#include "slic3r/GUI/GLGizmo.hpp" #include "GLCanvas3D.hpp" #include "admesh/stl.h" #include "libslic3r/libslic3r.h" #include "libslic3r/ClipperUtils.hpp" #include "libslic3r/PrintConfig.hpp" #include "libslic3r/GCode/PreviewData.hpp" #include "libslic3r/Geometry.hpp" #include "libslic3r/Utils.hpp" #include "slic3r/GUI/3DScene.hpp" #include "slic3r/GUI/BackgroundSlicingProcess.hpp" #include "slic3r/GUI/GLShader.hpp" #include "slic3r/GUI/GUI.hpp" #include "slic3r/GUI/PresetBundle.hpp" //#include "slic3r/GUI/GLGizmo.hpp" #include "GUI_App.hpp" #include "GUI_ObjectList.hpp" #include "GUI_ObjectManipulation.hpp" #include "I18N.hpp" #include #include #include #include #include #include #include #include // Print now includes tbb, and tbb includes Windows. This breaks compilation of wxWidgets if included before wx. #include "libslic3r/Print.hpp" #include "libslic3r/SLAPrint.hpp" #include "wxExtensions.hpp" #include #include #include #include #include #include #include static const float TRACKBALLSIZE = 0.8f; static const float GIMBALL_LOCK_THETA_MAX = 180.0f; static const float GROUND_Z = -0.02f; // phi / theta angles to orient the camera. static const float VIEW_DEFAULT[2] = { 45.0f, 45.0f }; static const float VIEW_LEFT[2] = { 90.0f, 90.0f }; static const float VIEW_RIGHT[2] = { -90.0f, 90.0f }; static const float VIEW_TOP[2] = { 0.0f, 0.0f }; static const float VIEW_BOTTOM[2] = { 0.0f, 180.0f }; static const float VIEW_FRONT[2] = { 0.0f, 90.0f }; static const float VIEW_REAR[2] = { 180.0f, 90.0f }; static const float VARIABLE_LAYER_THICKNESS_BAR_WIDTH = 70.0f; static const float VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT = 22.0f; static const float GIZMO_RESET_BUTTON_HEIGHT = 22.0f; static const float GIZMO_RESET_BUTTON_WIDTH = 70.f; static const float UNIT_MATRIX[] = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; static const float DEFAULT_BG_COLOR[3] = { 10.0f / 255.0f, 98.0f / 255.0f, 144.0f / 255.0f }; static const float ERROR_BG_COLOR[3] = { 144.0f / 255.0f, 49.0f / 255.0f, 10.0f / 255.0f }; namespace Slic3r { namespace GUI { bool GeometryBuffer::set_from_triangles(const Polygons& triangles, float z, bool generate_tex_coords) { m_vertices.clear(); m_tex_coords.clear(); unsigned int v_size = 9 * (unsigned int)triangles.size(); unsigned int t_size = 6 * (unsigned int)triangles.size(); if (v_size == 0) return false; m_vertices = std::vector(v_size, 0.0f); if (generate_tex_coords) m_tex_coords = std::vector(t_size, 0.0f); float min_x = unscale(triangles[0].points[0](0)); float min_y = unscale(triangles[0].points[0](1)); float max_x = min_x; float max_y = min_y; unsigned int v_coord = 0; unsigned int t_coord = 0; for (const Polygon& t : triangles) { for (unsigned int v = 0; v < 3; ++v) { const Point& p = t.points[v]; float x = unscale(p(0)); float y = unscale(p(1)); m_vertices[v_coord++] = x; m_vertices[v_coord++] = y; m_vertices[v_coord++] = z; if (generate_tex_coords) { m_tex_coords[t_coord++] = x; m_tex_coords[t_coord++] = y; min_x = std::min(min_x, x); max_x = std::max(max_x, x); min_y = std::min(min_y, y); max_y = std::max(max_y, y); } } } if (generate_tex_coords) { float size_x = max_x - min_x; float size_y = max_y - min_y; if ((size_x != 0.0f) && (size_y != 0.0f)) { float inv_size_x = 1.0f / size_x; float inv_size_y = -1.0f / size_y; for (unsigned int i = 0; i < m_tex_coords.size(); i += 2) { m_tex_coords[i] *= inv_size_x; m_tex_coords[i + 1] *= inv_size_y; } } } return true; } bool GeometryBuffer::set_from_lines(const Lines& lines, float z) { m_vertices.clear(); m_tex_coords.clear(); unsigned int size = 6 * (unsigned int)lines.size(); if (size == 0) return false; m_vertices = std::vector(size, 0.0f); unsigned int coord = 0; for (const Line& l : lines) { m_vertices[coord++] = unscale(l.a(0)); m_vertices[coord++] = unscale(l.a(1)); m_vertices[coord++] = z; m_vertices[coord++] = unscale(l.b(0)); m_vertices[coord++] = unscale(l.b(1)); m_vertices[coord++] = z; } return true; } const float* GeometryBuffer::get_vertices() const { return m_vertices.data(); } const float* GeometryBuffer::get_tex_coords() const { return m_tex_coords.data(); } unsigned int GeometryBuffer::get_vertices_count() const { return (unsigned int)m_vertices.size() / 3; } Size::Size() : m_width(0) , m_height(0) { } Size::Size(int width, int height) : m_width(width) , m_height(height) { } int Size::get_width() const { return m_width; } void Size::set_width(int width) { m_width = width; } int Size::get_height() const { return m_height; } void Size::set_height(int height) { m_height = height; } Rect::Rect() : m_left(0.0f) , m_top(0.0f) , m_right(0.0f) , m_bottom(0.0f) { } Rect::Rect(float left, float top, float right, float bottom) : m_left(left) , m_top(top) , m_right(right) , m_bottom(bottom) { } float Rect::get_left() const { return m_left; } void Rect::set_left(float left) { m_left = left; } float Rect::get_top() const { return m_top; } void Rect::set_top(float top) { m_top = top; } float Rect::get_right() const { return m_right; } void Rect::set_right(float right) { m_right = right; } float Rect::get_bottom() const { return m_bottom; } void Rect::set_bottom(float bottom) { m_bottom = bottom; } GLCanvas3D::Camera::Camera() : type(Ortho) , zoom(1.0f) , phi(45.0f) // , distance(0.0f) , target(0.0, 0.0, 0.0) , m_theta(45.0f) { } std::string GLCanvas3D::Camera::get_type_as_string() const { switch (type) { default: case Unknown: return "unknown"; // case Perspective: // return "perspective"; case Ortho: return "ortho"; }; } float GLCanvas3D::Camera::get_theta() const { return m_theta; } void GLCanvas3D::Camera::set_theta(float theta) { m_theta = clamp(0.0f, GIMBALL_LOCK_THETA_MAX, theta); } GLCanvas3D::Bed::Bed() : m_type(Custom) { } bool GLCanvas3D::Bed::is_prusa() const { return (m_type == MK2) || (m_type == MK3) || (m_type == SL1); } bool GLCanvas3D::Bed::is_custom() const { return m_type == Custom; } const Pointfs& GLCanvas3D::Bed::get_shape() const { return m_shape; } bool GLCanvas3D::Bed::set_shape(const Pointfs& shape) { EType new_type = _detect_type(); if (m_shape == shape && m_type == new_type) // No change, no need to update the UI. return false; m_shape = shape; m_type = new_type; _calc_bounding_box(); ExPolygon poly; for (const Vec2d& p : m_shape) { poly.contour.append(Point(scale_(p(0)), scale_(p(1)))); } _calc_triangles(poly); const BoundingBox& bed_bbox = poly.contour.bounding_box(); _calc_gridlines(poly, bed_bbox); m_polygon = offset_ex(poly.contour, (float)bed_bbox.radius() * 1.7f, jtRound, scale_(0.5))[0].contour; // Let the calee to update the UI. return true; } const BoundingBoxf3& GLCanvas3D::Bed::get_bounding_box() const { return m_bounding_box; } bool GLCanvas3D::Bed::contains(const Point& point) const { return m_polygon.contains(point); } Point GLCanvas3D::Bed::point_projection(const Point& point) const { return m_polygon.point_projection(point); } void GLCanvas3D::Bed::render(float theta) const { switch (m_type) { case MK2: { _render_prusa("mk2", theta); break; } case MK3: { _render_prusa("mk3", theta); break; } case SL1: { _render_prusa("sl1", theta); break; } default: case Custom: { _render_custom(); break; } } } void GLCanvas3D::Bed::_calc_bounding_box() { m_bounding_box = BoundingBoxf3(); for (const Vec2d& p : m_shape) { m_bounding_box.merge(Vec3d(p(0), p(1), 0.0)); } } void GLCanvas3D::Bed::_calc_triangles(const ExPolygon& poly) { Polygons triangles; poly.triangulate(&triangles); if (!m_triangles.set_from_triangles(triangles, GROUND_Z, m_type != Custom)) printf("Unable to create bed triangles\n"); } void GLCanvas3D::Bed::_calc_gridlines(const ExPolygon& poly, const BoundingBox& bed_bbox) { Polylines axes_lines; for (coord_t x = bed_bbox.min(0); x <= bed_bbox.max(0); x += scale_(10.0)) { Polyline line; line.append(Point(x, bed_bbox.min(1))); line.append(Point(x, bed_bbox.max(1))); axes_lines.push_back(line); } for (coord_t y = bed_bbox.min(1); y <= bed_bbox.max(1); y += scale_(10.0)) { Polyline line; line.append(Point(bed_bbox.min(0), y)); line.append(Point(bed_bbox.max(0), y)); axes_lines.push_back(line); } // clip with a slightly grown expolygon because our lines lay on the contours and may get erroneously clipped Lines gridlines = to_lines(intersection_pl(axes_lines, offset(poly, (float)SCALED_EPSILON))); // append bed contours Lines contour_lines = to_lines(poly); std::copy(contour_lines.begin(), contour_lines.end(), std::back_inserter(gridlines)); if (!m_gridlines.set_from_lines(gridlines, GROUND_Z)) printf("Unable to create bed grid lines\n"); } GLCanvas3D::Bed::EType GLCanvas3D::Bed::_detect_type() const { EType type = Custom; auto bundle = wxGetApp().preset_bundle; if (bundle != nullptr) { const Preset* curr = &bundle->printers.get_selected_preset(); while (curr != nullptr) { if (curr->config.has("bed_shape")) { if (boost::contains(curr->name, "SL1")) { //FIXME add a condition on the size of the print bed? type = SL1; break; } else if (_are_equal(m_shape, dynamic_cast(curr->config.option("bed_shape"))->values)) { if ((curr->vendor != nullptr) && (curr->vendor->name == "Prusa Research")) { if (boost::contains(curr->name, "MK2")) { type = MK2; break; } else if (boost::contains(curr->name, "MK3")) { type = MK3; break; } } } } curr = bundle->printers.get_preset_parent(*curr); } } return type; } void GLCanvas3D::Bed::_render_prusa(const std::string &key, float theta) const { std::string filename = resources_dir() + "/icons/bed/" + key + "_top.png"; if ((m_top_texture.get_id() == 0) || (m_top_texture.get_source() != filename)) { if (!m_top_texture.load_from_file(filename, true)) { _render_custom(); return; } } filename = resources_dir() + "/icons/bed/" + key + "_bottom.png"; if ((m_bottom_texture.get_id() == 0) || (m_bottom_texture.get_source() != filename)) { if (!m_bottom_texture.load_from_file(filename, true)) { _render_custom(); return; } } unsigned int triangles_vcount = m_triangles.get_vertices_count(); if (triangles_vcount > 0) { ::glEnable(GL_DEPTH_TEST); ::glDepthMask(GL_FALSE); ::glEnable(GL_BLEND); ::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); ::glEnable(GL_TEXTURE_2D); ::glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); ::glEnableClientState(GL_VERTEX_ARRAY); ::glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (theta > 90.0f) ::glFrontFace(GL_CW); ::glBindTexture(GL_TEXTURE_2D, (theta <= 90.0f) ? (GLuint)m_top_texture.get_id() : (GLuint)m_bottom_texture.get_id()); ::glVertexPointer(3, GL_FLOAT, 0, (GLvoid*)m_triangles.get_vertices()); ::glTexCoordPointer(2, GL_FLOAT, 0, (GLvoid*)m_triangles.get_tex_coords()); ::glDrawArrays(GL_TRIANGLES, 0, (GLsizei)triangles_vcount); if (theta > 90.0f) ::glFrontFace(GL_CCW); ::glBindTexture(GL_TEXTURE_2D, 0); ::glDisableClientState(GL_TEXTURE_COORD_ARRAY); ::glDisableClientState(GL_VERTEX_ARRAY); ::glDisable(GL_TEXTURE_2D); ::glDisable(GL_BLEND); ::glDepthMask(GL_TRUE); } } void GLCanvas3D::Bed::_render_custom() const { m_top_texture.reset(); m_bottom_texture.reset(); unsigned int triangles_vcount = m_triangles.get_vertices_count(); if (triangles_vcount > 0) { ::glEnable(GL_LIGHTING); ::glDisable(GL_DEPTH_TEST); ::glEnable(GL_BLEND); ::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); ::glEnableClientState(GL_VERTEX_ARRAY); ::glColor4f(0.8f, 0.6f, 0.5f, 0.4f); ::glNormal3d(0.0f, 0.0f, 1.0f); ::glVertexPointer(3, GL_FLOAT, 0, (GLvoid*)m_triangles.get_vertices()); ::glDrawArrays(GL_TRIANGLES, 0, (GLsizei)triangles_vcount); // draw grid unsigned int gridlines_vcount = m_gridlines.get_vertices_count(); // we need depth test for grid, otherwise it would disappear when looking the object from below ::glEnable(GL_DEPTH_TEST); ::glLineWidth(3.0f); ::glColor4f(0.2f, 0.2f, 0.2f, 0.4f); ::glVertexPointer(3, GL_FLOAT, 0, (GLvoid*)m_gridlines.get_vertices()); ::glDrawArrays(GL_LINES, 0, (GLsizei)gridlines_vcount); ::glDisableClientState(GL_VERTEX_ARRAY); ::glDisable(GL_BLEND); ::glDisable(GL_LIGHTING); } } bool GLCanvas3D::Bed::_are_equal(const Pointfs& bed_1, const Pointfs& bed_2) { if (bed_1.size() != bed_2.size()) return false; for (unsigned int i = 0; i < (unsigned int)bed_1.size(); ++i) { if (bed_1[i] != bed_2[i]) return false; } return true; } GLCanvas3D::Axes::Axes() : origin(Vec3d::Zero()) , length(0.0f) { } void GLCanvas3D::Axes::render(bool depth_test) const { if (depth_test) ::glEnable(GL_DEPTH_TEST); else ::glDisable(GL_DEPTH_TEST); ::glLineWidth(2.0f); ::glBegin(GL_LINES); // draw line for x axis ::glColor3f(1.0f, 0.0f, 0.0f); ::glVertex3dv(origin.data()); ::glVertex3f((GLfloat)origin(0) + length, (GLfloat)origin(1), (GLfloat)origin(2)); // draw line for y axis ::glColor3f(0.0f, 1.0f, 0.0f); ::glVertex3dv(origin.data()); ::glVertex3f((GLfloat)origin(0), (GLfloat)origin(1) + length, (GLfloat)origin(2)); ::glEnd(); // draw line for Z axis // (re-enable depth test so that axis is correctly shown when objects are behind it) if (!depth_test) ::glEnable(GL_DEPTH_TEST); ::glBegin(GL_LINES); ::glColor3f(0.0f, 0.0f, 1.0f); ::glVertex3dv(origin.data()); ::glVertex3f((GLfloat)origin(0), (GLfloat)origin(1), (GLfloat)origin(2) + length); ::glEnd(); } GLCanvas3D::Shader::Shader() : m_shader(nullptr) { } GLCanvas3D::Shader::~Shader() { _reset(); } bool GLCanvas3D::Shader::init(const std::string& vertex_shader_filename, const std::string& fragment_shader_filename) { if (is_initialized()) return true; m_shader = new GLShader(); if (m_shader != nullptr) { if (!m_shader->load_from_file(fragment_shader_filename.c_str(), vertex_shader_filename.c_str())) { std::cout << "Compilaton of shader failed:" << std::endl; std::cout << m_shader->last_error << std::endl; _reset(); return false; } } return true; } bool GLCanvas3D::Shader::is_initialized() const { return (m_shader != nullptr); } bool GLCanvas3D::Shader::start_using() const { if (is_initialized()) { m_shader->enable(); return true; } else return false; } void GLCanvas3D::Shader::stop_using() const { if (m_shader != nullptr) m_shader->disable(); } void GLCanvas3D::Shader::set_uniform(const std::string& name, float value) const { if (m_shader != nullptr) m_shader->set_uniform(name.c_str(), value); } void GLCanvas3D::Shader::set_uniform(const std::string& name, const float* matrix) const { if (m_shader != nullptr) m_shader->set_uniform(name.c_str(), matrix); } const GLShader* GLCanvas3D::Shader::get_shader() const { return m_shader; } void GLCanvas3D::Shader::_reset() { if (m_shader != nullptr) { m_shader->release(); delete m_shader; m_shader = nullptr; } } GLCanvas3D::LayersEditing::LayersEditing() : m_use_legacy_opengl(false) , m_enabled(false) , m_z_texture_id(0) , state(Unknown) , band_width(2.0f) , strength(0.005f) , last_object_id(-1) , last_z(0.0f) , last_action(0) { } GLCanvas3D::LayersEditing::~LayersEditing() { if (m_z_texture_id != 0) { ::glDeleteTextures(1, &m_z_texture_id); m_z_texture_id = 0; } } bool GLCanvas3D::LayersEditing::init(const std::string& vertex_shader_filename, const std::string& fragment_shader_filename) { if (!m_shader.init(vertex_shader_filename, fragment_shader_filename)) return false; ::glGenTextures(1, (GLuint*)&m_z_texture_id); ::glBindTexture(GL_TEXTURE_2D, m_z_texture_id); ::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP); ::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); ::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); ::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST); ::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1); ::glBindTexture(GL_TEXTURE_2D, 0); return true; } bool GLCanvas3D::LayersEditing::is_allowed() const { return !m_use_legacy_opengl && m_shader.is_initialized(); } void GLCanvas3D::LayersEditing::set_use_legacy_opengl(bool use_legacy_opengl) { m_use_legacy_opengl = use_legacy_opengl; } bool GLCanvas3D::LayersEditing::is_enabled() const { return m_enabled; } void GLCanvas3D::LayersEditing::set_enabled(bool enabled) { m_enabled = is_allowed() && enabled; } unsigned int GLCanvas3D::LayersEditing::get_z_texture_id() const { return m_z_texture_id; } void GLCanvas3D::LayersEditing::render(const GLCanvas3D& canvas, const PrintObject& print_object, const GLVolume& volume) const { if (!m_enabled) return; const Rect& bar_rect = get_bar_rect_viewport(canvas); const Rect& reset_rect = get_reset_rect_viewport(canvas); ::glDisable(GL_DEPTH_TEST); // The viewport and camera are set to complete view and glOrtho(-$x / 2, $x / 2, -$y / 2, $y / 2, -$depth, $depth), // where x, y is the window size divided by $self->_zoom. ::glPushMatrix(); ::glLoadIdentity(); _render_tooltip_texture(canvas, bar_rect, reset_rect); _render_reset_texture(reset_rect); _render_active_object_annotations(canvas, volume, print_object, bar_rect); _render_profile(print_object, bar_rect); // Revert the matrices. ::glPopMatrix(); ::glEnable(GL_DEPTH_TEST); } int GLCanvas3D::LayersEditing::get_shader_program_id() const { const GLShader* shader = m_shader.get_shader(); return (shader != nullptr) ? shader->shader_program_id : -1; } float GLCanvas3D::LayersEditing::get_cursor_z_relative(const GLCanvas3D& canvas) { const Point& mouse_pos = canvas.get_local_mouse_position(); const Rect& rect = get_bar_rect_screen(canvas); float x = (float)mouse_pos(0); float y = (float)mouse_pos(1); float t = rect.get_top(); float b = rect.get_bottom(); return ((rect.get_left() <= x) && (x <= rect.get_right()) && (t <= y) && (y <= b)) ? // Inside the bar. (b - y - 1.0f) / (b - t - 1.0f) : // Outside the bar. -1000.0f; } bool GLCanvas3D::LayersEditing::bar_rect_contains(const GLCanvas3D& canvas, float x, float y) { const Rect& rect = get_bar_rect_screen(canvas); return (rect.get_left() <= x) && (x <= rect.get_right()) && (rect.get_top() <= y) && (y <= rect.get_bottom()); } bool GLCanvas3D::LayersEditing::reset_rect_contains(const GLCanvas3D& canvas, float x, float y) { const Rect& rect = get_reset_rect_screen(canvas); return (rect.get_left() <= x) && (x <= rect.get_right()) && (rect.get_top() <= y) && (y <= rect.get_bottom()); } Rect GLCanvas3D::LayersEditing::get_bar_rect_screen(const