package Slic3r::ExPolygon; use strict; use warnings; # an ExPolygon is a polygon with holes use Boost::Geometry::Utils; use List::Util qw(first); use Math::Geometry::Voronoi; use Slic3r::Geometry qw(X Y A B point_in_polygon same_line epsilon); use Slic3r::Geometry::Clipper qw(union_ex JT_MITER); # the constructor accepts an array of polygons # or a Math::Clipper ExPolygon (hashref) sub new { my $class = shift; my $self; if (@_ == 1 && ref $_[0] eq 'HASH') { $self = [ Slic3r::Polygon->new($_[0]{outer}), map Slic3r::Polygon->new($_), @{$_[0]{holes}}, ]; } else { $self = [ map Slic3r::Polygon->new($_), @_ ]; } bless $self, $class; $self; } sub clone { my $self = shift; return (ref $self)->new(map $_->clone, @$self); } sub contour { my $self = shift; return $self->[0]; } sub holes { my $self = shift; return @$self[1..$#$self]; } sub lines { my $self = shift; return map $_->lines, @$self; } sub clipper_expolygon { my $self = shift; return { outer => $self->contour, holes => [ $self->holes ], }; } sub is_valid { my $self = shift; return (!first { !$_->is_valid } @$self) && $self->contour->is_counter_clockwise && (!first { $_->is_counter_clockwise } $self->holes); } # returns false if the expolygon is too tight to be printed sub is_printable { my $self = shift; my ($width) = @_; # try to get an inwards offset # for a distance equal to half of the extrusion width; # if no offset is possible, then expolygon is not printable. return Slic3r::Geometry::Clipper::offset($self, -$width / 2) ? 1 : 0; } sub wkt { my $self = shift; return sprintf "POLYGON(%s)", join ',', map "($_)", map { join ',', map "$_->[0] $_->[1]", @$_ } @$self; } sub offset { my $self = shift; return Slic3r::Geometry::Clipper::offset($self, @_); } sub offset_ex { my $self = shift; return Slic3r::Geometry::Clipper::offset_ex($self, @_); } sub safety_offset { my $self = shift; return Slic3r::Geometry::Clipper::safety_offset_ex($self, @_); } sub noncollapsing_offset_ex { my $self = shift; my ($distance, @params) = @_; return $self->offset_ex($distance + 1, @params); } sub encloses_point { my $self = shift; my ($point) = @_; return Boost::Geometry::Utils::point_covered_by_polygon($point, $self); } # A version of encloses_point for use when hole borders do not matter. # Useful because point_on_segment is probably slower (this was true # before the switch to Boost.Geometry, not sure about now) sub encloses_point_quick { my $self = shift; my ($point) = @_; return Boost::Geometry::Utils::point_within_polygon($point, $self); } sub encloses_line { my $self = shift; my ($line, $tolerance) = @_; my $clip = $self->clip_line($line); if (!defined $tolerance) { # optimization return @$clip == 1 && same_line($clip->[0], $line); } else { return @$clip == 1 && abs(Boost::Geometry::Utils::linestring_length($clip->[0]) - $line->length) < $tolerance; } } sub bounding_box { my $self = shift; return $self->contour->bounding_box; } sub clip_line { my $self = shift; my ($line) = @_; # line must be a Slic3r::Line object return Boost::Geometry::Utils::polygon_multi_linestring_intersection($self, [$line]); } sub simplify { my $self = shift; my ($tolerance) = @_; # it would be nice to have a multilinestring_simplify method in B::G::U my @simplified = Slic3r::Geometry::Clipper::simplify_polygons( [ map Boost::Geometry::Utils::linestring_simplify($_, $tolerance), @$self ], ); return @{ Slic3r::Geometry::Clipper::union_ex([ @simplified ]) }; } sub scale { my $self = shift; $_->scale(@_) for @$self; } sub translate { my $self = shift; $_->translate(@_) for @$self; $self; } sub rotate { my $self = shift; $_->rotate(@_) for @$self; $self; } sub area { my $self = shift; my $area = $self->contour->area; $area -= $_->area for $self->holes; return $area; } # this method only works for expolygons having only a contour or # a contour and a hole, and not being thicker