package Slic3r::ExtrusionPath; use Moo; require Exporter; our @ISA = qw(Exporter); our @EXPORT_OK = qw(EXTR_ROLE_PERIMETER EXTR_ROLE_SMALLPERIMETER EXTR_ROLE_EXTERNAL_PERIMETER EXTR_ROLE_CONTOUR_INTERNAL_PERIMETER EXTR_ROLE_FILL EXTR_ROLE_SOLIDFILL EXTR_ROLE_TOPSOLIDFILL EXTR_ROLE_BRIDGE EXTR_ROLE_SKIRT EXTR_ROLE_SUPPORTMATERIAL EXTR_ROLE_GAPFILL); our %EXPORT_TAGS = (roles => \@EXPORT_OK); use Slic3r::Geometry qw(PI X Y epsilon deg2rad rotate_points); # the underlying Slic3r::Polyline objects holds the geometry has 'polyline' => ( is => 'rw', required => 1, handles => [qw(merge_continuous_lines lines length reverse clip_end simplify)], ); # height is the vertical thickness of the extrusion expressed in mm has 'height' => (is => 'rw'); has 'flow_spacing' => (is => 'rw'); has 'role' => (is => 'rw', required => 1); use constant EXTR_ROLE_PERIMETER => 0; use constant EXTR_ROLE_SMALLPERIMETER => 1; use constant EXTR_ROLE_EXTERNAL_PERIMETER => 2; use constant EXTR_ROLE_CONTOUR_INTERNAL_PERIMETER => 3; use constant EXTR_ROLE_FILL => 4; use constant EXTR_ROLE_SOLIDFILL => 5; use constant EXTR_ROLE_TOPSOLIDFILL => 6; use constant EXTR_ROLE_BRIDGE => 7; use constant EXTR_ROLE_SKIRT => 8; use constant EXTR_ROLE_SUPPORTMATERIAL => 9; use constant EXTR_ROLE_GAPFILL => 10; use constant PACK_FMT => 'ffca*'; # class or object method sub pack { my $self = shift; my %args = @_; if (ref $self) { %args = map { $_ => $self->$_ } qw(height flow_spacing role polyline); } my $o = \ pack PACK_FMT, $args{height} // -1, $args{flow_spacing} || -1, $args{role} // (die "Missing mandatory attribute 'role'"), #/ $args{polyline}->serialize; bless $o, 'Slic3r::ExtrusionPath::Packed'; return $o; } # no-op, this allows to use both packed and non-packed objects in Collections sub unpack { $_[0] } sub clip_with_polygon { my $self = shift; my ($polygon) = @_; return $self->clip_with_expolygon(Slic3r::ExPolygon->new($polygon)); } sub clip_with_expolygon { my $self = shift; my ($expolygon) = @_; my @paths = (); foreach my $polyline ($self->polyline->clip_with_expolygon($expolygon)) { push @paths, (ref $self)->new( polyline => $polyline, height => $self->height, flow_spacing => $self->flow_spacing, role => $self->role, ); } return @paths; } sub points { my $self = shift; return $self->polyline; } sub endpoints { my $self = shift; return ($self->points->[0], $self->points->[-1]); } sub is_printable { 1 } sub split_at_acute_angles { my $self = shift; # calculate angle limit my $angle_limit = abs(Slic3r::Geometry::deg2rad(40)); my @points = @{$self->p}; my @paths = (); # take first two points my @p = splice @points, 0, 2; # loop until we have one spare point while (my $p3 = shift @points) { my $angle = abs(Slic3r::Geometry::angle3points($p[-1], $p[-2], $p3)); $angle = 2*PI - $angle if $angle > PI; if ($angle < $angle_limit) { # if the angle between $p[-2], $p[-1], $p3 is too acute # then consider $p3 only as a starting point of a new # path and stop the current one as it is push @paths, (ref $self)->new( polyline => Slic3r::Polyline->new(\@p), role => $self->role, height => $self->height, ); @p = ($p3); push @p, grep $_, shift @points or last; } else { push @p, $p3; } } push @paths, (ref $self)->new( polyline => Slic3r::Polyline->new(\@p), role => $self->role, height => $self->height, ) if @p > 1; return @paths; } sub detect_arcs { my $self = shift; my ($max_angle, $len_epsilon) = @_; $max_angle = deg2rad($max_angle || 15); $len_epsilon ||= 10 / &Slic3r::SCALING_FACTOR; my $parallel_degrees_limit = abs(Slic3r::Geometry::deg2rad(3)); my @points = @{$self->points}; my @paths = (); # we require at least 3 consecutive segments