#ifndef slic3r_Geometry_hpp_ #define slic3r_Geometry_hpp_ #include "libslic3r.h" #include "BoundingBox.hpp" #include "ExPolygon.hpp" #include "Polygon.hpp" #include "Polyline.hpp" // Serialization through the Cereal library #include namespace Slic3r { namespace ClipperLib { class PolyNode; using PolyNodes = std::vector; } namespace Geometry { // Generic result of an orientation predicate. enum Orientation { ORIENTATION_CCW = 1, ORIENTATION_CW = -1, ORIENTATION_COLINEAR = 0 }; // Return orientation of the three points (clockwise, counter-clockwise, colinear) // The predicate is exact for the coord_t type, using 64bit signed integers for the temporaries. // which means, the coord_t types must not have some of the topmost bits utilized. // As the points are limited to 30 bits + signum, // the temporaries u, v, w are limited to 61 bits + signum, // and d is limited to 63 bits + signum and we are good. static inline Orientation orient(const Point &a, const Point &b, const Point &c) { static_assert(sizeof(coord_t) * 2 == sizeof(int64_t), "orient works with 32 bit coordinates"); int64_t u = int64_t(b(0)) * int64_t(c(1)) - int64_t(b(1)) * int64_t(c(0)); int64_t v = int64_t(a(0)) * int64_t(c(1)) - int64_t(a(1)) * int64_t(c(0)); int64_t w = int64_t(a(0)) * int64_t(b(1)) - int64_t(a(1)) * int64_t(b(0)); int64_t d = u - v + w; return (d > 0) ? ORIENTATION_CCW : ((d == 0) ? ORIENTATION_COLINEAR : ORIENTATION_CW); } // Return orientation of the polygon by checking orientation of the left bottom corner of the polygon // using exact arithmetics. The input polygon must not contain duplicate points // (or at least the left bottom corner point must not have duplicates). static inline bool is_ccw(const Polygon &poly) { // The polygon shall be at least a triangle. assert(poly.points.size() >= 3); if (poly.points.size() < 3) return true; // 1) Find the lowest lexicographical point. unsigned int imin = 0; for (unsigned int i = 1; i < poly.points.size(); ++ i) { const Point &pmin = poly.points[imin]; const Point &p = poly.points[i]; if (p(0) < pmin(0) || (p(0) == pmin(0) && p(1) < pmin(1))) imin = i; } // 2) Detect the orientation of the corner imin. size_t iPrev = ((imin == 0) ? poly.points.size() : imin) - 1; size_t iNext = ((imin + 1 == poly.points.size()) ? 0 : imin + 1); Orientation o = orient(poly.points[iPrev], poly.points[imin], poly.points[iNext]); // The lowest bottom point must not be collinear if the polygon does not contain duplicate points // or overlapping segments. assert(o != ORIENTATION_COLINEAR); return o == ORIENTATION_CCW; } inline bool ray_ray_intersection(const Vec2d &p1, const Vec2d &v1, const Vec2d &p2, const Vec2d &v2, Vec2d &res) { double denom = v1(0) * v2(1) - v2(0) * v1(1); if (std::abs(denom) < EPSILON) return false; double t = (v2(0) * (p1(1) - p2(1)) - v2(1) * (p1(0) - p2(0))) / denom; res(0) = p1(0) + t * v1(0); res(1) = p1(1) + t * v1(1); return true; } inline bool segment_segment_intersection(const Vec2d &p1, const Vec2d &v1, const Vec2d &p2, const Vec2d &v2, Vec2d &res) { double denom = v1(0) * v2(1) - v2(0) * v1(1); if (std::abs(denom) < EPSILON) // Lines are collinear. return false; double s12_x = p1(0) - p2(0); double s12_y = p1(1) - p2(1); double s_numer = v1(0) * s12_y - v1(1) * s12_x; bool denom_is_positive = false; if (denom < 0.) { denom_is_positive = true; denom = - denom; s_numer = - s_numer; } if (s_numer < 0.) // Intersection outside of the 1st segment. return false; double t_numer = v2(0) * s12_y - v2(1) * s12_x; if (! denom_is_positive) t_numer = - t_numer; if (t_numer < 0. || s_numer > denom || t_numer > denom) // Intersection outside of the 1st or 2nd segment. return