GLCanvas3D& canvas) { const Size& cnv_size = canvas.get_canvas_size(); float w = (float)cnv_size.get_width(); float h = (float)cnv_size.get_height(); return Rect(w - VARIABLE_LAYER_THICKNESS_BAR_WIDTH, 0.0f, w, h - VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT); } Rect GLCanvas3D::LayersEditing::get_reset_rect_screen(const GLCanvas3D& canvas) { const Size& cnv_size = canvas.get_canvas_size(); float w = (float)cnv_size.get_width(); float h = (float)cnv_size.get_height(); return Rect(w - VARIABLE_LAYER_THICKNESS_BAR_WIDTH, h - VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT, w, h); } Rect GLCanvas3D::LayersEditing::get_bar_rect_viewport(const GLCanvas3D& canvas) { const Size& cnv_size = canvas.get_canvas_size(); float half_w = 0.5f * (float)cnv_size.get_width(); float half_h = 0.5f * (float)cnv_size.get_height(); float zoom = canvas.get_camera_zoom(); float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f; return Rect((half_w - VARIABLE_LAYER_THICKNESS_BAR_WIDTH) * inv_zoom, half_h * inv_zoom, half_w * inv_zoom, (-half_h + VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT) * inv_zoom); } Rect GLCanvas3D::LayersEditing::get_reset_rect_viewport(const GLCanvas3D& canvas) { const Size& cnv_size = canvas.get_canvas_size(); float half_w = 0.5f * (float)cnv_size.get_width(); float half_h = 0.5f * (float)cnv_size.get_height(); float zoom = canvas.get_camera_zoom(); float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f; return Rect((half_w - VARIABLE_LAYER_THICKNESS_BAR_WIDTH) * inv_zoom, (-half_h + VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT) * inv_zoom, half_w * inv_zoom, -half_h * inv_zoom); } bool GLCanvas3D::LayersEditing::_is_initialized() const { return m_shader.is_initialized(); } void GLCanvas3D::LayersEditing::_render_tooltip_texture(const GLCanvas3D& canvas, const Rect& bar_rect, const Rect& reset_rect) const { if (m_tooltip_texture.get_id() == 0) { std::string filename = resources_dir() + "/icons/variable_layer_height_tooltip.png"; if (!m_tooltip_texture.load_from_file(filename, false)) return; } float zoom = canvas.get_camera_zoom(); float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f; float gap = 10.0f * inv_zoom; float bar_left = bar_rect.get_left(); float reset_bottom = reset_rect.get_bottom(); float l = bar_left - (float)m_tooltip_texture.get_width() * inv_zoom - gap; float r = bar_left - gap; float t = reset_bottom + (float)m_tooltip_texture.get_height() * inv_zoom + gap; float b = reset_bottom + gap; GLTexture::render_texture(m_tooltip_texture.get_id(), l, r, b, t); } void GLCanvas3D::LayersEditing::_render_reset_texture(const Rect& reset_rect) const { if (m_reset_texture.get_id() == 0) { std::string filename = resources_dir() + "/icons/variable_layer_height_reset.png"; if (!m_reset_texture.load_from_file(filename, false)) return; } GLTexture::render_texture(m_reset_texture.get_id(), reset_rect.get_left(), reset_rect.get_right(), reset_rect.get_bottom(), reset_rect.get_top()); } void GLCanvas3D::LayersEditing::_render_active_object_annotations(const GLCanvas3D& canvas, const GLVolume& volume, const PrintObject& print_object, const Rect& bar_rect) const { float max_z = print_object.model_object()->bounding_box().max(2); m_shader.start_using(); m_shader.set_uniform("z_to_texture_row", (float)volume.layer_height_texture_z_to_row_id()); m_shader.set_uniform("z_texture_row_to_normalized", 1.0f / (float)volume.layer_height_texture_height()); m_shader.set_uniform("z_cursor", max_z * get_cursor_z_relative(canvas)); m_shader.set_uniform("z_cursor_band_width", band_width); // The shader requires the original model coordinates when rendering to the texture, so we pass it the unit matrix m_shader.set_uniform("volume_world_matrix", UNIT_MATRIX); GLsizei w = (GLsizei)volume.layer_height_texture_width(); GLsizei h = (GLsizei)volume.layer_height_texture_height(); GLsizei half_w = w / 2; GLsizei half_h = h / 2; ::glPixelStorei(GL_UNPACK_ALIGNMENT, 1); ::glBindTexture(GL_TEXTURE_2D, m_z_texture_id); ::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0); ::glTexImage2D(GL_TEXTURE_2D, 1, GL_RGBA, half_w, half_h, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0); ::glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, volume.layer_height_texture_data_ptr_level0()); ::glTexSubImage2D(GL_TEXTURE_2D, 1, 0, 0, half_w, half_h, GL_RGBA, GL_UNSIGNED_BYTE, volume.layer_height_texture_data_ptr_level1()); // Render the color bar float l = bar_rect.get_left(); float r = bar_rect.get_right(); float t = bar_rect.get_top(); float b = bar_rect.get_bottom(); ::glBegin(GL_QUADS); ::glVertex3f(l, b, 0.0f); ::glVertex3f(r, b, 0.0f); ::glVertex3f(r, t, max_z); ::glVertex3f(l, t, max_z); ::glEnd(); ::glBindTexture(GL_TEXTURE_2D, 0); m_shader.stop_using(); } void GLCanvas3D::LayersEditing::_render_profile(const PrintObject& print_object, const Rect& bar_rect) const { // FIXME show some kind of legend. // Get a maximum layer height value. // FIXME This is a duplicate code of Slicing.cpp. double layer_height_max = DBL_MAX; const PrintConfig& print_config = print_object.print()->config(); const std::vector& nozzle_diameters = dynamic_cast(print_config.option("nozzle_diameter"))->values; const std::vector& layer_heights_min = dynamic_cast(print_config.option("min_layer_height"))->values; const std::vector& layer_heights_max = dynamic_cast(print_config.option("max_layer_height"))->values; for (unsigned int i = 0; i < (unsigned int)nozzle_diameters.size(); ++i) { double lh_min = (layer_heights_min[i] == 0.0) ? 0.07 : std::max(0.01, layer_heights_min[i]); double lh_max = (layer_heights_max[i] == 0.0) ? (0.75 * nozzle_diameters[i]) : layer_heights_max[i]; layer_height_max = std::min(layer_height_max, std::max(lh_min, lh_max)); } // Make the vertical bar a bit wider so the layer height curve does not touch the edge of the bar region. layer_height_max *= 1.12; double max_z = unscale(print_object.size(2)); double layer_height = dynamic_cast(print_object.config().option("layer_height"))->value; float l = bar_rect.get_left(); float w = bar_rect.get_right() - l; float b = bar_rect.get_bottom(); float t = bar_rect.get_top(); float h = t - b; float scale_x = w / (float)layer_height_max; float scale_y = h / (float)max_z; float x = l + (float)layer_height * scale_x; // Baseline ::glColor3f(0.0f, 0.0f, 0.0f); ::glBegin(GL_LINE_STRIP); ::glVertex2f(x, b); ::glVertex2f(x, t); ::glEnd(); // Curve const ModelObject* model_object = print_object.model_object(); if (model_object->layer_height_profile_valid) { const std::vector& profile = model_object->layer_height_profile; ::glColor3f(0.0f, 0.0f, 1.0f); ::glBegin(GL_LINE_STRIP); for (unsigned int i = 0; i < profile.size(); i += 2) { ::glVertex2f(l + (float)profile[i + 1] * scale_x, b + (float)profile[i] * scale_y); } ::glEnd(); } } const Point GLCanvas3D::Mouse::Drag::Invalid_2D_Point(INT_MAX, INT_MAX); const Vec3d GLCanvas3D::Mouse::Drag::Invalid_3D_Point(DBL_MAX, DBL_MAX, DBL_MAX); GLCanvas3D::Mouse::Drag::Drag() : start_position_2D(Invalid_2D_Point) , start_position_3D(Invalid_3D_Point) , move_volume_idx(-1) { } GLCanvas3D::Mouse::Mouse() : dragging(false) , left_down(false) , position(DBL_MAX, DBL_MAX) , scene_position(DBL_MAX, DBL_MAX, DBL_MAX) { } void GLCanvas3D::Mouse::set_start_position_2D_as_invalid() { drag.start_position_2D = Drag::Invalid_2D_Point; } void GLCanvas3D::Mouse::set_start_position_3D_as_invalid() { drag.start_position_3D = Drag::Invalid_3D_Point; } bool GLCanvas3D::Mouse::is_start_position_2D_defined() const { return (drag.start_position_2D != Drag::Invalid_2D_Point); } bool GLCanvas3D::Mouse::is_start_position_3D_defined() const { return (drag.start_position_3D != Drag::Invalid_3D_Point); } #if ENABLE_MODELVOLUME_TRANSFORM GLCanvas3D::Selection::VolumeCache::TransformCache::TransformCache() : position(Vec3d::Zero()) , rotation(Vec3d::Zero()) , scaling_factor(Vec3d::Ones()) , rotation_matrix(Transform3d::Identity()) , scale_matrix(Transform3d::Identity()) { } GLCanvas3D::Selection::VolumeCache::TransformCache::TransformCache(const Geometry::Transformation& transform) : position(transform.get_offset()) , rotation(transform.get_rotation()) , scaling_factor(transform.get_scaling_factor()) { rotation_matrix = Geometry::assemble_transform(Vec3d::Zero(), rotation); scale_matrix = Geometry::assemble_transform(Vec3d::Zero(), Vec3d::Zero(), scaling_factor); } GLCanvas3D::Selection::VolumeCache::VolumeCache(const Geometry::Transformation& volume_transform, const Geometry::Transformation& instance_transform) : m_volume(volume_transform) , m_instance(instance_transform) { } #else GLCanvas3D::Selection::VolumeCache::VolumeCache() : m_position(Vec3d::Zero()) , m_rotation(Vec3d::Zero()) , m_scaling_factor(Vec3d::Ones()) { m_rotation_matrix = Transform3d::Identity(); m_scale_matrix = Transform3d::Identity(); } GLCanvas3D::Selection::VolumeCache::VolumeCache(const Vec3d& position, const Vec3d& rotation, const