object_idx_selected = m_layers_editing.last_object_id; if (object_idx_selected == -1) return; if (m_print == nullptr) return; PrintObject* selected_obj = m_print->get_object(object_idx_selected); if (selected_obj == nullptr) return; // A volume is selected. Test, whether hovering over a layer thickness bar. if (evt != nullptr) { const Rect& rect = LayersEditing::get_bar_rect_screen(*this); float b = rect.get_bottom(); m_layers_editing.last_z = unscale(selected_obj->size.z) * (b - evt->GetY() - 1.0f) / (b - rect.get_top()); m_layers_editing.last_action = evt->ShiftDown() ? (evt->RightIsDown() ? 3 : 2) : (evt->RightIsDown() ? 0 : 1); } // Mark the volume as modified, so Print will pick its layer height profile ? Where to mark it ? // Start a timer to refresh the print ? schedule_background_process() ? // The PrintObject::adjust_layer_height_profile() call adjusts the profile of its associated ModelObject, it does not modify the profile of the PrintObject itself. selected_obj->adjust_layer_height_profile(m_layers_editing.last_z, m_layers_editing.strength, m_layers_editing.band_width, m_layers_editing.last_action); // searches the id of the first volume of the selected object int volume_idx = 0; for (int i = 0; i < object_idx_selected; ++i) { PrintObject* obj = m_print->get_object(i); if (obj != nullptr) { for (int j = 0; j < (int)obj->region_volumes.size(); ++j) { volume_idx += (int)obj->region_volumes[j].size(); } } } m_volumes.volumes[volume_idx]->generate_layer_height_texture(selected_obj, 1); _refresh_if_shown_on_screen(); // Automatic action on mouse down with the same coordinate. _start_timer(); } Pointf3 GLCanvas3D::_mouse_to_3d(const Point& mouse_pos, float* z) { if (m_canvas == nullptr) return Pointf3(DBL_MAX, DBL_MAX, DBL_MAX); _camera_tranform(); GLint viewport[4]; ::glGetIntegerv(GL_VIEWPORT, viewport); GLdouble modelview_matrix[16]; ::glGetDoublev(GL_MODELVIEW_MATRIX, modelview_matrix); GLdouble projection_matrix[16]; ::glGetDoublev(GL_PROJECTION_MATRIX, projection_matrix); GLint y = viewport[3] - (GLint)mouse_pos.y; GLfloat mouse_z; if (z == nullptr) ::glReadPixels((GLint)mouse_pos.x, y, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, (void*)&mouse_z); else mouse_z = *z; GLdouble out_x, out_y, out_z; ::gluUnProject((GLdouble)mouse_pos.x, (GLdouble)y, (GLdouble)mouse_z, modelview_matrix, projection_matrix, viewport, &out_x, &out_y, &out_z); return Pointf3((coordf_t)out_x, (coordf_t)out_y, (coordf_t)out_z); } Pointf3 GLCanvas3D::_mouse_to_bed_3d(const Point& mouse_pos) { float z0 = 0.0f; float z1 = 1.0f; return Linef3(_mouse_to_3d(mouse_pos, &z0), _mouse_to_3d(mouse_pos, &z1)).intersect_plane(0.0); } void GLCanvas3D::_start_timer() { if (m_timer != nullptr) m_timer->Start(100, wxTIMER_CONTINUOUS); } void GLCanvas3D::_stop_timer() { if (m_timer != nullptr) m_timer->Stop(); } int GLCanvas3D::_get_first_selected_object_id() const { if (m_print != nullptr) { int objects_count = (int)m_print->objects.size(); for (const GLVolume* vol : m_volumes.volumes) { if ((vol != nullptr) && vol->selected) { int object_id = vol->select_group_id / 1000000; // Objects with object_id >= 1000 have a specific meaning, for example the wipe tower proxy. if (object_id < 10000) return (object_id >= objects_count) ? -1 : object_id; } } } return -1; } int GLCanvas3D::_get_first_selected_volume_id() const { if (m_print != nullptr) { int objects_count = (int)m_print->objects.size(); for (const GLVolume* vol : m_volumes.volumes) { if ((vol != nullptr) && vol->selected) { int object_id = vol->select_group_id / 1000000; // Objects with object_id >= 1000 have a specific meaning, for example the wipe tower proxy. if ((object_id < 10000) && (object_id < objects_count)) { int