false; // Intersection inside both of the segments. double t = t_numer / denom; res(0) = p1(0) + t * v1(0); res(1) = p1(1) + t * v1(1); return true; } inline bool segments_intersect( const Slic3r::Point &ip1, const Slic3r::Point &ip2, const Slic3r::Point &jp1, const Slic3r::Point &jp2) { assert(ip1 != ip2); assert(jp1 != jp2); auto segments_could_intersect = []( const Slic3r::Point &ip1, const Slic3r::Point &ip2, const Slic3r::Point &jp1, const Slic3r::Point &jp2) -> std::pair { Vec2i64 iv = (ip2 - ip1).cast(); Vec2i64 vij1 = (jp1 - ip1).cast(); Vec2i64 vij2 = (jp2 - ip1).cast(); int64_t tij1 = cross2(iv, vij1); int64_t tij2 = cross2(iv, vij2); return std::make_pair( // signum (tij1 > 0) ? 1 : ((tij1 < 0) ? -1 : 0), (tij2 > 0) ? 1 : ((tij2 < 0) ? -1 : 0)); }; std::pair sign1 = segments_could_intersect(ip1, ip2, jp1, jp2); std::pair sign2 = segments_could_intersect(jp1, jp2, ip1, ip2); int test1 = sign1.first * sign1.second; int test2 = sign2.first * sign2.second; if (test1 <= 0 && test2 <= 0) { // The segments possibly intersect. They may also be collinear, but not intersect. if (test1 != 0 || test2 != 0) // Certainly not collinear, then the segments intersect. return true; // If the first segment is collinear with the other, the other is collinear with the first segment. assert((sign1.first == 0 && sign1.second == 0) == (sign2.first == 0 && sign2.second == 0)); if (sign1.first == 0 && sign1.second == 0) { // The segments are certainly collinear. Now verify whether they overlap. Slic3r::Point vi = ip2 - ip1; // Project both on the longer coordinate of vi. int axis = std::abs(vi.x()) > std::abs(vi.y()) ? 0 : 1; coord_t i = ip1(axis); coord_t j = ip2(axis); coord_t k = jp1(axis); coord_t l = jp2(axis); if (i > j) std::swap(i, j); if (k > l) std::swap(k, l); return (k >= i && k <= j) || (i >= k && i <= l); } } return false; } template inline T foot_pt(const T &line_pt, const T &line_dir, const T &pt) { T v = pt - line_pt; auto l2 = line_dir.squaredNorm(); auto t = (l2 == 0) ? 0 : v.dot(line_dir) / l2; return line_pt + line_dir * t; } inline Vec2d foot_pt(const Line &iline, const Point &ipt) { return foot_pt(iline.a.cast(), (iline.b - iline.a).cast(), ipt.cast()); } template inline auto ray_point_distance_squared(const T &ray_pt, const T &ray_dir, const T &pt) { return (foot_pt(ray_pt, ray_dir, pt) - pt).squaredNorm(); } template inline auto ray_point_distance(const T &ray_pt, const T &ray_dir, const T &pt) { return (foot_pt(ray_pt, ray_dir, pt) - pt).norm(); } inline double ray_point_distance_squared(const Line &iline, const Point &ipt) { return (foot_pt(iline, ipt) - ipt.cast()).squaredNorm(); } inline double ray_point_distance(const Line &iline, const Point &ipt) { return (foot_pt(iline, ipt) - ipt.cast()).norm(); } // Based on Liang-Barsky function by Daniel White @ http://www.skytopia.com/project/articles/compsci/clipping.html template inline bool liang_barsky_line_clipping_interval( // Start and end points of the source line, result will be stored there as well. const Eigen::Matrix &x0, const Eigen::Matrix &v, // Bounding box to clip with. const BoundingBoxBase> &bbox, std::pair &out_interval) { double t0 = 0.0; double t1 = 1.0; // Traverse through left, right, bottom, top edges. auto clip_side = [&t0, &t1](double p, double q) -> bool { if (p == 0) { if (q < 0) // Line parallel to the bounding box edge is fully outside of the bounding box. return false; // else don't clip } else { double r = q / p; if (p < 0) { if (r > t1) // Fully clipped. return false; if (r > t0) // Partially clipped. t0 = r; } else { assert(p > 0); if (r < t0) // Fully clipped. return false; if (r < t1) // Partially