Vec3d& scaling_factor) : m_position(position) , m_rotation(rotation) , m_scaling_factor(scaling_factor) { m_rotation_matrix = Geometry::assemble_transform(Vec3d::Zero(), m_rotation); m_scale_matrix = Geometry::assemble_transform(Vec3d::Zero(), Vec3d::Zero(), m_scaling_factor); } #endif // ENABLE_MODELVOLUME_TRANSFORM GLCanvas3D::Selection::Selection() : m_volumes(nullptr) , m_model(nullptr) , m_mode(Instance) , m_type(Empty) , m_valid(false) , m_bounding_box_dirty(true) { } void GLCanvas3D::Selection::set_volumes(GLVolumePtrs* volumes) { m_volumes = volumes; _update_valid(); } void GLCanvas3D::Selection::set_model(Model* model) { m_model = model; _update_valid(); } void GLCanvas3D::Selection::add(unsigned int volume_idx, bool as_single_selection) { if (!m_valid || ((unsigned int)m_volumes->size() <= volume_idx)) return; const GLVolume* volume = (*m_volumes)[volume_idx]; // wipe tower is already selected if (is_wipe_tower() && volume->is_wipe_tower) return; // resets the current list if needed bool needs_reset = as_single_selection; needs_reset |= volume->is_wipe_tower; needs_reset |= is_wipe_tower() && !volume->is_wipe_tower; needs_reset |= !is_modifier() && volume->is_modifier; needs_reset |= is_modifier() && !volume->is_modifier; if (needs_reset) clear(); if (volume->is_modifier) m_mode = Volume; switch (m_mode) { case Volume: { if (volume->volume_idx() >= 0 && (is_empty() || (volume->instance_idx() == get_instance_idx()))) _add_volume(volume_idx); break; } case Instance: { _add_instance(volume->object_idx(), volume->instance_idx()); break; } #if !ENABLE_MODELVOLUME_TRANSFORM case Object: { _add_object(volume->object_idx()); break; } #endif // !ENABLE_MODELVOLUME_TRANSFORM } _update_type(); m_bounding_box_dirty = true; } void GLCanvas3D::Selection::remove(unsigned int volume_idx) { if (!m_valid || ((unsigned int)m_volumes->size() <= volume_idx)) return; GLVolume* volume = (*m_volumes)[volume_idx]; switch (m_mode) { case Volume: { _remove_volume(volume_idx); break; } case Instance: { _remove_instance(volume->object_idx(), volume->instance_idx()); break; } #if !ENABLE_MODELVOLUME_TRANSFORM case Object: { _remove_object(volume->object_idx()); break; } #endif // !ENABLE_MODELVOLUME_TRANSFORM } _update_type(); m_bounding_box_dirty = true; } void GLCanvas3D::Selection::add_object(unsigned int object_idx, bool as_single_selection) { if (!m_valid) return; // resets the current list if needed if (as_single_selection) clear(); m_mode = Instance; _add_object(object_idx); _update_type(); m_bounding_box_dirty = true; } void GLCanvas3D::Selection::remove_object(unsigned int object_idx) { if (!m_valid) return; _remove_object(object_idx); _update_type(); m_bounding_box_dirty = true; } void GLCanvas3D::Selection::add_instance(unsigned int object_idx, unsigned int instance_idx, bool as_single_selection) { if (!m_valid) return; // resets the current list if needed if (as_single_selection) clear(); m_mode = Instance; _add_instance(object_idx, instance_idx); _update_type(); m_bounding_box_dirty = true; } void GLCanvas3D::Selection::remove_instance(unsigned int object_idx, unsigned int instance_idx) { if (!m_valid) return; _remove_instance(object_idx, instance_idx); _update_type(); m_bounding_box_dirty = true; } void GLCanvas3D::Selection::add_volume(unsigned int object_idx, unsigned int volume_idx, int instance_idx, bool as_single_selection) { if (!m_valid) return; // resets the current list if needed if (as_single_selection) clear(); m_mode = Volume; for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i) { GLVolume* v = (*m_volumes)[i]; if ((v->object_idx() == object_idx) && (v->volume_idx() == volume_idx)) { if ((instance_idx != -1) && (v->instance_idx() == instance_idx)) _add_volume(i); } } _update_type(); m_bounding_box_dirty = true; } void GLCanvas3D::Selection::remove_volume(unsigned int object_idx, unsigned int volume_idx) { if (!m_valid) return; for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i) { GLVolume* v = (*m_volumes)[i]; if ((v->object_idx() == object_idx) && (v->volume_idx() == volume_idx)) _remove_volume(i); } _update_type(); m_bounding_box_dirty = true; } void GLCanvas3D::Selection::add_all() { if (!m_valid) return; m_mode = Instance; clear(); for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i) { if (!(*m_volumes)[i]->is_wipe_tower) _add_volume(i); } _update_type(); m_bounding_box_dirty = true; } void GLCanvas3D::Selection::clear() { if (!m_valid) return; for (unsigned int i : m_list) { (*m_volumes)[i]->selected = false; } m_list.clear(); _update_type(); m_bounding_box_dirty = true; } // Update the selection based on the map from old indices to new indices after m_volumes changed. // If the current selection is by instance, this call may select newly added volumes, if they belong to already selected instances. void GLCanvas3D::Selection::volumes_changed(const std::vector &map_volume_old_to_new) { assert(m_valid); // 1) Update the selection set. IndicesList list_new; std::vector> model_instances; for (unsigned int idx : m_list) { if (map_volume_old_to_new[idx] != size_t(-1)) { unsigned int new_idx = (unsigned int)map_volume_old_to_new[idx]; list_new.insert(new_idx); if (m_mode == Instance) { // Save the object_idx / instance_idx pair of selected old volumes, // so we may add the newly added volumes of the same object_idx / instance_idx pair // to the selection. const GLVolume *volume = (*m_volumes)[new_idx]; model_instances.emplace_back(volume->object_idx(), volume->instance_idx()); } } } m_list = std::move(list_new); if (! model_instances.empty()) { // Instance selection mode. Add the newly added volumes of the same object_idx / instance_idx pair // to the selection. assert(m_mode == Instance); sort_remove_duplicates(model_instances); for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++ i) { const GLVolume* volume = (*m_volumes)[i]; for (const std::pair &model_instance : model_instances) if (volume->object_idx() == model_instance.first && volume->instance_idx() == model_instance.second) this->_add_volume(i); } } _update_type(); m_bounding_box_dirty = true; } bool GLCanvas3D::Selection::is_single_full_instance() const { if (m_type == SingleFullInstance) return true; if (m_list.empty() || m_volumes->empty()) return false; int object_idx = m_valid ? get_object_idx() : -1; if (object_idx == -1) return false; int instance_idx = (*m_volumes)[*m_list.begin()]->instance_idx(); std::set volumes_idxs; for (const GLVolume* v : *m_volumes) { int volume_idx = v->volume_idx(); if ((v->object_idx() == object_idx) && (v->instance_idx() == instance_idx) && (volume_idx >= 0)) volumes_idxs.insert(volume_idx); } return m_model->objects[object_idx]->volumes.size() == volumes_idxs.size(); } bool GLCanvas3D::Selection::is_from_single_object() const { int idx = get_object_idx(); return (0 <= idx) && (idx < 1000); } int GLCanvas3D::Selection::get_object_idx() const { return (m_cache.content.size() == 1) ? m_cache.content.begin()->first : -1; } int GLCanvas3D::Selection::get_instance_idx() const { if (m_cache.content.size() == 1) { const InstanceIdxsList& idxs = m_cache.content.begin()->second; if (idxs.size() == 1) return *idxs.begin(); } return -1; } const GLCanvas3D::Selection::InstanceIdxsList& GLCanvas3D::Selection::get_instance_idxs() const { assert(m_cache.content.size() == 1); return m_cache.content.begin()->second; } const GLVolume* GLCanvas3D::Selection::get_volume(unsigned int volume_idx) const { return (m_valid && (volume_idx < (unsigned int)m_volumes->size())) ? (*m_volumes)[volume_idx] : nullptr; } const BoundingBoxf3& GLCanvas3D::Selection::get_bounding_box() const { if (m_bounding_box_dirty) _calc_bounding_box(); return m_bounding_box; } void GLCanvas3D::Selection::start_dragging() { if (!m_valid) return; _set_caches(); } void GLCanvas3D::Selection::translate(const Vec3d& displacement) { if (!m_valid) return; for (unsigned int i : m_list) { #if ENABLE_MODELVOLUME_TRANSFORM if (m_mode == Instance) (*m_volumes)[i]->set_instance_offset(m_cache.volumes_data[i].get_instance_position() + displacement); else if (m_mode == Volume) { Vec3d local_displacement = (m_cache.volumes_data[i].get_instance_rotation_matrix() * m_cache.volumes_data[i].get_instance_scale_matrix()).inverse() * displacement; (*m_volumes)[i]->set_volume_offset(m_cache.volumes_data[i].get_volume_position() + local_displacement); } #else (*m_volumes)[i]->set_offset(m_cache.volumes_data[i].get_position() + displacement); #endif // ENABLE_MODELVOLUME_TRANSFORM } #if !DISABLE_INSTANCES_SYNCH if (m_mode == Instance) _synchronize_unselected_instances(); else if (m_mode == Volume) _synchronize_unselected_volumes(); #endif // !DISABLE_INSTANCES_SYNCH m_bounding_box_dirty = true; } void GLCanvas3D::Selection::rotate(const Vec3d& rotation, bool local) { if (!m_valid) return; for (unsigned int i : m_list) { if (is_single_full_instance()) #if ENABLE_WORLD_ROTATIONS { Transform3d m = Geometry::assemble_transform(Vec3d::Zero(), rotation); Vec3d