than the supplied # width. it returns a polyline or a polygon sub medial_axis { my $self = shift; my ($width) = @_; my @self_lines = map $_->lines, @$self; my $expolygon = $self->clone; my @points = (); foreach my $polygon (@$expolygon) { Slic3r::Geometry::polyline_remove_short_segments($polygon, $width / 2); # subdivide polygon segments so that we don't have anyone of them # being longer than $width / 2 $polygon->subdivide($width/2); push @points, @$polygon; } my $voronoi = Math::Geometry::Voronoi->new(points => \@points); $voronoi->compute; my @skeleton_lines = (); my $vertices = $voronoi->vertices; my $edges = $voronoi->edges; foreach my $edge (@$edges) { # ignore lines going to infinite next if $edge->[1] == -1 || $edge->[2] == -1; my ($a, $b); $a = $vertices->[$edge->[1]]; $b = $vertices->[$edge->[2]]; next if !$self->encloses_point_quick($a) || !$self->encloses_point_quick($b); push @skeleton_lines, [$edge->[1], $edge->[2]]; } # remove leafs (lines not connected to other lines at one of their endpoints) { my %pointmap = (); $pointmap{$_}++ for map @$_, @skeleton_lines; @skeleton_lines = grep { $pointmap{$_->[A]} >= 2 && $pointmap{$_->[B]} >= 2 } @skeleton_lines; } return () if !@skeleton_lines; # now walk along the medial axis and build continuos polylines or polygons my @polylines = (); { # build a map of line endpoints my %pointmap = (); # point_idx => [line_idx, line_idx ...] for my $line_idx (0 .. $#skeleton_lines) { for my $point_idx (@{$skeleton_lines[$line_idx]}) { $pointmap{$point_idx} ||= []; push @{$pointmap{$point_idx}}, $line_idx; } } # build the list of available lines my %spare_lines = map {$_ => 1} (0 .. $#skeleton_lines); CYCLE: while (%spare_lines) { push @polylines, []; my $polyline = $polylines[-1]; # start from a random line my $first_line_idx = +(keys %spare_lines)[0]; delete $spare_lines{$first_line_idx}; push @$polyline, @{ $skeleton_lines[$first_line_idx] }; while (1) { my $last_point_id = $polyline->[-1]; my $lines_starting_here = $pointmap{$last_point_id}; # remove all the visited lines from the array shift @$lines_starting_here while @$lines_starting_here && !$spare_lines{$lines_starting_here->[0]}; # do we have a line starting here? my $next_line_idx = shift @$lines_starting_here; if (!defined $next_line_idx) { delete $pointmap{$last_point_id}; next CYCLE; } # line is not available anymore delete $spare_lines{$next_line_idx}; # add the other point to our polyline and continue walking push @$polyline, grep $_ ne $last_point_id, @{$skeleton_lines[$next_line_idx]}; } } } my @result = (); foreach my $polyline (@polylines) { next unless @$polyline >= 2; # now replace point indexes with coordinates @$polyline = map $vertices->[$_], @$polyline; # cleanup $polyline = Slic3r::Geometry::douglas_peucker($polyline, $width / 7); if (Slic3r::Geometry::same_point($polyline->[0], $polyline->[-1])) { next if @$polyline == 2; push @result, Slic3r::Polygon->new(@$polyline[0..$#$polyline-1]); } else { push @result, Slic3r::Polyline->new($polyline); } } return @result; } package Slic3r::ExPolygon::Collection; use Moo; use Slic3r::Geometry qw(X1 Y1); has 'expolygons' => (is => 'ro', default => sub { [] }); sub clone { my $self = shift; return (ref $self)->new( expolygons => [ map $_->clone, @{$self->expolygons} ], ); } sub align_to_origin { my $self = shift; my @bb = Slic3r::Geometry::bounding_box([ map @$_, map @$_, @{$self->expolygons} ]); $_->translate(-$bb[X1], -$bb[Y1]) for @{$self->expolygons}; $self; } sub scale { my $self = shift; $_->scale(@_) for @{$self->expolygons}; $self; } sub rotate { my $self = shift; $_->rotate(@_) for @{$self->expolygons}; $self; } sub translate { my $self = shift; $_->translate(@_) for @{$self->expolygons}; $self; } sub size { my $self = shift; return [ Slic3r::Geometry::size_2D([ map @$_, map @$_, @{$self->expolygons} ]) ]; } 1;