clipped. t1 = r; } } return true; }; if (clip_side(- v.x(), - bbox.min.x() + x0.x()) && clip_side( v.x(), bbox.max.x() - x0.x()) && clip_side(- v.y(), - bbox.min.y() + x0.y()) && clip_side( v.y(), bbox.max.y() - x0.y())) { out_interval.first = t0; out_interval.second = t1; return true; } return false; } template inline bool liang_barsky_line_clipping( // Start and end points of the source line, result will be stored there as well. Eigen::Matrix &x0, Eigen::Matrix &x1, // Bounding box to clip with. const BoundingBoxBase> &bbox) { Eigen::Matrix v = x1 - x0; std::pair interval; if (liang_barsky_line_clipping_interval(x0, v, bbox, interval)) { // Clipped successfully. x1 = x0 + interval.second * v; x0 += interval.first * v; return true; } return false; } // Based on Liang-Barsky function by Daniel White @ http://www.skytopia.com/project/articles/compsci/clipping.html template bool liang_barsky_line_clipping( // Start and end points of the source line. const Eigen::Matrix &x0src, const Eigen::Matrix &x1src, // Bounding box to clip with. const BoundingBoxBase> &bbox, // Start and end points of the clipped line. Eigen::Matrix &x0clip, Eigen::Matrix &x1clip) { x0clip = x0src; x1clip = x1src; return liang_barsky_line_clipping(x0clip, x1clip, bbox); } bool directions_parallel(double angle1, double angle2, double max_diff = 0); bool directions_perpendicular(double angle1, double angle2, double max_diff = 0); template bool contains(const std::vector &vector, const Point &point); template T rad2deg(T angle) { return T(180.0) * angle / T(PI); } double rad2deg_dir(double angle); template constexpr T deg2rad(const T angle) { return T(PI) * angle / T(180.0); } template T angle_to_0_2PI(T angle) { static const T TWO_PI = T(2) * T(PI); while (angle < T(0)) { angle += TWO_PI; } while (TWO_PI < angle) { angle -= TWO_PI; } return angle; } void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval); double linint(double value, double oldmin, double oldmax, double newmin, double newmax); bool arrange( // input size_t num_parts, const Vec2d &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box, // output Pointfs &positions); // Sets the given transform by assembling the given transformations in the following order: // 1) mirror // 2) scale // 3) rotate X // 4) rotate Y // 5) rotate Z // 6) translate void assemble_transform(Transform3d& transform, const Vec3d& translation = Vec3d::Zero(), const Vec3d& rotation = Vec3d::Zero(), const Vec3d& scale = Vec3d::Ones(), const Vec3d& mirror = Vec3d::Ones()); // Returns the transform obtained by assembling the given transformations in the following order: // 1) mirror // 2) scale // 3) rotate X // 4) rotate Y // 5) rotate Z // 6) translate Transform3d assemble_transform(const Vec3d& translation = Vec3d::Zero(), const Vec3d& rotation = Vec3d::Zero(), const Vec3d& scale = Vec3d::Ones(), const Vec3d& mirror = Vec3d::Ones()); // Returns the euler angles extracted from the given rotation matrix // Warning -> The matrix should not contain any scale or shear !!! Vec3d extract_euler_angles(const Eigen::Matrix& rotation_matrix); // Returns the euler angles extracted from the given affine transform // Warning -> The transform should not contain any shear !!! Vec3d extract_euler_angles(const Transform3d& transform); class Transformation { struct Flags { bool dont_translate; bool dont_rotate; bool dont_scale; bool dont_mirror; Flags(); bool needs_update(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) const; void set(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror); }; Vec3d m_offset; // In unscaled coordinates Vec3d m_rotation; // Rotation around the three axes, in