/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) Joerg Wunsch
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/* $Id$ */
#ifndef libavrdude_h
#define libavrdude_h
/* XXX should go away */
#include "ac_cfg.h"
#include
#include
#include
/* lets try to select at least 32 bits */
#ifdef HAVE_STDINT_H
#include
typedef uint32_t pinmask_t;
#else
#if UINT_MAX >= 0xFFFFFFFF
typedef unsigned int pinmask_t;
#else
typedef unsigned long pinmask_t;
#endif
#endif
// PATH_MAX is used throughout avrdude for various purposes.
// It is problematic though as it may or may not be defined on various systems
// and even when it is, it tends to be somewhat arbitrary.
// So instead we just define a value here that should be fine in most cases.
#ifdef PATH_MAX
#undef PATH_MAX
#endif
#define PATH_MAX 4096
/* formerly lists.h */
/*----------------------------------------------------------------------
General purpose linked list routines - header file declarations.
Author : Brian Dean
Date : 10 January, 1990
----------------------------------------------------------------------*/
typedef void * LISTID;
typedef void * LNODEID;
/*----------------------------------------------------------------------
several defines to access the LIST structure as as stack or a queue
--- use for program readability
----------------------------------------------------------------------*/
#define STACKID LISTID
#define SNODEID LNODEID
#define QUEUEID LISTID
#define QNODEID LNODEID
#define PUSH(s,d) lins_n(s,d,1) /* push 'd' onto the stack */
#define POP(s) lrmv_n(s,1) /* pop the stack */
#define LOOKSTACK(s) lget_n(s,1) /* look at the top of the stack,
but don't pop */
#define ENQUEUE(q,d) lins_n(q,d,1) /* put 'd' on the end of the queue */
#define DEQUEUE(q) lrmv(q) /* remove next item from the front of
the queue */
#define REQUEUE(q,d) ladd(q,d) /* re-insert (push) item back on the
front of the queue */
#define LOOKQUEUE(q) lget(q) /* return next item on the queue,
but don't dequeue */
#define QUEUELEN(q) lsize(q) /* length of the queue */
#define LISTADD(l,d) ladd(l,d) /* add to end of the list */
#define LISTRMV(l,d) lrmv_d(l,d) /* remove from end of the list */
#ifdef __cplusplus
extern "C" {
#endif
/* .................... Function Prototypes .................... */
LISTID lcreat ( void * liststruct, int poolsize );
void ldestroy ( LISTID lid );
void ldestroy_cb ( LISTID lid, void (*ucleanup)(void * data_ptr) );
LNODEID lfirst ( LISTID ); /* head of the list */
LNODEID llast ( LISTID ); /* tail of the list */
LNODEID lnext ( LNODEID ); /* next item in the list */
LNODEID lprev ( LNODEID ); /* previous item in the list */
void * ldata ( LNODEID ); /* data at the current position */
int lsize ( LISTID ); /* number of elements in the list */
int ladd ( LISTID lid, void * p );
int laddo ( LISTID lid, void *p,
int (*compare)(const void *p1,const void *p2),
LNODEID * firstdup );
int laddu ( LISTID lid, void * p,
int (*compare)(const void *p1,const void *p2));
int lins_n ( LISTID lid, void * d, unsigned int n );
int lins_ln ( LISTID lid, LNODEID lnid, void * data_ptr );
void * lget ( LISTID lid );
void * lget_n ( LISTID lid, unsigned int n );
LNODEID lget_ln ( LISTID lid, unsigned int n );
void * lrmv ( LISTID lid );
void * lrmv_n ( LISTID lid, unsigned int n );
void * lrmv_ln ( LISTID lid, LNODEID lnid );