new_rotation = Geometry::extract_euler_angles(m * m_cache.volumes_data[i].get_instance_rotation_matrix()); (*m_volumes)[i]->set_instance_rotation(new_rotation); } #else #if ENABLE_MODELVOLUME_TRANSFORM (*m_volumes)[i]->set_instance_rotation(rotation); #else (*m_volumes)[i]->set_rotation(rotation); #endif // ENABLE_MODELVOLUME_TRANSFORM #endif // ENABLE_WORLD_ROTATIONS #if ENABLE_MODELVOLUME_TRANSFORM else if (is_single_volume() || is_single_modifier()) #if ENABLE_WORLD_ROTATIONS { Transform3d m = Geometry::assemble_transform(Vec3d::Zero(), rotation); Vec3d new_rotation = Geometry::extract_euler_angles(m * m_cache.volumes_data[i].get_volume_rotation_matrix()); (*m_volumes)[i]->set_volume_rotation(new_rotation); } #else (*m_volumes)[i]->set_volume_rotation(rotation); #endif // ENABLE_WORLD_ROTATIONS #endif // ENABLE_MODELVOLUME_TRANSFORM else { Transform3d m = Geometry::assemble_transform(Vec3d::Zero(), rotation); #if ENABLE_MODELVOLUME_TRANSFORM if (m_mode == Instance) { // extracts rotations from the composed transformation Vec3d new_rotation = Geometry::extract_euler_angles(m * m_cache.volumes_data[i].get_instance_rotation_matrix()); if (!local) (*m_volumes)[i]->set_instance_offset(m_cache.dragging_center + m * (m_cache.volumes_data[i].get_instance_position() - m_cache.dragging_center)); (*m_volumes)[i]->set_instance_rotation(new_rotation); } else if (m_mode == Volume) { // extracts rotations from the composed transformation Vec3d new_rotation = Geometry::extract_euler_angles(m * m_cache.volumes_data[i].get_volume_rotation_matrix()); if (!local) { Vec3d offset = m * (m_cache.volumes_data[i].get_volume_position() + m_cache.volumes_data[i].get_instance_position() - m_cache.dragging_center); (*m_volumes)[i]->set_volume_offset(m_cache.dragging_center - m_cache.volumes_data[i].get_instance_position() + offset); } (*m_volumes)[i]->set_volume_rotation(new_rotation); } #else // extracts rotations from the composed transformation Vec3d new_rotation = Geometry::extract_euler_angles(m * m_cache.volumes_data[i].get_rotation_matrix()); (*m_volumes)[i]->set_offset(m_cache.dragging_center + m * (m_cache.volumes_data[i].get_position() - m_cache.dragging_center)); (*m_volumes)[i]->set_rotation(new_rotation); #endif // ENABLE_MODELVOLUME_TRANSFORM } } #if !DISABLE_INSTANCES_SYNCH if (m_mode == Instance) _synchronize_unselected_instances(); else if (m_mode == Volume) _synchronize_unselected_volumes(); #endif // !DISABLE_INSTANCES_SYNCH m_bounding_box_dirty = true; } void GLCanvas3D::Selection::flattening_rotate(const Vec3d& normal) { // We get the normal in untransformed coordinates. We must transform it using the instance matrix, find out // how to rotate the instance so it faces downwards and do the rotation. All that for all selected instances. // The function assumes that is_from_single_object() holds. if (!m_valid) return; for (unsigned int i : m_list) { #if ENABLE_MODELVOLUME_TRANSFORM Transform3d wst = m_cache.volumes_data[i].get_instance_scale_matrix() * m_cache.volumes_data[i].get_volume_scale_matrix(); Vec3d scaling_factor = Vec3d(1./wst(0,0), 1./wst(1,1), 1./wst(2,2)); Vec3d rotation = Geometry::extract_euler_angles(m_cache.volumes_data[i].get_instance_rotation_matrix() * m_cache.volumes_data[i].get_volume_rotation_matrix()); Vec3d transformed_normal = Geometry::assemble_transform(Vec3d::Zero(), rotation, scaling_factor) * normal; transformed_normal.normalize(); Vec3d axis = transformed_normal(2) > 0.999f ? Vec3d(1., 0., 0.) : Vec3d(transformed_normal.cross(Vec3d(0., 0., -1.))); axis.normalize(); Transform3d extra_rotation = Transform3d::Identity(); extra_rotation.rotate(Eigen::AngleAxisd(acos(-transformed_normal(2)), axis)); Vec3d new_rotation = Geometry::extract_euler_angles(extra_rotation * m_cache.volumes_data[i].get_instance_rotation_matrix() ); (*m_volumes)[i]->set_instance_rotation(new_rotation); #else Transform3d wst = m_cache.volumes_data[i].get_scale_matrix() * m_cache.volumes_data[i].get_scale_matrix(); Vec3d scaling_factor = Vec3d(1. / wst(0, 0), 1. / wst(1, 1), 1. / wst(2, 2)); Vec3d rotation = Geometry::extract_euler_angles(m_cache.volumes_data[i].get_rotation_matrix() * m_cache.volumes_data[i].get_rotation_matrix()); Vec3d transformed_normal = Geometry::assemble_transform(Vec3d::Zero(), rotation, scaling_factor) * normal; transformed_normal.normalize(); Vec3d axis = transformed_normal(2) > 0.999f ? Vec3d(1., 0., 0.) : Vec3d(transformed_normal.cross(Vec3d(0., 0., -1.))); axis.normalize(); Transform3d extra_rotation = Transform3d::Identity(); extra_rotation.rotate(Eigen::AngleAxisd(acos(-transformed_normal(2)), axis)); Vec3d new_rotation = Geometry::extract_euler_angles(extra_rotation * m_cache.volumes_data[i].get_rotation_matrix()); (*m_volumes)[i]->set_rotation(new_rotation); #endif // ENABLE_MODELVOLUME_TRANSFORM } #if !DISABLE_INSTANCES_SYNCH if (m_mode == Instance) _synchronize_unselected_instances(); #endif // !DISABLE_INSTANCES_SYNCH m_bounding_box_dirty = true; } void GLCanvas3D::Selection::scale(const Vec3d& scale, bool local) { if (!m_valid) return; for (unsigned int i : m_list) { if (is_single_full_instance()) #if ENABLE_MODELVOLUME_TRANSFORM (*m_volumes)[i]->set_instance_scaling_factor(scale); #else (*m_volumes)[i]->set_scaling_factor(scale); #endif // ENABLE_MODELVOLUME_TRANSFORM #if ENABLE_MODELVOLUME_TRANSFORM else if (is_single_volume() || is_single_modifier()) (*m_volumes)[i]->set_volume_scaling_factor(scale); #endif // ENABLE_MODELVOLUME_TRANSFORM else { Transform3d m = Geometry::assemble_transform(Vec3d::Zero(), Vec3d::Zero(), scale); #if ENABLE_MODELVOLUME_TRANSFORM if (m_mode == Instance) { Eigen::Matrix new_matrix = (m * m_cache.volumes_data[i].get_instance_scale_matrix()).matrix().block(0, 0, 3, 3); // extracts scaling factors from the composed transformation Vec3d new_scale(new_matrix.col(0).norm(), new_matrix.col(1).norm(), new_matrix.col(2).norm()); if (!local) (*m_volumes)[i]->set_instance_offset(m_cache.dragging_center + m * (m_cache.volumes_data[i].get_instance_position() - m_cache.dragging_center)); (*m_volumes)[i]->set_instance_scaling_factor(new_scale); } else if (m_mode == Volume) { Eigen::Matrix new_matrix = (m * m_cache.volumes_data[i].get_volume_scale_matrix()).matrix().block(0, 0, 3, 3); // extracts scaling factors from the composed transformation Vec3d new_scale(new_matrix.col(0).norm(), new_matrix.col(1).norm(), new_matrix.col(2).norm()); if (!local) { Vec3d offset = m * (m_cache.volumes_data[i].get_volume_position() + m_cache.volumes_data[i].get_instance_position() - m_cache.dragging_center); (*m_volumes)[i]->set_volume_offset(m_cache.dragging_center - m_cache.volumes_data[i].get_instance_position() + offset); } (*m_volumes)[i]->set_volume_scaling_factor(new_scale); } #else Eigen::Matrix new_matrix = (m * m_cache.volumes_data[i].get_scale_matrix()).matrix().block(0, 0, 3, 3); // extracts scaling factors from the composed transformation Vec3d new_scale(new_matrix.col(0).norm(), new_matrix.col(1).norm(), new_matrix.col(2).norm()); (*m_volumes)[i]->set_offset(m_cache.dragging_center + m * (m_cache.volumes_data[i].get_position() - m_cache.dragging_center)); (*m_volumes)[i]->set_scaling_factor(new_scale); #endif // ENABLE_MODELVOLUME_TRANSFORM } } #if !DISABLE_INSTANCES_SYNCH if (m_mode == Instance) _synchronize_unselected_instances(); else if (m_mode == Volume) _synchronize_unselected_volumes(); #endif // !DISABLE_INSTANCES_SYNCH #if ENABLE_ENSURE_ON_BED_WHILE_SCALING _ensure_on_bed(); #endif // ENABLE_ENSURE_ON_BED_WHILE_SCALING m_bounding_box_dirty = true; } void GLCanvas3D::Selection::mirror(Axis axis) { if (!m_valid) return; bool single_full_instance = is_single_full_instance(); for (unsigned int i : m_list) { if (single_full_instance) #if ENABLE_MODELVOLUME_TRANSFORM (*m_volumes)[i]->set_instance_mirror(axis, -(*m_volumes)[i]->get_instance_mirror(axis)); else if (m_mode == Volume) (*m_volumes)[i]->set_volume_mirror(axis, -(*m_volumes)[i]->get_volume_mirror(axis)); #else (*m_volumes)[i]->set_mirror(axis, -(*m_volumes)[i]->get_mirror(axis)); #endif // ENABLE_MODELVOLUME_TRANSFORM } #if !DISABLE_INSTANCES_SYNCH if (m_mode == Instance) _synchronize_unselected_instances(); else if (m_mode == Volume) _synchronize_unselected_volumes(); #endif // !DISABLE_INSTANCES_SYNCH m_bounding_box_dirty = true; } void GLCanvas3D::Selection::translate(unsigned int object_idx, const Vec3d& displacement) { if (!m_valid) return; for (unsigned int i : m_list) { GLVolume* v = (*m_volumes)[i]; if (v->object_idx() == object_idx) #if ENABLE_MODELVOLUME_TRANSFORM v->set_instance_offset(v->get_instance_offset() + displacement); #else v->set_offset(v->get_offset() + displacement); #endif // ENABLE_MODELVOLUME_TRANSFORM } std::set done; // prevent processing volumes twice done.insert(m_list.begin(), m_list.end()); for (unsigned int i : m_list) { if (done.size() == m_volumes->size()) break; int object_idx = (*m_volumes)[i]->object_idx(); if (object_idx >= 1000) continue; // Process unselected