radians around mesh center point Vec3d m_scaling_factor; // Scaling factors along the three axes Vec3d m_mirror; // Mirroring along the three axes mutable Transform3d m_matrix; mutable Flags m_flags; mutable bool m_dirty; public: Transformation(); explicit Transformation(const Transform3d& transform); const Vec3d& get_offset() const { return m_offset; } double get_offset(Axis axis) const { return m_offset(axis); } void set_offset(const Vec3d& offset); void set_offset(Axis axis, double offset); const Vec3d& get_rotation() const { return m_rotation; } double get_rotation(Axis axis) const { return m_rotation(axis); } void set_rotation(const Vec3d& rotation); void set_rotation(Axis axis, double rotation); const Vec3d& get_scaling_factor() const { return m_scaling_factor; } double get_scaling_factor(Axis axis) const { return m_scaling_factor(axis); } void set_scaling_factor(const Vec3d& scaling_factor); void set_scaling_factor(Axis axis, double scaling_factor); bool is_scaling_uniform() const { return std::abs(m_scaling_factor.x() - m_scaling_factor.y()) < 1e-8 && std::abs(m_scaling_factor.x() - m_scaling_factor.z()) < 1e-8; } const Vec3d& get_mirror() const { return m_mirror; } double get_mirror(Axis axis) const { return m_mirror(axis); } bool is_left_handed() const { return m_mirror.x() * m_mirror.y() * m_mirror.z() < 0.; } void set_mirror(const Vec3d& mirror); void set_mirror(Axis axis, double mirror); void set_from_transform(const Transform3d& transform); void reset(); const Transform3d& get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const; Transformation operator * (const Transformation& other) const; // Find volume transformation, so that the chained (instance_trafo * volume_trafo) will be as close to identity // as possible in least squares norm in regard to the 8 corners of bbox. // Bounding box is expected to be centered around zero in all axes. static Transformation volume_to_bed_transformation(const Transformation& instance_transformation, const BoundingBoxf3& bbox); private: friend class cereal::access; template void serialize(Archive & ar) { ar(m_offset, m_rotation, m_scaling_factor, m_mirror); } explicit Transformation(int) : m_dirty(true) {} template static void load_and_construct(Archive &ar, cereal::construct &construct) { // Calling a private constructor with special "int" parameter to indicate that no construction is necessary. construct(1); ar(construct.ptr()->m_offset, construct.ptr()->m_rotation, construct.ptr()->m_scaling_factor, construct.ptr()->m_mirror); } }; // For parsing a transformation matrix from 3MF / AMF. extern Transform3d transform3d_from_string(const std::string& transform_str); // Rotation when going from the first coordinate system with rotation rot_xyz_from applied // to a coordinate system with rot_xyz_to applied. extern Eigen::Quaterniond rotation_xyz_diff(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to); // Rotation by Z to align rot_xyz_from to rot_xyz_to. // This should only be called if it is known, that the two rotations only differ in rotation around the Z axis. extern double rotation_diff_z(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to); // Is the angle close to a multiple of 90 degrees? inline bool is_rotation_ninety_degrees(double a) { a = fmod(std::abs(a), 0.5 * M_PI); if (a > 0.25 * PI) a = 0.5 * PI - a; return a < 0.001; } // Is the angle close to a multiple of 90 degrees? inline bool is_rotation_ninety_degrees(const Vec3d &rotation) { return is_rotation_ninety_degrees(rotation.x()) && is_rotation_ninety_degrees(rotation.y()) && is_rotation_ninety_degrees(rotation.z()); } } } // namespace Slicer::Geometry #endif