void * lrmv_d ( LISTID lid, void * data_ptr );
LISTID lcat ( LISTID lid1, LISTID lid2 );
void lsort ( LISTID lid, int (*compare)(void * p1, void * p2));
void * lsrch ( LISTID lid, void * p, int (*compare)(void *p1,void *p2));
int lprint ( FILE * f, LISTID lid );
#ifdef __cplusplus
}
#endif
/* formerly avrpart.h */
/*
* AVR serial programming instructions
*/
enum {
AVR_OP_READ,
AVR_OP_WRITE,
AVR_OP_READ_LO,
AVR_OP_READ_HI,
AVR_OP_WRITE_LO,
AVR_OP_WRITE_HI,
AVR_OP_LOADPAGE_LO,
AVR_OP_LOADPAGE_HI,
AVR_OP_LOAD_EXT_ADDR,
AVR_OP_WRITEPAGE,
AVR_OP_CHIP_ERASE,
AVR_OP_PGM_ENABLE,
AVR_OP_MAX
};
enum {
AVR_CMDBIT_IGNORE, /* bit is ignored on input and output */
AVR_CMDBIT_VALUE, /* bit is set to 0 or 1 for input or output */
AVR_CMDBIT_ADDRESS, /* this bit represents an input address bit */
AVR_CMDBIT_INPUT, /* this bit is an input bit */
AVR_CMDBIT_OUTPUT /* this bit is an output bit */
};
enum { /* these are assigned to reset_disposition of AVRPART */
RESET_DEDICATED, /* reset pin is dedicated */
RESET_IO /* reset pin might be configured as an I/O pin */
};
enum ctl_stack_t {
CTL_STACK_NONE, /* no control stack defined */
CTL_STACK_PP, /* parallel programming control stack */
CTL_STACK_HVSP /* high voltage serial programming control stack */
};
/*
* serial programming instruction bit specifications
*/
typedef struct cmdbit {
int type; /* AVR_CMDBIT_* */
int bitno; /* which input bit to use for this command bit */
int value; /* bit value if type == AVR_CMDBIT_VALUD */
} CMDBIT;
typedef struct opcode {
CMDBIT bit[32]; /* opcode bit specs */
} OPCODE;
#define AVRPART_SERIALOK 0x0001 /* part supports serial programming */
#define AVRPART_PARALLELOK 0x0002 /* part supports parallel programming */
#define AVRPART_PSEUDOPARALLEL 0x0004 /* part has pseudo parallel support */
#define AVRPART_HAS_JTAG 0x0008 /* part has a JTAG i/f */
#define AVRPART_ALLOWFULLPAGEBITSTREAM 0x0010 /* JTAG ICE mkII param. */
#define AVRPART_ENABLEPAGEPROGRAMMING 0x0020 /* JTAG ICE mkII param. */
#define AVRPART_HAS_DW 0x0040 /* part has a debugWire i/f */
#define AVRPART_HAS_PDI 0x0080 /* part has PDI i/f rather than ISP (ATxmega) */
#define AVRPART_AVR32 0x0100 /* part is in AVR32 family */
#define AVRPART_INIT_SMC 0x0200 /* part will undergo chip erase */
#define AVRPART_WRITE 0x0400 /* at least one write operation specified */
#define AVRPART_HAS_TPI 0x0800 /* part has TPI i/f rather than ISP (ATtiny4/5/9/10) */
#define AVRPART_IS_AT90S1200 0x1000 /* part is an AT90S1200 (needs special treatment) */
#define AVR_DESCLEN 64
#define AVR_IDLEN 32
#define CTL_STACK_SIZE 32
#define FLASH_INSTR_SIZE 3
#define EEPROM_INSTR_SIZE 20
#define TAG_ALLOCATED 1 /* memory byte is allocated */
typedef struct avrpart {
char desc[AVR_DESCLEN]; /* long part name */
char id[AVR_IDLEN]; /* short part name */
int stk500_devcode; /* stk500 device code */
int avr910_devcode; /* avr910 device code */
int chip_erase_delay; /* microseconds */
unsigned char pagel; /* for parallel programming */
unsigned char bs2; /* for parallel programming */
unsigned char signature[3]; /* expected value of signature bytes */
unsigned short usbpid; /* USB DFU product ID (0 = none) */
int reset_disposition; /* see RESET_ enums */
int retry_pulse; /* retry program enable by pulsing
this pin (PIN_AVR_*) */
unsigned flags; /* see AVRPART_ masks */
int timeout; /* stk500 v2 xml file parameter */