volume_id = 0; for (int i = 0; i < object_id; ++i) { const PrintObject* obj = m_print->objects[i]; const ModelObject* model = obj->model_object(); volume_id += model->instances.size(); } return volume_id; } } } } return -1; } static inline int hex_digit_to_int(const char c) { return (c >= '0' && c <= '9') ? int(c - '0') : (c >= 'A' && c <= 'F') ? int(c - 'A') + 10 : (c >= 'a' && c <= 'f') ? int(c - 'a') + 10 : -1; } void GLCanvas3D::_load_gcode_extrusion_paths(const GCodePreviewData& preview_data, const std::vector& tool_colors) { // helper functions to select data in dependence of the extrusion view type struct Helper { static float path_filter(GCodePreviewData::Extrusion::EViewType type, const ExtrusionPath& path) { switch (type) { case GCodePreviewData::Extrusion::FeatureType: return (float)path.role(); case GCodePreviewData::Extrusion::Height: return path.height; case GCodePreviewData::Extrusion::Width: return path.width; case GCodePreviewData::Extrusion::Feedrate: return path.feedrate; case GCodePreviewData::Extrusion::VolumetricRate: return path.feedrate * (float)path.mm3_per_mm; case GCodePreviewData::Extrusion::Tool: return (float)path.extruder_id; default: return 0.0f; } return 0.0f; } static GCodePreviewData::Color path_color(const GCodePreviewData& data, const std::vector& tool_colors, float value) { switch (data.extrusion.view_type) { case GCodePreviewData::Extrusion::FeatureType: return data.get_extrusion_role_color((ExtrusionRole)(int)value); case GCodePreviewData::Extrusion::Height: return data.get_height_color(value); case GCodePreviewData::Extrusion::Width: return data.get_width_color(value); case GCodePreviewData::Extrusion::Feedrate: return data.get_feedrate_color(value); case GCodePreviewData::Extrusion::VolumetricRate: return data.get_volumetric_rate_color(value); case GCodePreviewData::Extrusion::Tool: { GCodePreviewData::Color color; ::memcpy((void*)color.rgba, (const void*)(tool_colors.data() + (unsigned int)value * 4), 4 * sizeof(float)); return color; } default: return GCodePreviewData::Color::Dummy; } return GCodePreviewData::Color::Dummy; } }; // Helper structure for filters struct Filter { float value; ExtrusionRole role; GLVolume* volume; Filter(float value, ExtrusionRole role) : value(value) , role(role) , volume(nullptr) { } bool operator == (const Filter& other) const { if (value != other.value) return false; if (role != other.role) return false; return true; } }; typedef std::vector FiltersList; size_t initial_volumes_count = m_volumes.volumes.size(); // detects filters FiltersList filters; for (const GCodePreviewData::Extrusion::Layer& layer : preview_data.extrusion.layers) { for (const ExtrusionPath& path : layer.paths) { ExtrusionRole role = path.role(); float path_filter = Helper::path_filter(preview_data.extrusion.view_type, path); if (std::find(filters.begin(), filters.end(), Filter(path_filter, role)) == filters.end()) filters.emplace_back(path_filter, role); } } // nothing to render, return if (filters.empty()) return; // creates a new volume for each filter for (Filter& filter : filters) { m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Extrusion, (unsigned int)filter.role, (unsigned int)m_volumes.volumes.size()); GLVolume* volume = new GLVolume(Helper::path_color(preview_data, tool_colors, filter.value).rgba); if (volume != nullptr) { filter.volume = volume; m_volumes.volumes.emplace_back(volume); } else { // an error occourred - restore to previous state and return m_gcode_preview_volume_index.first_volumes.pop_back(); if (initial_volumes_count != m_volumes.volumes.size()) { std::vector::iterator begin = m_volumes.volumes.begin() + initial_volumes_count; std::vector::iterator end = m_volumes.volumes.end(); for (std::vector::iterator it = begin; it < end; ++it) { GLVolume* volume = *it; delete volume; } m_volumes.volumes.erase(begin, end); return; } } } // populates volumes for (const GCodePreviewData::Extrusion::Layer& layer : preview_data.extrusion.layers) { for (const ExtrusionPath& path : layer.paths) { float path_filter = Helper::path_filter(preview_data.extrusion.view_type, path); FiltersList::iterator filter = std::find(filters.begin(), filters.end(), Filter(path_filter, path.role())); if (filter != filters.end()) { filter->volume->print_zs.push_back(layer.z); filter->volume->offsets.push_back(filter->volume->indexed_vertex_array.quad_indices.size()); filter->volume->offsets.push_back(filter->volume->indexed_vertex_array.triangle_indices.size()); _3DScene::extrusionentity_to_verts(path, layer.z, *filter->volume); } } } // finalize volumes and sends geometry to gpu if (m_volumes.volumes.size() > initial_volumes_count) { for (size_t i = initial_volumes_count; i < m_volumes.volumes.size(); ++i) { GLVolume* volume = m_volumes.volumes[i]; volume->bounding_box = volume->indexed_vertex_array.bounding_box(); volume->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized); } } } void GLCanvas3D::_load_gcode_travel_paths(const GCodePreviewData& preview_data, const std::vector& tool_colors) { size_t initial_volumes_count = m_volumes.volumes.size(); m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Travel, 0, (unsigned int)initial_volumes_count); bool res = true; switch (preview_data.extrusion.view_type) { case GCodePreviewData::Extrusion::Feedrate: { res = _travel_paths_by_feedrate(preview_data); break; } case GCodePreviewData::Extrusion::Tool: { res = _travel_paths_by_tool(preview_data, tool_colors); break; } default: { res = _travel_paths_by_type(preview_data); break; } } if (!res) { // an error occourred - restore to previous state and return if (initial_volumes_count != m_volumes.volumes.size()) { std::vector::iterator begin = m_volumes.volumes.begin() + initial_volumes_count; std::vector::iterator end = m_volumes.volumes.end(); for (std::vector::iterator it = begin; it < end; ++it) { GLVolume* volume = *it; delete volume; } m_volumes.volumes.erase(begin, end); } return; } // finalize volumes and sends geometry to gpu if (m_volumes.volumes.size() > initial_volumes_count) { for (size_t i = initial_volumes_count; i < m_volumes.volumes.size(); ++i) { GLVolume* volume = m_volumes.volumes[i]; volume->bounding_box = volume->indexed_vertex_array.bounding_box(); volume->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized); } } } bool GLCanvas3D::_travel_paths_by_type(const GCodePreviewData& preview_data) { // Helper structure for types struct Type { GCodePreviewData::Travel::EType value; GLVolume* volume; explicit Type(GCodePreviewData::Travel::EType value) : value(value) , volume(nullptr) { } bool operator == (const Type& other) const { return value == other.value; } }; typedef std::vector TypesList; // colors travels by travel type // detects types TypesList types; for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines) { if (std::find(types.begin(), types.end(), Type(polyline.type)) == types.end()) types.emplace_back(polyline.type); } // nothing to render, return if (types.empty()) return true; // creates a new volume for each type for (Type& type : types) { GLVolume* volume = new GLVolume(preview_data.travel.type_colors[type.value].rgba); if (volume == nullptr) return false; else { type.volume = volume; m_volumes.volumes.emplace_back(volume); } } // populates volumes for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines) { TypesList::iterator type = std::find(types.begin(), types.end(), Type(polyline.type)); if (type != types.end()) { type->volume->print_zs.push_back(unscale(polyline.polyline.bounding_box().min.z)); type->volume->offsets.push_back(type->volume->indexed_vertex_array.quad_indices.size()); type->volume->offsets.push_back(type->volume->indexed_vertex_array.triangle_indices.size()); _3DScene::polyline3_to_verts(polyline.polyline, preview_data.travel.width, preview_data.travel.height, *type->volume); } } return true; } bool GLCanvas3D::_travel_paths_by_feedrate(const GCodePreviewData& preview_data) { // Helper structure for feedrate struct Feedrate { float value; GLVolume* volume; explicit Feedrate(float value) : value(value) , volume(nullptr) { } bool operator == (const Feedrate& other) const { return value == other.value; } }; typedef std::vector FeedratesList; // colors travels by feedrate // detects feedrates FeedratesList feedrates; for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines) { if (std::find(feedrates.begin(), feedrates.end(), Feedrate(polyline.feedrate)) == feedrates.end()) feedrates.emplace_back(polyline.feedrate); } // nothing to render, return if (feedrates.empty()) return true; // creates a new volume for each feedrate for (Feedrate& feedrate : feedrates) { GLVolume* volume = new GLVolume(preview_data.get_feedrate_color(feedrate.value).rgba); if (volume == nullptr) return false; else { feedrate.volume = volume; m_volumes.volumes.emplace_back(volume); } } // populates volumes for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines) { FeedratesList::iterator feedrate = std::find(feedrates.begin(), feedrates.end(), Feedrate(polyline.feedrate)); if (feedrate != feedrates.end()) { feedrate->volume->print_zs.push_back(unscale(polyline.polyline.bounding_box().min.z)); feedrate->volume->offsets.push_back(feedrate->volume->indexed_vertex_array.quad_indices.size()); feedrate->volume->offsets.push_back(feedrate->volume->indexed_vertex_array.triangle_indices.size()); _3DScene::polyline3_to_verts(polyline.polyline, preview_data.travel.width, preview_data.travel.height, *feedrate->volume); } } return true; } bool GLCanvas3D::_travel_paths_by_tool(const GCodePreviewData& preview_data, const std::vector& tool_colors) { // Helper structure for tool struct Tool { unsigned int value; GLVolume* volume; explicit Tool(unsigned int value) : value(value) , volume(nullptr) { } bool operator == (const Tool& other) const { return value == other.value; } }; typedef std::vector ToolsList; // colors travels by tool // detects tools ToolsList tools; for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines) { if (std::find(tools.begin(), tools.end(), Tool(polyline.extruder_id)) == tools.end()) tools.emplace_back(polyline.extruder_id); } // nothing to render, return if (tools.empty()) return true; // creates a new volume for each tool for (Tool& tool : tools) { GLVolume* volume = new GLVolume(tool_colors.data() + tool.value * 4); if (volume == nullptr) return false; else { tool.volume = volume; m_volumes.volumes.emplace_back(volume); } } // populates volumes for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines) { ToolsList::iterator tool = std::find(tools.begin(), tools.end(), Tool(polyline.extruder_id)); if (tool != tools.end()) { tool->volume->print_zs.push_back(unscale(polyline.polyline.bounding_box().min.z)); tool->volume->offsets.push_back(tool->volume->indexed_vertex_array.quad_indices.size()); tool->volume->offsets.push_back(tool->volume->indexed_vertex_array.triangle_indices.size()); _3DScene::polyline3_to_verts(polyline.polyline, preview_data.travel.width, preview_data.travel.height, *tool->volume); } } return true; } void GLCanvas3D::_load_gcode_retractions(const GCodePreviewData& preview_data) { m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Retraction, 