volumes of the object. for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j) { if (done.size() == m_volumes->size()) break; if (done.find(j) != done.end()) continue; GLVolume* v = (*m_volumes)[j]; if (v->object_idx() != object_idx) continue; #if ENABLE_MODELVOLUME_TRANSFORM v->set_instance_offset(v->get_instance_offset() + displacement); #else v->set_offset(v->get_offset() + displacement); #endif // ENABLE_MODELVOLUME_TRANSFORM done.insert(j); } } m_bounding_box_dirty = true; } void GLCanvas3D::Selection::translate(unsigned int object_idx, unsigned int instance_idx, const Vec3d& displacement) { if (!m_valid) return; for (unsigned int i : m_list) { GLVolume* v = (*m_volumes)[i]; if ((v->object_idx() == object_idx) && (v->instance_idx() == instance_idx)) #if ENABLE_MODELVOLUME_TRANSFORM v->set_instance_offset(v->get_instance_offset() + displacement); #else v->set_offset(v->get_offset() + displacement); #endif // ENABLE_MODELVOLUME_TRANSFORM } std::set done; // prevent processing volumes twice done.insert(m_list.begin(), m_list.end()); for (unsigned int i : m_list) { if (done.size() == m_volumes->size()) break; int object_idx = (*m_volumes)[i]->object_idx(); if (object_idx >= 1000) continue; // Process unselected volumes of the object. for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j) { if (done.size() == m_volumes->size()) break; if (done.find(j) != done.end()) continue; GLVolume* v = (*m_volumes)[j]; if ((v->object_idx() != object_idx) || (v->instance_idx() != instance_idx)) continue; #if ENABLE_MODELVOLUME_TRANSFORM v->set_instance_offset(v->get_instance_offset() + displacement); #else v->set_offset(v->get_offset() + displacement); #endif // ENABLE_MODELVOLUME_TRANSFORM done.insert(j); } } m_bounding_box_dirty = true; } void GLCanvas3D::Selection::erase() { if (!m_valid) return; if (is_single_full_object()) wxGetApp().obj_list()->delete_from_model_and_list(ItemType::itObject, get_object_idx(), 0); else if (is_multiple_full_object()) { std::vector items; items.reserve(m_cache.content.size()); for (ObjectIdxsToInstanceIdxsMap::iterator it = m_cache.content.begin(); it != m_cache.content.end(); ++it) { items.emplace_back(ItemType::itObject, it->first, 0); } wxGetApp().obj_list()->delete_from_model_and_list(items); } else if (is_single_full_instance()) wxGetApp().obj_list()->delete_from_model_and_list(ItemType::itInstance, get_object_idx(), get_instance_idx()); else if (is_multiple_full_instance()) { std::set> instances_idxs; for (ObjectIdxsToInstanceIdxsMap::iterator obj_it = m_cache.content.begin(); obj_it != m_cache.content.end(); ++obj_it) { for (InstanceIdxsList::reverse_iterator inst_it = obj_it->second.rbegin(); inst_it != obj_it->second.rend(); ++inst_it) { instances_idxs.insert(std::make_pair(obj_it->first, *inst_it)); } } std::vector items; items.reserve(instances_idxs.size()); for (const std::pair& i : instances_idxs) { items.emplace_back(ItemType::itInstance, i.first, i.second); } wxGetApp().obj_list()->delete_from_model_and_list(items); } else if (is_mixed()) { std::set items_set; std::map volumes_in_obj; for (auto i : m_list) { const auto gl_vol = (*m_volumes)[i]; const auto glv_obj_idx = gl_vol->object_idx(); const auto model_object = m_model->objects[glv_obj_idx]; if (model_object->instances.size() == 1) { if (model_object->volumes.size() == 1) items_set.insert(ItemForDelete(ItemType::itObject, glv_obj_idx, -1)); else { items_set.insert(ItemForDelete(ItemType::itVolume, glv_obj_idx, gl_vol->volume_idx())); int idx = (volumes_in_obj.find(glv_obj_idx) == volumes_in_obj.end()) ? 0 : volumes_in_obj.at(glv_obj_idx); volumes_in_obj[glv_obj_idx] = ++idx; } continue; } const auto glv_ins_idx = gl_vol->instance_idx(); for (auto obj_ins : m_cache.content) { if (obj_ins.first == glv_obj_idx) { if (obj_ins.second.find(glv_ins_idx) != obj_ins.second.end()) { if (obj_ins.second.size() == model_object->instances.size()) items_set.insert(ItemForDelete(ItemType::itVolume, glv_obj_idx, gl_vol->volume_idx())); else items_set.insert(ItemForDelete(ItemType::itInstance, glv_obj_idx, glv_ins_idx)); break; } } } } std::vector items; items.reserve(items_set.size()); for (const ItemForDelete& i : items_set) { if (i.type == ItemType::itVolume ) { const int vol_in_obj_cnt = volumes_in_obj.find(i.obj_idx) == volumes_in_obj.end() ? 0 : volumes_in_obj.at(i.obj_idx); if (vol_in_obj_cnt == m_model->objects[i.obj_idx]->volumes.size()) { if (i.sub_obj_idx == vol_in_obj_cnt - 1) items.emplace_back(ItemType::itObject, i.obj_idx, 0); continue; } } items.emplace_back(i.type, i.obj_idx, i.sub_obj_idx); } wxGetApp().obj_list()->delete_from_model_and_list(items); } else { std::set> volumes_idxs; for (unsigned int i : m_list) { const GLVolume* v = (*m_volumes)[i]; // Only remove volumes associated with ModelVolumes from the object list. // Temporary meshes (SLA supports or pads) are not managed by the object list. if (v->volume_idx() >= 0) volumes_idxs.insert(std::make_pair(v->object_idx(), v->volume_idx())); } std::vector items; items.reserve(volumes_idxs.size()); for (const std::pair& v : volumes_idxs) { items.emplace_back(ItemType::itVolume, v.first, v.second); } wxGetApp().obj_list()->delete_from_model_and_list(items); } } void GLCanvas3D::Selection::render() const { if (is_empty()) return; // render cumulative bounding box of selected volumes _render_selected_volumes(); _render_synchronized_volumes(); } void GLCanvas3D::Selection::_update_valid() { m_valid = (m_volumes != nullptr) && (m_model != nullptr); } void GLCanvas3D::Selection::_update_type() { m_cache.content.clear(); m_type = Mixed; for (unsigned int i : m_list) { const GLVolume* volume = (*m_volumes)[i]; int obj_idx = volume->object_idx(); int inst_idx = volume->instance_idx(); ObjectIdxsToInstanceIdxsMap::iterator obj_it = m_cache.content.find(obj_idx); if (obj_it == m_cache.content.end()) obj_it = m_cache.content.insert(ObjectIdxsToInstanceIdxsMap::value_type(obj_idx, InstanceIdxsList())).first; obj_it->second.insert(inst_idx); } bool requires_disable = false; if (!m_valid) m_type = Invalid; else { if (m_list.empty()) m_type = Empty; else if (m_list.size() == 1) { const GLVolume* first = (*m_volumes)[*m_list.begin()]; if (first->is_wipe_tower) m_type = WipeTower; else if (first->is_modifier) { m_type = SingleModifier; requires_disable = true; } else { const ModelObject* model_object = m_model->objects[first->object_idx()]; unsigned int volumes_count = (unsigned int)model_object->volumes.size(); unsigned int instances_count = (unsigned int)model_object->instances.size(); if (volumes_count * instances_count == 1) { m_type = SingleFullObject; // ensures the correct mode is selected m_mode = Instance; } else if (volumes_count == 1) // instances_count > 1 { m_type = SingleFullInstance; // ensures the correct mode is selected m_mode = Instance; } else { m_type = SingleVolume; requires_disable = true; } } } else { if (m_cache.content.size() == 1) // single object { const ModelObject* model_object = m_model->objects[m_cache.content.begin()->first]; unsigned int model_volumes_count = (unsigned int)model_object->volumes.size(); unsigned int sla_volumes_count = 0; for (unsigned int i : m_list) { if ((*m_volumes)[i]->volume_idx() < 0) ++sla_volumes_count; } unsigned int volumes_count = model_volumes_count + sla_volumes_count; unsigned int instances_count = (unsigned int)model_object->instances.size(); unsigned int selected_instances_count = (unsigned int)m_cache.content.begin()->second.size(); if (volumes_count * instances_count == (unsigned int)m_list.size()) { m_type = SingleFullObject; // ensures the correct mode is selected m_mode = Instance; } else if (selected_instances_count == 1) { if (volumes_count == (unsigned int)m_list.size()) { m_type = SingleFullInstance; // ensures the correct mode is selected m_mode = Instance; } else { unsigned int modifiers_count = 0; for (unsigned int i : m_list) { if ((*m_volumes)[i]->is_modifier) ++modifiers_count; } if (modifiers_count == 0) { m_type = MultipleVolume; requires_disable = true; } else if (modifiers_count == (unsigned int)m_list.size()) { m_type = MultipleModifier; requires_disable = true; } } } else if ((selected_instances_count > 1) && (selected_instances_count * volumes_count == (unsigned int)m_list.size())) { m_type = MultipleFullInstance; // ensures the correct mode is selected m_mode = Instance; } } else { int sels_cntr = 0; for (ObjectIdxsToInstanceIdxsMap::iterator it = m_cache.content.begin(); it != m_cache.content.end(); ++it) { const ModelObject* model_object = m_model->objects[it->first]; unsigned int volumes_count = (unsigned int)model_object->volumes.size(); unsigned int instances_count = (unsigned int)model_object->instances.size(); sels_cntr += volumes_count * instances_count; } if (sels_cntr == (unsigned int)m_list.size()) { m_type = MultipleFullObject; // ensures the correct mode is selected m_mode = Instance; } } } } int object_idx = get_object_idx(); int instance_idx = get_instance_idx(); for (GLVolume* v : *m_volumes) { v->disabled = requires_disable ? (v->object_idx() != object_idx) || (v->instance_idx() != instance_idx) : false; } std::cout << "Selection: "; std::cout << "mode: "; switch (m_mode) { case Volume: { std::cout << "Volume"; break; } case Instance: { std::cout << "Instance"; break; } } std::cout << " - type: "; switch (m_type) { case Invalid: { std::cout << "Invalid" << std::endl; break; } case Empty: { std::cout << "Empty" << std::endl; break; } case WipeTower: { std::cout << "WipeTower" << std::endl; break; } case SingleModifier: { std::cout << "SingleModifier" << std::endl; break; } case MultipleModifier: { std::cout << "MultipleModifier" << std::endl; break; } case SingleVolume: { std::cout << "SingleVolume" << std::endl; break; } case MultipleVolume: { std::cout << "MultipleVolume" << std::endl; break; } case SingleFullObject: { std::cout << "SingleFullObject" << std::endl; break; } case MultipleFullObject: { std::cout << "MultipleFullObject" << std::endl; break; } case SingleFullInstance: { std::cout << "SingleFullInstance" << std::endl; break; } case MultipleFullInstance: { std::cout << "MultipleFullInstance" << std::endl; break; } case Mixed: { std::cout << "Mixed" << std::endl; break; } } } void GLCanvas3D::Selection::_set_caches() { m_cache.volumes_data.clear(); for (unsigned int i : m_list) { const GLVolume* v = (*m_volumes)[i]; #if ENABLE_MODELVOLUME_TRANSFORM m_cache.volumes_data.emplace(i, VolumeCache(v->get_volume_transformation(), v->get_instance_transformation())); #else m_cache.volumes_data.emplace(i, VolumeCache(v->get_offset(), v->get_rotation(), v->get_scaling_factor())); #endif // ENABLE_MODELVOLUME_TRANSFORM } m_cache.dragging_center = get_bounding_box().center(); } void GLCanvas3D::Selection::_add_volume(unsigned int volume_idx) { m_list.insert(volume_idx); (*m_volumes)[volume_idx]->selected = true; } void GLCanvas3D::Selection::_add_instance(unsigned int object_idx, unsigned int instance_idx) { for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i) { GLVolume* v = (*m_volumes)[i]; if ((v->object_idx() == object_idx) && (v->instance_idx() == instance_idx)) _add_volume(i); } } void GLCanvas3D::Selection::_add_object(unsigned int object_idx) { for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i) { GLVolume* v = (*m_volumes)[i]; if (v->object_idx() == object_idx) _add_volume(i); } } void GLCanvas3D::Selection::_remove_volume(unsigned int volume_idx) { IndicesList::iterator v_it = m_list.find(volume_idx); if (v_it == m_list.end()) return; m_list.erase(v_it); (*m_volumes)[volume_idx]->selected = false; } void GLCanvas3D::Selection::_remove_instance(unsigned int object_idx, unsigned int instance_idx) { for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i) { GLVolume* v = (*m_volumes)[i]; if ((v->object_idx() == object_idx) && (v->instance_idx() == instance_idx)) _remove_volume(i); } } void GLCanvas3D::Selection::_remove_object(unsigned int object_idx) { for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i) { GLVolume* v = (*m_volumes)[i]; if (v->object_idx() == object_idx) _remove_volume(i); } } void GLCanvas3D::Selection::_calc_bounding_box() const { m_bounding_box = BoundingBoxf3(); if (m_valid) { for (unsigned int i : m_list) { m_bounding_box.merge((*m_volumes)[i]->transformed_convex_hull_bounding_box()); } } m_bounding_box_dirty = false; } void GLCanvas3D::Selection::_render_selected_volumes() const { float color[3] = { 1.0f, 1.0f, 1.0f }; _render_bounding_box(get_bounding_box(), color); } void GLCanvas3D::Selection::_render_synchronized_volumes() const { if (m_mode == Instance) return; float color[3] = { 1.0f, 1.0f, 0.0f }; for (unsigned int i : m_list) { const GLVolume* volume = (*m_volumes)[i]; int object_idx = volume->object_idx(); int instance_idx = volume->instance_idx(); int volume_idx = volume->volume_idx(); for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j) { if (i == j) continue; const GLVolume* v = (*m_volumes)[j]; if ((v->object_idx() != object_idx) || (v->volume_idx() != volume_idx)) continue; _render_bounding_box(v->transformed_convex_hull_bounding_box(), color); } } } void GLCanvas3D::Selection::_render_bounding_box(const BoundingBoxf3& box, float* color) const { if (color == nullptr) return; Vec3f b_min = box.min.cast(); Vec3f b_max = box.max.cast(); Vec3f size = 0.2f * box.size().cast(); ::glEnable(GL_DEPTH_TEST); ::glColor3fv(color); ::glLineWidth(2.0f); ::glBegin(GL_LINES); ::glVertex3f(b_min(0), b_min(1), b_min(2)); ::glVertex3f(b_min(0) + size(0), b_min(1), b_min(2)); ::glVertex3f(b_min(0), b_min(1), b_min(2)); ::glVertex3f(b_min(0), b_min(1) + size(1), b_min(2)); ::glVertex3f(b_min(0), b_min(1), b_min(2)); ::glVertex3f(b_min(0), b_min(1), b_min(2) + size(2)); ::glVertex3f(b_max(0), b_min(1), b_min(2)); ::glVertex3f(b_max(0) - size(0), b_min(1), b_min(2)); ::glVertex3f(b_max(0), b_min(1), b_min(2)); ::glVertex3f(b_max(0), b_min(1) + size(1), b_min(2)); ::glVertex3f(b_max(0), b_min(1), b_min(2)); ::glVertex3f(b_max(0), b_min(1), b_min(2) + size(2)); ::glVertex3f(b_max(0), b_max(1), b_min(2)); ::glVertex3f(b_max(0) - size(0), b_max(1), b_min(2)); ::glVertex3f(b_max(0), b_max(1), b_min(2)); ::glVertex3f(b_max(0), b_max(1) - size(1), b_min(2)); ::glVertex3f(b_max(0), b_max(1), b_min(2)); ::glVertex3f(b_max(0), b_max(1), b_min(2) + size(2)); ::glVertex3f(b_min(0), b_max(1), b_min(2)); ::glVertex3f(b_min(0) + size(0), b_max(1), b_min(2)); ::glVertex3f(b_min(0), b_max(1), b_min(2)); ::glVertex3f(b_min(0), b_max(1) - size(1), b_min(2)); ::glVertex3f(b_min(0), b_max(1), b_min(2)); ::glVertex3f(b_min(0), b_max(1), b_min(2) + size(2)); ::glVertex3f(b_min(0), b_min(1), b_max(2)); ::glVertex3f(b_min(0) + size(0), b_min(1), b_max(2)); ::glVertex3f(b_min(0), b_min(1), b_max(2)); ::glVertex3f(b_min(0), b_min(1) + size(1), b_max(2)); ::glVertex3f(b_min(0), b_min(1), b_max(2)); ::glVertex3f(b_min(0), b_min(1), b_max(2) - size(2)); ::glVertex3f(b_max(0), b_min(1), b_max(2)); ::glVertex3f(b_max(0) - size(0), b_min(1), b_max(2)); ::glVertex3f(b_max(0), b_min(1), b_max(2)); ::glVertex3f(b_max(0), b_min(1) + size(1), b_max(2)); ::glVertex3f(b_max(0), b_min(1), b_max(2)); ::glVertex3f(b_max(0), b_min(1), b_max(2) - size(2)); ::glVertex3f(b_max(0), b_max(1), b_max(2)); ::glVertex3f(b_max(0) - size(0), b_max(1), b_max(2)); ::glVertex3f(b_max(0), b_max(1), b_max(2)); ::glVertex3f(b_max(0), b_max(1) - size(1), b_max(2)); ::glVertex3f(b_max(0), b_max(1), b_max(2)); ::glVertex3f(b_max(0), b_max(1), b_max(2) - size(2)); ::glVertex3f(b_min(0), b_max(1), b_max(2)); ::glVertex3f(b_min(0) + size(0), b_max(1), b_max(2)); ::glVertex3f(b_min(0), b_max(1), b_max(2)); ::glVertex3f(b_min(0), b_max(1) - size(1), b_max(2)); ::glVertex3f(b_min(0), b_max(1), b_max(2)); ::glVertex3f(b_min(0), b_max(1), b_max(2) - size(2)); ::glEnd(); } void GLCanvas3D::Selection::_synchronize_unselected_instances() { std::set done; // prevent processing volumes twice done.insert(m_list.begin(), m_list.end()); for (unsigned int i : m_list) { if (done.size() == m_volumes->size()) break; const GLVolume* volume = (*m_volumes)[i]; int object_idx = volume->object_idx(); if (object_idx >= 1000) continue; int instance_idx = volume->instance_idx(); #if ENABLE_MODELVOLUME_TRANSFORM const Vec3d& rotation = volume->get_instance_rotation(); const Vec3d& scaling_factor = volume->get_instance_scaling_factor(); const Vec3d& mirror = volume->get_instance_mirror(); #else const Vec3d& rotation = volume->get_rotation(); const Vec3d& scaling_factor = volume->get_scaling_factor(); const Vec3d& mirror = volume->get_mirror(); #endif // ENABLE_MODELVOLUME_TRANSFORM // Process unselected instances. for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j) { if (done.size() == m_volumes->size()) break; if (done.find(j) != done.end()) continue; GLVolume* v = (*m_volumes)[j]; if ((v->object_idx() != object_idx) || (v->instance_idx() == instance_idx)) continue; #if ENABLE_MODELVOLUME_TRANSFORM v->set_instance_rotation(Vec3d(rotation(0), rotation(1), v->get_instance_rotation()(2))); v->set_instance_scaling_factor(scaling_factor); v->set_instance_mirror(mirror); #else v->set_rotation(Vec3d(rotation(0), rotation(1), v->get_rotation()(2))); v->set_scaling_factor(scaling_factor); v->set_mirror(mirror); #endif // ENABLE_MODELVOLUME_TRANSFORM done.insert(j); } } } void GLCanvas3D::Selection::_synchronize_unselected_volumes() { for (unsigned int i : m_list) { const GLVolume* volume = (*m_volumes)[i]; int object_idx = volume->object_idx(); if (object_idx >= 1000) continue; int volume_idx = volume->volume_idx(); #if ENABLE_MODELVOLUME_TRANSFORM const Vec3d& offset = volume->get_volume_offset(); const Vec3d& rotation = volume->get_volume_rotation(); const Vec3d& scaling_factor = volume->get_volume_scaling_factor(); const Vec3d& mirror = volume->get_volume_mirror(); #else const Vec3d& offset = volume->get_offset(); const Vec3d& rotation = volume->get_rotation(); const Vec3d& scaling_factor = volume->get_scaling_factor(); const