int stabdelay; /* stk500 v2 xml file parameter */
int cmdexedelay; /* stk500 v2 xml file parameter */
int synchloops; /* stk500 v2 xml file parameter */
int bytedelay; /* stk500 v2 xml file parameter */
int pollindex; /* stk500 v2 xml file parameter */
unsigned char pollvalue; /* stk500 v2 xml file parameter */
int predelay; /* stk500 v2 xml file parameter */
int postdelay; /* stk500 v2 xml file parameter */
int pollmethod; /* stk500 v2 xml file parameter */
enum ctl_stack_t ctl_stack_type; /* what to use the ctl stack for */
unsigned char controlstack[CTL_STACK_SIZE]; /* stk500v2 PP/HVSP ctl stack */
unsigned char flash_instr[FLASH_INSTR_SIZE]; /* flash instructions (debugWire, JTAG) */
unsigned char eeprom_instr[EEPROM_INSTR_SIZE]; /* EEPROM instructions (debugWire, JTAG) */
int hventerstabdelay; /* stk500 v2 hv mode parameter */
int progmodedelay; /* stk500 v2 hv mode parameter */
int latchcycles; /* stk500 v2 hv mode parameter */
int togglevtg; /* stk500 v2 hv mode parameter */
int poweroffdelay; /* stk500 v2 hv mode parameter */
int resetdelayms; /* stk500 v2 hv mode parameter */
int resetdelayus; /* stk500 v2 hv mode parameter */
int hvleavestabdelay; /* stk500 v2 hv mode parameter */
int resetdelay; /* stk500 v2 hv mode parameter */
int chiperasepulsewidth; /* stk500 v2 hv mode parameter */
int chiperasepolltimeout; /* stk500 v2 hv mode parameter */
int chiperasetime; /* stk500 v2 hv mode parameter */
int programfusepulsewidth; /* stk500 v2 hv mode parameter */
int programfusepolltimeout; /* stk500 v2 hv mode parameter */
int programlockpulsewidth; /* stk500 v2 hv mode parameter */
int programlockpolltimeout; /* stk500 v2 hv mode parameter */
int synchcycles; /* stk500 v2 hv mode parameter */
int hvspcmdexedelay; /* stk500 v2 xml file parameter */
unsigned char idr; /* JTAG ICE mkII XML file parameter */
unsigned char rampz; /* JTAG ICE mkII XML file parameter */
unsigned char spmcr; /* JTAG ICE mkII XML file parameter */
unsigned short eecr; /* JTAC ICE mkII XML file parameter */
unsigned int mcu_base; /* Base address of MCU control block in ATxmega devices */
unsigned int nvm_base; /* Base address of NVM controller in ATxmega devices */
int ocdrev; /* OCD revision (JTAGICE3 parameter, from AS6 XML files) */
OPCODE * op[AVR_OP_MAX]; /* opcodes */
LISTID mem; /* avr memory definitions */
char config_file[PATH_MAX]; /* config file where defined */
int lineno; /* config file line number */
} AVRPART;
#define AVR_MEMDESCLEN 64
typedef struct avrmem {
char desc[AVR_MEMDESCLEN]; /* memory description ("flash", "eeprom", etc) */
int paged; /* page addressed (e.g. ATmega flash) */
int size; /* total memory size in bytes */
int page_size; /* size of memory page (if page addressed) */
int num_pages; /* number of pages (if page addressed) */
unsigned int offset; /* offset in IO memory (ATxmega) */
int min_write_delay; /* microseconds */
int max_write_delay; /* microseconds */
int pwroff_after_write; /* after this memory type is written to,
the device must be powered off and
back on, see errata
http://www.atmel.com/dyn/resources/prod_documents/doc1280.pdf */
unsigned char readback[2]; /* polled read-back values */
int mode; /* stk500 v2 xml file parameter */
int delay; /* stk500 v2 xml file parameter */
int blocksize; /* stk500 v2 xml file parameter */