0, (unsigned int)m_volumes.volumes.size()); // nothing to render, return if (preview_data.retraction.positions.empty()) return; GLVolume* volume = new GLVolume(preview_data.retraction.color.rgba); if (volume != nullptr) { m_volumes.volumes.emplace_back(volume); GCodePreviewData::Retraction::PositionsList copy(preview_data.retraction.positions); std::sort(copy.begin(), copy.end(), [](const GCodePreviewData::Retraction::Position& p1, const GCodePreviewData::Retraction::Position& p2){ return p1.position.z < p2.position.z; }); for (const GCodePreviewData::Retraction::Position& position : copy) { volume->print_zs.push_back(unscale(position.position.z)); volume->offsets.push_back(volume->indexed_vertex_array.quad_indices.size()); volume->offsets.push_back(volume->indexed_vertex_array.triangle_indices.size()); _3DScene::point3_to_verts(position.position, position.width, position.height, *volume); } // finalize volumes and sends geometry to gpu volume->bounding_box = volume->indexed_vertex_array.bounding_box(); volume->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized); } } void GLCanvas3D::_load_gcode_unretractions(const GCodePreviewData& preview_data) { m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Unretraction, 0, (unsigned int)m_volumes.volumes.size()); // nothing to render, return if (preview_data.unretraction.positions.empty()) return; GLVolume* volume = new GLVolume(preview_data.unretraction.color.rgba); if (volume != nullptr) { m_volumes.volumes.emplace_back(volume); GCodePreviewData::Retraction::PositionsList copy(preview_data.unretraction.positions); std::sort(copy.begin(), copy.end(), [](const GCodePreviewData::Retraction::Position& p1, const GCodePreviewData::Retraction::Position& p2){ return p1.position.z < p2.position.z; }); for (const GCodePreviewData::Retraction::Position& position : copy) { volume->print_zs.push_back(unscale(position.position.z)); volume->offsets.push_back(volume->indexed_vertex_array.quad_indices.size()); volume->offsets.push_back(volume->indexed_vertex_array.triangle_indices.size()); _3DScene::point3_to_verts(position.position, position.width, position.height, *volume); } // finalize volumes and sends geometry to gpu volume->bounding_box = volume->indexed_vertex_array.bounding_box(); volume->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized); } } void GLCanvas3D::_load_shells() { size_t initial_volumes_count = m_volumes.volumes.size(); m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Shell, 0, (unsigned int)initial_volumes_count); if (m_print->objects.empty()) // nothing to render, return return; // adds objects' volumes unsigned int object_id = 0; for (PrintObject* obj : m_print->objects) { ModelObject* model_obj = obj->model_object(); std::vector instance_ids(model_obj->instances.size()); for (int i = 0; i < (int)model_obj->instances.size(); ++i) { instance_ids[i] = i; } m_volumes.load_object(model_obj, object_id, instance_ids, "object", "object", "object", m_use_VBOs && m_initialized); ++object_id; } // adds wipe tower's volume coordf_t max_z = m_print->objects[0]->model_object()->get_model()->bounding_box().max.z; const PrintConfig& config = m_print->config; unsigned int extruders_count = config.nozzle_diameter.size(); if ((extruders_count > 1) && config.single_extruder_multi_material && config.wipe_tower && !config.complete_objects) { const float width_per_extruder = 15.0f; // a simple workaround after wipe_tower_per_color_wipe got obsolete m_volumes.load_wipe_tower_preview(1000, config.wipe_tower_x, config.wipe_tower_y, config.wipe_tower_width, width_per_extruder * (extruders_count - 1), max_z, config.wipe_tower_rotation_angle, m_use_VBOs && m_initialized); } } void GLCanvas3D::_update_gcode_volumes_visibility(const GCodePreviewData& preview_data) { unsigned int size = (unsigned int)m_gcode_preview_volume_index.first_volumes.size(); for (unsigned int i = 0; i < size; ++i) { std::vector::iterator begin = m_volumes.volumes.begin() + m_gcode_preview_volume_index.first_volumes[i].id; std::vector::iterator end = (i + 1 < size) ? m_volumes.volumes.begin() + m_gcode_preview_volume_index.first_volumes[i + 1].id : m_volumes.volumes.end(); for (std::vector::iterator it = begin; it != end; ++it) { GLVolume* volume = *it; volume->outside_printer_detection_enabled = false; switch (m_gcode_preview_volume_index.first_volumes[i].type) { case GCodePreviewVolumeIndex::Extrusion: { if ((ExtrusionRole)m_gcode_preview_volume_index.first_volumes[i].flag == erCustom) volume->zoom_to_volumes = false; volume->is_active = preview_data.extrusion.is_role_flag_set((ExtrusionRole)m_gcode_preview_volume_index.first_volumes[i].flag); break; } case GCodePreviewVolumeIndex::Travel: { volume->is_active = preview_data.travel.is_visible; volume->zoom_to_volumes = false; break; } case GCodePreviewVolumeIndex::Retraction: { volume->is_active = preview_data.retraction.is_visible; volume->zoom_to_volumes = false; break; } case GCodePreviewVolumeIndex::Unretraction: { volume->is_active = preview_data.unretraction.is_visible; volume->zoom_to_volumes = false; break; } case GCodePreviewVolumeIndex::Shell: { volume->is_active = preview_data.shell.is_visible; volume->color[3] = 0.25f; volume->zoom_to_volumes = false; break; } default: { volume->is_active = false; volume->zoom_to_volumes = false; break; } } } } } void GLCanvas3D::_on_move(const std::vector& volume_idxs) { if (m_model == nullptr) return; std::set done; // prevent moving instances twice bool object_moved = false; Pointf3 wipe_tower_origin(0.0, 0.0, 0.0); for (int volume_idx : volume_idxs) { GLVolume* volume = m_volumes.volumes[volume_idx]; int obj_idx = volume->object_idx(); int instance_idx = volume->instance_idx(); // prevent moving instances twice char done_id[64]; ::sprintf(done_id, "%d_%d", obj_idx, instance_idx); if (done.find(done_id) != done.end()) continue; done.insert(done_id); if (obj_idx < 1000) { // Move a regular object. ModelObject* model_object = m_model->objects[obj_idx]; const Pointf3& origin = volume->get_origin(); model_object->instances[instance_idx]->offset = Pointf(origin.x, origin.y); model_object->invalidate_bounding_box(); object_moved = true; } else if (obj_idx == 1000) // Move a wipe tower proxy. wipe_tower_origin = volume->get_origin(); } if (object_moved) m_on_instance_moved_callback.call(); if (wipe_tower_origin != Pointf3(0.0, 0.0, 0.0)) m_on_wipe_tower_moved_callback.call(wipe_tower_origin.x, wipe_tower_origin.y); } void GLCanvas3D::_on_select(int volume_idx) { int id = -1; if ((volume_idx != -1) && (volume_idx < (int)m_volumes.volumes.size())) { if (m_select_by == "volume") id = m_volumes.volumes[volume_idx]->volume_idx(); else if (m_select_by == "object") id = m_volumes.volumes[volume_idx]->object_idx(); } m_on_select_object_callback.call(id); } std::vector GLCanvas3D::_parse_colors(const std::vector& colors) { static const float INV_255 = 1.0f / 255.0f; std::vector output(colors.size() * 4, 1.0f); for (size_t i = 0; i < colors.size(); ++i) { const std::string& color = colors[i]; const char* c = color.data() + 1; if ((color.size() == 7) && (color.front() == '#')) { for (size_t j = 0; j < 3; ++j) { int digit1 = hex_digit_to_int(*c++); int digit2 = hex_digit_to_int(*c++); if ((digit1 == -1) || (digit2 == -1)) break; output[i * 4 + j] = float(digit1 * 16 + digit2) * INV_255; } } } return output; } } // namespace GUI } // namespace Slic3r