#include "BoundingBox.hpp" #include "ExPolygon.hpp" #include "Geometry.hpp" #include "Polygon.hpp" #include "Line.hpp" #include "ClipperUtils.hpp" #include "polypartition.h" #ifdef SLIC3RXS #include "perlglue.hpp" #endif #include #include namespace Slic3r { ExPolygon::operator Points() const { Points points; Polygons pp = *this; for (Polygons::const_iterator poly = pp.begin(); poly != pp.end(); ++poly) { for (Points::const_iterator point = poly->points.begin(); point != poly->points.end(); ++point) points.push_back(*point); } return points; } ExPolygon::operator Polygons() const { Polygons polygons; polygons.reserve(this->holes.size() + 1); polygons.push_back(this->contour); for (Polygons::const_iterator it = this->holes.begin(); it != this->holes.end(); ++it) { polygons.push_back(*it); } return polygons; } void ExPolygon::scale(double factor) { contour.scale(factor); for (Polygons::iterator it = holes.begin(); it != holes.end(); ++it) { (*it).scale(factor); } } void ExPolygon::translate(double x, double y) { contour.translate(x, y); for (Polygons::iterator it = holes.begin(); it != holes.end(); ++it) { (*it).translate(x, y); } } void ExPolygon::rotate(double angle, const Point ¢er) { contour.rotate(angle, center); for (Polygons::iterator it = holes.begin(); it != holes.end(); ++it) { (*it).rotate(angle, center); } } double ExPolygon::area() const { double a = this->contour.area(); for (Polygons::const_iterator it = this->holes.begin(); it != this->holes.end(); ++it) { a -= -(*it).area(); // holes have negative area } return a; } bool ExPolygon::is_valid() const { if (!this->contour.is_valid() || !this->contour.is_counter_clockwise()) return false; for (Polygons::const_iterator it = this->holes.begin(); it != this->holes.end(); ++it) { if (!(*it).is_valid() || (*it).is_counter_clockwise()) return false; } return true; } bool ExPolygon::contains_line(const Line &line) const { Polylines pl; pl.push_back(line); Polylines pl_out; diff(pl, *this, pl_out); return pl_out.empty(); } bool ExPolygon::contains_point(const Point &point) const { if (!this->contour.contains_point(point)) return false; for (Polygons::const_iterator it = this->holes.begin(); it != this->holes.end(); ++it) { if (it->contains_point(point)) return false; } return true; } Polygons ExPolygon::simplify_p(double tolerance) const { Polygons pp; pp.reserve(this->holes.size() + 1); // contour Polygon p = this->contour; p.points = MultiPoint::_douglas_peucker(p.points, tolerance); pp.push_back(p); // holes for (Polygons::const_iterator it = this->holes.begin(); it != this->holes.end(); ++it) { p = *it; p.points = MultiPoint::_douglas_peucker(p.points, tolerance); pp.push_back(p); } simplify_polygons(pp, pp); return pp; } ExPolygons ExPolygon::simplify(double tolerance) const { Polygons pp = this->simplify_p(tolerance); ExPolygons expp; union_(pp, expp); return expp; } void ExPolygon::simplify(double tolerance, ExPolygons &expolygons) const { ExPolygons ep = this->simplify(tolerance); expolygons.reserve(expolygons.size() + ep.size()); expolygons.insert(expolygons.end(), ep.begin(), ep.end()); } void ExPolygon::medial_axis(double max_width, double min_width, Polylines* polylines) const { // init helper object Slic3r::Geometry::MedialAxis ma(max_width, min_width); // populate list of segments for the Voronoi diagram this->contour.lines(&ma.lines); for (Polygons::const_iterator hole = this->holes.begin(); hole != this->holes.end(); ++hole) hole->lines(&ma.lines); // compute the Voronoi diagram ma.build(polylines); // extend initial and final segments of each polyline (they will be clipped) for (Polylines::iterator polyline = polylines->begin(); polyline != polylines->end(); ++polyline) { polyline->extend_start(max_width); polyline->extend_end(max_width); } // clip segments to our expolygon area intersection(*polylines, *this, *polylines); } void ExPolygon::get_trapezoids(Polygons* polygons) const { ExPolygons expp; expp.push_back(*this); boost::polygon::get_trapezoids(*polygons, expp); } void ExPolygon::get_trapezoids(Polygons* polygons, double angle) const { ExPolygon clone = *this; clone.rotate(PI/2 - angle, Point(0,0)); clone.get_trapezoids(polygons); for (Polygons::iterator polygon = polygons->begin(); polygon != polygons->end(); ++polygon) polygon->rotate(-(PI/2 - angle), Point(0,0)); } // This algorithm may return more trapezoids than necessary // (i.e. it may break a single trapezoid in several because // other parts of the object have x coordinates in the middle) void ExPolygon::get_trapezoids2(Polygons* polygons) const { // get all points of this ExPolygon Points pp = *this; // build our bounding box BoundingBox bb(pp); // get all x coordinates std::vector xx; xx.reserve(pp.size()); for (Points::const_iterator p = pp.begin(); p != pp.end(); ++p) xx.push_back(p->x); std::sort(xx.begin(), xx.end()); // find trapezoids by looping from first to next-to-last coordinate for (std::vector::const_iterator x = xx.begin(); x != xx.end()-1; ++x) { coord_t next_x = *(x + 1); if (*x == next_x) continue; // build rectangle Polygon poly; poly.points.resize(4); poly[0].x = *x; poly[0].y = bb.min.y; poly[1].x = next_x; poly[1].y = bb.min.y; poly[2].x = next_x; poly[2].y = bb.max.y; poly[3].x = *x; poly[3].y = bb.max.y; // intersect with this expolygon Polygons trapezoids; intersection(poly, *this, trapezoids); // append results to return value polygons->insert(polygons->end(), trapezoids.begin(), trapezoids.end()); } } void ExPolygon::get_trapezoids2(Polygons* polygons, double angle) const { ExPolygon clone = *this; clone.rotate(PI/2 - angle, Point(0,0)); clone.get_trapezoids2(polygons); for (Polygons::iterator polygon = polygons->begin(); polygon != polygons->end(); ++polygon) polygon->rotate(-(PI/2 - angle), Point(0,0)); } // While this triangulates successfully, it's NOT a constrained triangulation // as it will create more vertices on the boundaries than the ones supplied. void ExPolygon::triangulate(Polygons* polygons) const { // first make trapezoids Polygons trapezoids; this->get_trapezoids2(&trapezoids); // then triangulate each trapezoid for (Polygons::iterator polygon = trapezoids.begin(); polygon != trapezoids.end(); ++polygon) polygon->triangulate_convex(polygons); } void ExPolygon::triangulate_pp(Polygons* polygons) const { // convert polygons std::list input; Polygons pp = *this; simplify_polygons(pp, pp, true); ExPolygons expp; union_(pp, expp); for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) { // contour { TPPLPoly p; p.Init(ex->contour.points.size()); //printf("%zu\n0\n", ex->contour.points.size()); for (Points::const_iterator point = ex->contour.points.begin(); point != ex->contour.points.end(); ++point) { p[ point-ex->contour.points.begin() ].x = point->x; p[ point-ex->contour.points.begin() ].y = point->y; //printf("%ld %ld\n", point->x, point->y); } p.SetHole(false); input.push_back(p); } // holes for (Polygons::const_iterator hole = ex->holes.begin(); hole != ex->holes.end(); ++hole) { TPPLPoly p; p.Init(hole->points.size()); //printf("%zu\n1\n", hole->points.size()); for (Points::const_iterator point = hole->points.begin(); point != hole->points.end(); ++point) { p[ point-hole->points.begin() ].x = point->x; p[ point-hole->points.begin() ].y = point->y; //printf("%ld %ld\n", point->x, point->y); } p.SetHole(true); input.push_back(p); } } // perform triangulation std::list output; int res = TPPLPartition().Triangulate_MONO(&input, &output); if (res != 1) CONFESS("Triangulation failed"); // convert output polygons for (std::list::iterator poly = output.begin(); poly != output.end(); ++poly) { long num_points = poly->GetNumPoints(); Polygon p; p.points.resize(num_points); for (long i = 0; i < num_points; ++i) { p.points[i].x = (*poly)[i].x; p.points[i].y = (*poly)[i].y; } polygons->push_back(p); } } #ifdef SLIC3RXS REGISTER_CLASS(ExPolygon, "ExPolygon"); SV* ExPolygon::to_AV() { const unsigned int num_holes = this->holes.size(); AV* av = newAV(); av_extend(av, num_holes); // -1 +1 av_store(av, 0, this->contour.to_SV_ref()); for (unsigned int i = 0; i < num_holes; i++) { av_store(av, i+1, this->holes[i].to_SV_ref()); } return newRV_noinc((SV*)av); } SV* ExPolygon::to_SV_ref() { SV* sv = newSV(0); sv_setref_pv( sv, perl_class_name_ref(this), this ); return sv; } SV* ExPolygon::to_SV_clone_ref() const { SV* sv = newSV(0); sv_setref_pv( sv, perl_class_name(this), new ExPolygon(*this) ); return sv; } SV* ExPolygon::to_SV_pureperl() const { const unsigned int num_holes = this->holes.size(); AV* av = newAV(); av_extend(av, num_holes); // -1 +1 av_store(av, 0, this->contour.to_SV_pureperl()); for (unsigned int i = 0; i < num_holes; i++) { av_store(av, i+1, this->holes[i].to_SV_pureperl()); } return newRV_noinc((SV*)av); } void ExPolygon::from_SV(SV* expoly_sv) { AV* expoly_av = (AV*)SvRV(expoly_sv); const unsigned int num_polygons = av_len(expoly_av)+1; this->holes.resize(num_polygons-1); SV** polygon_sv = av_fetch(expoly_av, 0, 0); this->contour.from_SV(*polygon_sv); for (unsigned int i = 0; i < num_polygons-1; i++) { polygon_sv = av_fetch(expoly_av, i+1, 0); this->holes[i].from_SV(*polygon_sv); } } void ExPolygon::from_SV_check(SV* expoly_sv) { if (sv_isobject(expoly_sv) && (SvTYPE(SvRV(expoly_sv)) == SVt_PVMG)) { if (!sv_isa(expoly_sv, perl_class_name(this)) && !sv_isa(expoly_sv, perl_class_name_ref(this))) CONFESS("Not a valid %s object", perl_class_name(this)); // a XS ExPolygon was supplied *this = *(ExPolygon *)SvIV((SV*)SvRV( expoly_sv )); } else { // a Perl arrayref was supplied this->from_SV(expoly_sv); } } #endif }