int readsize; /* stk500 v2 xml file parameter */
int pollindex; /* stk500 v2 xml file parameter */
unsigned char * buf; /* pointer to memory buffer */
unsigned char * tags; /* allocation tags */
OPCODE * op[AVR_OP_MAX]; /* opcodes */
} AVRMEM;
#ifdef __cplusplus
extern "C" {
#endif
/* Functions for OPCODE structures */
OPCODE * avr_new_opcode(void);
void avr_free_opcode(OPCODE * op);
int avr_set_bits(OPCODE * op, unsigned char * cmd);
int avr_set_addr(OPCODE * op, unsigned char * cmd, unsigned long addr);
int avr_set_input(OPCODE * op, unsigned char * cmd, unsigned char data);
int avr_get_output(OPCODE * op, unsigned char * res, unsigned char * data);
int avr_get_output_index(OPCODE * op);
/* Functions for AVRMEM structures */
AVRMEM * avr_new_memtype(void);
int avr_initmem(AVRPART * p);
AVRMEM * avr_dup_mem(AVRMEM * m);
void avr_free_mem(AVRMEM * m);
AVRMEM * avr_locate_mem(AVRPART * p, char * desc);
void avr_mem_display(const char * prefix, FILE * f, AVRMEM * m, int type,
int verbose);
/* Functions for AVRPART structures */
AVRPART * avr_new_part(void);
AVRPART * avr_dup_part(AVRPART * d);
void avr_free_part(AVRPART * d);
AVRPART * locate_part(LISTID parts, char * partdesc);
AVRPART * locate_part_by_avr910_devcode(LISTID parts, int devcode);
AVRPART * locate_part_by_signature(LISTID parts, unsigned char * sig,
int sigsize);
void avr_display(FILE * f, AVRPART * p, const char * prefix, int verbose);
typedef void (*walk_avrparts_cb)(const char *name, const char *desc,
const char *cfgname, int cfglineno,
void *cookie);
void walk_avrparts(LISTID avrparts, walk_avrparts_cb cb, void *cookie);
void sort_avrparts(LISTID avrparts);
#ifdef __cplusplus
}
#endif
/* formerly pindefs.h */
enum {
PPI_AVR_VCC = 1,
PPI_AVR_BUFF,
PIN_AVR_RESET,
PIN_AVR_SCK,
PIN_AVR_MOSI,
PIN_AVR_MISO,
PIN_LED_ERR,
PIN_LED_RDY,
PIN_LED_PGM,
PIN_LED_VFY,
N_PINS
};
#define PIN_MASK (UINT_MAX>>1)
#define PIN_INVERSE (~(PIN_MASK)) /* flag for inverted pin in serbb */
#define PIN_MIN 0 /* smallest allowed pin number */
#define PIN_MAX 31 /* largest allowed pin number */
#ifdef HAVE_LINUXGPIO
/* Embedded systems might have a lot more gpio than only 0-31 */
#undef PIN_MAX
#define PIN_MAX 255 /* largest allowed pin number */
#endif
/** Number of pins in each element of the bitfield */
#define PIN_FIELD_ELEMENT_SIZE (sizeof(pinmask_t) * 8)
/** Numer of elements to store the complete bitfield of all pins */
#define PIN_FIELD_SIZE ((PIN_MAX + PIN_FIELD_ELEMENT_SIZE)/PIN_FIELD_ELEMENT_SIZE)
/**
* This sets the corresponding bits to 1 or 0, the inverse mask is used to invert the value in necessary.
* It uses only the lowest element (index=0) of the bitfield, which should be enough for most
* programmers.
*
* @param[in] x input value
* @param[in] pgm the programmer whose pin definitions to use
* @param[in] pinname the logical name of the pin (PIN_AVR_*, ...)
* @param[in] level the logical level (level != 0 => 1, level == 0 => 0),
* if the pin is defined as inverted the resulting bit is also inverted
* @returns the input value with the relevant bits modified
*/
#define SET_BITS_0(x,pgm,pinname,level) (((x) & ~(pgm)->pin[pinname].mask[0]) \
| (\
(pgm)->pin[pinname].mask[0] & ( \
(level) \
?~((pgm)->pin[pinname].inverse[0]) \
: ((pgm)->pin[pinname].inverse[0]) \
) \
) \
)
/**
* Check if the corresponding bit is set (returns != 0) or cleared.