to form an arc CYCLE: while (@points >= 4) { POINT: for (my $i = 0; $i <= $#points - 3; $i++) { my $s1 = Slic3r::Line->new($points[$i], $points[$i+1]); my $s2 = Slic3r::Line->new($points[$i+1], $points[$i+2]); my $s3 = Slic3r::Line->new($points[$i+2], $points[$i+3]); my $s1_len = $s1->length; my $s2_len = $s2->length; my $s3_len = $s3->length; # segments must have the same length if (abs($s3_len - $s2_len) > $len_epsilon) { # optimization: skip a cycle $i++; next; } next if abs($s2_len - $s1_len) > $len_epsilon; # segments must have the same relative angle my $s1_angle = $s1->atan; my $s2_angle = $s2->atan; my $s3_angle = $s3->atan; $s1_angle += 2*PI if $s1_angle < 0; $s2_angle += 2*PI if $s2_angle < 0; $s3_angle += 2*PI if $s3_angle < 0; my $s1s2_angle = $s2_angle - $s1_angle; my $s2s3_angle = $s3_angle - $s2_angle; next if abs($s1s2_angle - $s2s3_angle) > $parallel_degrees_limit; next if abs($s1s2_angle) < $parallel_degrees_limit; # ignore parallel lines next if $s1s2_angle > $max_angle; # ignore too sharp vertices my @arc_points = ($points[$i], $points[$i+3]), # first and last points # now look for more points my $last_line_angle = $s3_angle; my $last_j = $i+3; for (my $j = $i+3; $j < $#points; $j++) { my $line = Slic3r::Line->new($points[$j], $points[$j+1]); last if abs($line->length - $s1_len) > $len_epsilon; my $line_angle = $line->atan; $line_angle += 2*PI if $line_angle < 0; my $anglediff = $line_angle - $last_line_angle; last if abs($s1s2_angle - $anglediff) > $parallel_degrees_limit; # point $j+1 belongs to the arc $arc_points[-1] = $points[$j+1]; $last_j = $j+1; $last_line_angle = $line_angle; } # s1, s2, s3 form an arc my $orientation = $s1->point_on_left($points[$i+2]) ? 'ccw' : 'cw'; # to find the center, we intersect the perpendicular lines # passing by midpoints of $s1 and last segment # a better method would be to draw all the perpendicular lines # and find the centroid of the enclosed polygon, or to # intersect multiple lines and find the centroid of the convex hull # around the intersections my $arc_center; { my $s1_mid = $s1->midpoint; my $last_mid = Slic3r::Line->new($points[$last_j-1], $points[$last_j])->midpoint; my $rotation_angle = PI/2 * ($orientation eq 'ccw' ? -1 : 1); my $ray1 = Slic3r::Line->new($s1_mid, rotate_points($rotation_angle, $s1_mid, $points[$i+1])); my $last_ray = Slic3r::Line->new($last_mid, rotate_points($rotation_angle, $last_mid, $points[$last_j])); $arc_center = $ray1->intersection($last_ray, 0) or next POINT; } my $arc = Slic3r::ExtrusionPath::Arc->new( polyline => Slic3r::Polyline->new(\@arc_points), role => $self->role, orientation => $orientation, center => $arc_center, radius => $arc_center->distance_to($points[$i]), ); # points 0..$i form a linear path push @paths, (ref $self)->new( polyline => Slic3r::Polyline->new(@points[0..$i]), role => $self->role, height => $self->height, ) if $i > 0; # add our arc push @paths, $arc; Slic3r::debugf "ARC DETECTED\n"; # remove arc points from path, leaving one splice @points, 0, $last_j, (); next CYCLE; } last; } # remaining points form a linear path push @paths, (ref $self)->new( polyline => Slic3r::Polyline->new(\@points), role => $self->role, height => $self->height, ) if @points > 1; return @paths; } package Slic3r::ExtrusionPath::Packed; sub unpack { my $self = shift; my ($height, $flow_spacing, $role, $polyline_s) = unpack Slic3r::ExtrusionPath::PACK_FMT, $$self; return Slic3r::ExtrusionPath->new( height => ($height == -1) ? undef : $height, flow_spacing => ($flow_spacing == -1) ? undef : $flow_spacing, role => $role, polyline => Slic3r::Polyline->deserialize($polyline_s), ); } 1;