* The inverse mask is used, to invert the relevant bits.
* If the pin definition contains multiple pins, then a single set pin leads to return value != 0.
* Then you have to check the relevant bits of the returned value, if you need more information.
* It uses only the lowest element (index=0) of the bitfield, which should be enough for most
* programmers.
*
* @param[in] x input value
* @param[in] pgm the programmer whose pin definitions to use
* @param[in] pinname the logical name of the pin (PIN_AVR_*, ...)
* @returns the input value with only the relevant bits (which are already inverted,
* so you get always the logical level)
*/
#define GET_BITS_0(x,pgm,pinname) (((x) ^ (pgm)->pin[pinname].inverse[0]) & (pgm)->pin[pinname].mask[0])
/**
* Data structure to hold used pins by logical function (PIN_AVR_*, ...)
*/
struct pindef_t {
pinmask_t mask[PIN_FIELD_SIZE]; ///< bitfield of used pins
pinmask_t inverse[PIN_FIELD_SIZE]; ///< bitfield of inverse/normal usage of used pins
};
/**
* Data structure to define a checklist of valid pins for each function.
*/
struct pin_checklist_t {
int pinname; ///< logical pinname eg. PIN_AVR_SCK
int mandatory; ///< is this a mandatory pin
const struct pindef_t* valid_pins; ///< mask defines allowed pins, inverse define is they might be used inverted
};
/**
* Adds a pin in the pin definition as normal or inverse pin.
*
* @param[out] pindef pin definition to update
* @param[in] pin number of pin [0..PIN_MAX]
* @param[in] inverse inverse (true) or normal (false) pin
*/
void pin_set_value(struct pindef_t * const pindef, const int pin, const bool inverse);
/**
* Clear all defined pins in pindef.
*
* @param[out] pindef pin definition to clear
*/
void pin_clear_all(struct pindef_t * const pindef);
struct programmer_t; /* forward declaration */
/**
* Convert for given programmer new pin definitions to old pin definitions.
*
* @param[inout] pgm programmer whose pins shall be converted.
*/
int pgm_fill_old_pins(struct programmer_t * const pgm);
/**
* This function checks all pin of pgm against the constraints given in the checklist.
* It checks if
* @li any invalid pins are used
* @li valid pins are used inverted when not allowed
* @li any pins are used by more than one function
* @li any mandatory pin is not set all.
*
* In case of any error it report the wrong function and the pin numbers.
* For verbose >= 2 it also reports the possible correct values.
* For verbose >=3 it shows also which pins were ok.
*
* @param[in] pgm the programmer to check
* @param[in] checklist the constraint for the pins
* @param[in] size the number of entries in checklist
* @param[in] output false suppresses error messages to the user
* @returns 0 if all pin definitions are valid, -1 otherwise
*/
int pins_check(const struct programmer_t * const pgm, const struct pin_checklist_t * const checklist, const int size, const bool output);
/**
* Returns the name of the pin as string.
*
* @param pinname the pinname which we want as string.
* @returns a string with the pinname, or if pinname is invalid.
*/
const char * avr_pin_name(int pinname);
/**
* This function returns a string representation of defined pins eg. ~1,2,~4,~5,7
* Another execution of this function will overwrite the previous result in the static buffer.
*
* @param[in] pindef the pin definition for which we want the string representation
* @returns pointer to a static string.
*/
const char * pins_to_str(const struct pindef_t * const pindef);
/**
* This function returns a string representation of pins in the mask eg. 1,3,5-7,9,12
* Another execution of this function will overwrite the previous result in the static buffer.
* Consecutive pin number are representated as start-end.
*
* @param[in] pinmask the pin mask for which we want the string representation
* @returns pointer to a static string.
*/
const char * pinmask_to_str(const pinmask_t * const pinmask);
/* formerly serial.h */
/* This is the API for the generic serial interface. The implementations are
actually provided by the target dependant files:
ser_posix.c : posix serial interface.
ser_win32.c : native win32 serial interface.
The target file will be selected at configure time. */
extern long serial_recv_timeout;
union filedescriptor
{
int ifd;
void *pfd;
struct
{
void *handle;
int rep; /* bulk read endpoint */
int wep; /* bulk write endpoint */
int eep; /* event read endpoint */
int max_xfer; /* max transfer size */
int use_interrupt_xfer; /* device uses interrupt transfers */
} usb;
};
union pinfo
{
long baud;
struct
{
unsigned short vid;
unsigned short pid;
unsigned short flags;
#define PINFO_FL_USEHID 0x0001
#define PINFO_FL_SILENT 0x0002 /* don't complain if not found */
} usbinfo;
};
struct serial_device
{
// open should return -1 on error, other values on success
int (*open)(char * port, union pinfo pinfo, union filedescriptor *fd);
int (*setspeed)(union filedescriptor *fd, long baud);
void (*close)(union filedescriptor *fd);
int (*send)(union filedescriptor *fd, const unsigned char * buf, size_t buflen);
int (*recv)(union filedescriptor *fd, unsigned char * buf, size_t buflen);
int (*drain)(union filedescriptor *fd, int display);
int (*set_dtr_rts)(union filedescriptor *fd, int is_on);
int flags;
#define SERDEV_FL_NONE 0x0000 /* no flags */
#define SERDEV_FL_CANSETSPEED 0x0001 /* device can change speed */
};
extern struct serial_device *serdev;
extern struct serial_device serial_serdev;
extern struct serial_device usb_serdev;
extern struct serial_device usb_serdev_frame;
extern struct serial_device avrdoper_serdev;
extern struct serial_device usbhid_serdev;
#define serial_open (serdev->open)
#define serial_setspeed (serdev->setspeed)
#define serial_close (serdev->close)
#define serial_send (serdev->send)
#define serial_recv (serdev->recv)
#define serial_drain (serdev->drain)
#define serial_set_dtr_rts (serdev->set_dtr_rts)
/* formerly pgm.h */
#define ON 1
#define OFF 0
#define PGM_DESCLEN 80
#define PGM_PORTLEN PATH_MAX
#define PGM_TYPELEN 32
#define PGM_USBSTRINGLEN 256
typedef enum {
EXIT_VCC_UNSPEC,
EXIT_VCC_ENABLED,
EXIT_VCC_DISABLED
} exit_vcc_t;
typedef enum {
EXIT_RESET_UNSPEC,
EXIT_RESET_ENABLED,
EXIT_RESET_DISABLED
} exit_reset_t;
typedef enum {
EXIT_DATAHIGH_UNSPEC,
EXIT_DATAHIGH_ENABLED,
EXIT_DATAHIGH_DISABLED
} exit_datahigh_t;
typedef enum {
CONNTYPE_PARALLEL,
CONNTYPE_SERIAL,
CONNTYPE_USB
} conntype_t;
typedef struct programmer_t {
LISTID id;
char desc[PGM_DESCLEN];
char type[PGM_TYPELEN];
char port[PGM_PORTLEN];
void (*initpgm)(struct programmer_t * pgm);
unsigned int pinno[N_PINS];
struct pindef_t pin[N_PINS];
exit_vcc_t exit_vcc;
exit_reset_t exit_reset;
exit_datahigh_t exit_datahigh;
conntype_t conntype;
int ppidata;
int ppictrl;
int baudrate;
int usbvid;
LISTID usbpid;
char usbdev[PGM_USBSTRINGLEN], usbsn[PGM_USBSTRINGLEN];
char usbvendor[PGM_USBSTRINGLEN], usbproduct[PGM_USBSTRINGLEN];
double bitclock; /* JTAG ICE clock period in microseconds */
int ispdelay; /* ISP clock delay */
union filedescriptor fd;
int page_size; /* page size if the programmer supports paged write/load */
int (*rdy_led) (struct programmer_t * pgm, int value);
int (*err_led) (struct programmer_t * pgm, int value);
int (*pgm_led) (struct programmer_t * pgm, int value);
int (*vfy_led) (struct programmer_t * pgm, int value);
int (*initialize) (struct programmer_t * pgm, AVRPART * p);
void (*display) (struct programmer_t * pgm, const char * p);
void (*enable) (struct programmer_t * pgm);
void (*disable) (struct programmer_t * pgm);
void (*powerup) (struct programmer_t * pgm);
void (*powerdown) (struct programmer_t * pgm);
int (*program_enable) (struct programmer_t * pgm, AVRPART * p);
int (*chip_erase) (struct programmer_t * pgm, AVRPART * p);
int (*cmd) (struct programmer_t * pgm, const unsigned char *cmd,
unsigned char *res);
int (*cmd_tpi) (struct programmer_t * pgm, const unsigned char *cmd,
int cmd_len, unsigned char res[], int res_len);
int (*spi) (struct programmer_t * pgm, const unsigned char *cmd,
unsigned char *res, int count);
int (*open) (struct programmer_t * pgm, char * port);
void (*close) (struct programmer_t * pgm);
int (*paged_write) (struct programmer_t * pgm, AVRPART * p, AVRMEM * m,
unsigned int page_size, unsigned int baseaddr,
unsigned int n_bytes);
int (*paged_load) (struct programmer_t * pgm, AVRPART * p, AVRMEM * m,
unsigned int page_size, unsigned int baseaddr,
unsigned int n_bytes);
int (*page_erase) (struct programmer_t * pgm, AVRPART * p, AVRMEM * m,
unsigned int baseaddr);
void (*write_setup) (struct programmer_t * pgm, AVRPART * p, AVRMEM * m);
int (*write_byte) (struct programmer_t * pgm, AVRPART * p, AVRMEM * m,
unsigned long addr, unsigned char value);
int (*read_byte) (struct programmer_t * pgm, AVRPART * p, AVRMEM * m,
unsigned long addr, unsigned char * value);
int (*read_sig_bytes) (struct programmer_t * pgm, AVRPART * p, AVRMEM * m);
void (*print_parms) (struct programmer_t * pgm);
int (*set_vtarget) (struct programmer_t * pgm, double v);
int (*set_varef) (struct programmer_t * pgm, unsigned int chan, double v);
int (*set_fosc) (struct programmer_t * pgm, double v);
int (*set_sck_period) (struct programmer_t * pgm, double v);
int (*setpin) (struct programmer_t * pgm, int pinfunc, int value);
int (*getpin) (struct programmer_t * pgm, int pinfunc);
int (*highpulsepin) (struct programmer_t * pgm, int pinfunc);
int (*parseexitspecs) (struct programmer_t * pgm, char *s);
int (*perform_osccal) (struct programmer_t * pgm);
int (*parseextparams) (struct programmer_t * pgm, LISTID xparams);
void (*setup) (struct programmer_t * pgm);
void (*teardown) (struct programmer_t * pgm);
void (*set_upload_size)(struct programmer_t * pgm, int size);
char config_file[PATH_MAX]; /* config file where defined */
int lineno; /* config file line number */
void *cookie; /* for private use by the programmer */
char flag; /* for private use of the programmer */
} PROGRAMMER;
#ifdef __cplusplus
extern "C" {
#endif
PROGRAMMER * pgm_new(void);
PROGRAMMER * pgm_dup(const PROGRAMMER * const src);
void pgm_free(PROGRAMMER * const p);
void programmer_display(PROGRAMMER * pgm, const char * p);
/* show is a mask like this (1<
#else
# include
#endif
/* formerly confwin.h */
// #if defined(WIN32NATIVE)
// #ifdef __cplusplus
// extern "C" {
// #endif
// void win_sys_config_set(char sys_config[PATH_MAX]);
// void win_usr_config_set(char usr_config[PATH_MAX]);
// #ifdef __cplusplus
// }
// #endif
// #endif /* WIN32NATIVE */
#endif /* libavrdude_h */