Vec3d& mirror = volume->get_mirror(); #endif // ENABLE_MODELVOLUME_TRANSFORM // Process unselected volumes. for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j) { if (j == i) continue; GLVolume* v = (*m_volumes)[j]; if ((v->object_idx() != object_idx) || (v->volume_idx() != volume_idx)) continue; #if ENABLE_MODELVOLUME_TRANSFORM v->set_volume_offset(offset); v->set_volume_rotation(rotation); v->set_volume_scaling_factor(scaling_factor); v->set_volume_mirror(mirror); #else v->set_offset(offset); v->set_rotation(Vec3d(rotation)); v->set_scaling_factor(scaling_factor); v->set_mirror(mirror); #endif // ENABLE_MODELVOLUME_TRANSFORM } } } #if ENABLE_ENSURE_ON_BED_WHILE_SCALING void GLCanvas3D::Selection::_ensure_on_bed() { typedef std::map, double> InstancesToZMap; InstancesToZMap instances_min_z; for (GLVolume* volume : *m_volumes) { if (!volume->is_wipe_tower && !volume->is_modifier) { double min_z = volume->transformed_convex_hull_bounding_box().min(2); std::pair instance = std::make_pair(volume->object_idx(), volume->instance_idx()); InstancesToZMap::iterator it = instances_min_z.find(instance); if (it == instances_min_z.end()) it = instances_min_z.insert(InstancesToZMap::value_type(instance, DBL_MAX)).first; it->second = std::min(it->second, min_z); } } for (GLVolume* volume : *m_volumes) { std::pair instance = std::make_pair(volume->object_idx(), volume->instance_idx()); InstancesToZMap::iterator it = instances_min_z.find(instance); if (it != instances_min_z.end()) volume->set_instance_offset(Z, volume->get_instance_offset(Z) - it->second); } } #endif // ENABLE_ENSURE_ON_BED_WHILE_SCALING const float GLCanvas3D::Gizmos::OverlayTexturesScale = 1.0f; const float GLCanvas3D::Gizmos::OverlayOffsetX = 10.0f * OverlayTexturesScale; const float GLCanvas3D::Gizmos::OverlayGapY = 5.0f * OverlayTexturesScale; GLCanvas3D::Gizmos::Gizmos() : m_enabled(false) , m_current(Undefined) { } GLCanvas3D::Gizmos::~Gizmos() { _reset(); } bool GLCanvas3D::Gizmos::init(GLCanvas3D& parent) { GLGizmoBase* gizmo = new GLGizmoMove3D(parent); if (gizmo == nullptr) return false; if (!gizmo->init()) return false; m_gizmos.insert(GizmosMap::value_type(Move, gizmo)); gizmo = new GLGizmoScale3D(parent); if (gizmo == nullptr) return false; if (!gizmo->init()) return false; m_gizmos.insert(GizmosMap::value_type(Scale, gizmo)); gizmo = new GLGizmoRotate3D(parent); if (gizmo == nullptr) { _reset(); return false; } if (!gizmo->init()) { _reset(); return false; } m_gizmos.insert(GizmosMap::value_type(Rotate, gizmo)); gizmo = new GLGizmoFlatten(parent); if (gizmo == nullptr) return false; if (!gizmo->init()) { _reset(); return false; } m_gizmos.insert(GizmosMap::value_type(Flatten, gizmo)); gizmo = new GLGizmoCut(parent); if (gizmo == nullptr) return false; if (!gizmo->init()) { _reset(); return false; } m_gizmos.insert(GizmosMap::value_type(Cut, gizmo)); gizmo = new GLGizmoSlaSupports(parent); if (gizmo == nullptr) return false; if (!gizmo->init()) { _reset(); return false; } m_gizmos.insert(GizmosMap::value_type(SlaSupports, gizmo)); return true; } bool GLCanvas3D::Gizmos::is_enabled() const { return m_enabled; } void GLCanvas3D::Gizmos::set_enabled(bool enable) { m_enabled = enable; } std::string GLCanvas3D::Gizmos::update_hover_state(const GLCanvas3D& canvas, const Vec2d& mouse_pos, const GLCanvas3D::Selection& selection) { std::string name = ""; if (!m_enabled) return name; float cnv_h = (float)canvas.get_canvas_size().get_height(); float height = _get_total_overlay_height(); float top_y = 0.5f * (cnv_h - height); for (GizmosMap::iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it) { if ((it->second == nullptr) || !it->second->is_selectable()) continue; float tex_size = (float)it->second->get_textures_size() * OverlayTexturesScale; float half_tex_size = 0.5f * tex_size; // we currently use circular icons for gizmo, so we check the radius if (it->second->is_activable(selection) && (it->second->get_state() != GLGizmoBase::On)) { bool inside = (mouse_pos - Vec2d(OverlayOffsetX + half_tex_size, top_y + half_tex_size)).norm() < half_tex_size; it->second->set_state(inside ? GLGizmoBase::Hover : GLGizmoBase::Off); if (inside) name = it->second->get_name(); } top_y += (tex_size + OverlayGapY); } return name; } void GLCanvas3D::Gizmos::update_on_off_state(const GLCanvas3D& canvas, const Vec2d& mouse_pos, const GLCanvas3D::Selection& selection) { if (!m_enabled) return; float cnv_h = (float)canvas.get_canvas_size().get_height(); float height = _get_total_overlay_height(); float top_y = 0.5f * (cnv_h - height); for (GizmosMap::iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it) { if ((it->second == nullptr) || !it->second->is_selectable()) continue; float tex_size = (float)it->second->get_textures_size() * OverlayTexturesScale; float half_tex_size = 0.5f * tex_size; // we currently use circular icons for gizmo, so we check the radius if (it->second->is_activable(selection) && ((mouse_pos - Vec2d(OverlayOffsetX + half_tex_size, top_y + half_tex_size)).norm() < half_tex_size)) { if ((it->second->get_state() == GLGizmoBase::On)) { it->second->set_state(GLGizmoBase::Hover); m_current = Undefined; } else if ((it->second->get_state() == GLGizmoBase::Hover)) { it->second->set_state(GLGizmoBase::On); m_current = it->first; } } else it->second->set_state(GLGizmoBase::Off); top_y += (tex_size + OverlayGapY); } GizmosMap::iterator it = m_gizmos.find(m_current); if ((it != m_gizmos.end()) && (it->second != nullptr) && (it->second->get_state() != GLGizmoBase::On)) it->second->set_state(GLGizmoBase::On); } void GLCanvas3D::Gizmos::update_on_off_state(const Selection& selection) { GizmosMap::iterator it = m_gizmos.find(m_current); if ((it != m_gizmos.end()) && (it->second != nullptr)) { if (!it->second->is_activable(selection)) { it->second->set_state(GLGizmoBase::Off); m_current = Undefined; } } } void GLCanvas3D::Gizmos::reset_all_states() { if (!m_enabled) return; for (GizmosMap::const_iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it) { if (it->second != nullptr) { it->second->set_state(GLGizmoBase::Off); it->second->set_hover_id(-1); } } m_current = Undefined; } void GLCanvas3D::Gizmos::set_hover_id(int id) { if (!m_enabled) return; for (GizmosMap::const_iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it) { if ((it->second != nullptr) && (it->second->get_state() == GLGizmoBase::On)) it->second->set_hover_id(id); } } void GLCanvas3D::Gizmos::enable_grabber(EType type, unsigned int id, bool enable) { if (!m_enabled) return; GizmosMap::const_iterator it = m_gizmos.find(type); if (it != m_gizmos.end()) { if (enable) it->second->enable_grabber(id); else it->second->disable_grabber(id); } } bool GLCanvas3D::Gizmos::overlay_contains_mouse(const GLCanvas3D& canvas, const Vec2d& mouse_pos) const { if (!m_enabled) return false; float cnv_h = (float)canvas.get_canvas_size().get_height(); float height = _get_total_overlay_height(); float top_y = 0.5f * (cnv_h - height); for (GizmosMap::const_iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it) { if ((it->second == nullptr) || !it->second->is_selectable()) continue; float tex_size = (float)it->second->get_textures_size() * OverlayTexturesScale; float half_tex_size = 0.5f * tex_size; // we currently use circular icons for gizmo, so we check the radius if ((mouse_pos - Vec2d(OverlayOffsetX + half_tex_size, top_y + half_tex_size)).norm() < half_tex_size) return true; top_y += (tex_size + OverlayGapY); } return false; } bool GLCanvas3D::Gizmos::grabber_contains_mouse() const { if (!m_enabled) return false; GLGizmoBase* curr = _get_current(); return (curr != nullptr) ? (curr->get_hover_id() != -1) : false; } void GLCanvas3D::Gizmos::update(const Linef3& mouse_ray, bool shift_down, const Point* mouse_pos) { if (!m_enabled) return; GLGizmoBase* curr = _get_current(); if (curr != nullptr) curr->update(GLGizmoBase::UpdateData(mouse_ray, mouse_pos, shift_down)); } GLCanvas3D::Gizmos::EType GLCanvas3D::Gizmos::get_current_type() const { return m_current; } bool GLCanvas3D::Gizmos::is_running() const { if (!m_enabled) return false; GLGizmoBase* curr = _get_current(); return (curr != nullptr) ? (curr->get_state() == GLGizmoBase::On) : false; } bool GLCanvas3D::Gizmos::handle_shortcut(int key, const Selection& selection) { if (!m_enabled) return false; bool handled = false; for (GizmosMap::iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it) { if ((it->second == nullptr) || !it->second->is_selectable()) continue; int it_key = it->second->get_shortcut_key(); if (it->second->is_activable(selection) && ((it_key == key - 64) || (it_key == key - 96))) { if ((it->second->get_state() == GLGizmoBase::On)) { it->second->set_state(GLGizmoBase::Off); m_current = Undefined; handled = true; } else if ((it->second->get_state() == GLGizmoBase::Off)) { it->second->set_state(GLGizmoBase::On); m_current = it->first; handled = true; } } else it->second->set_state(GLGizmoBase::Off); } return handled; } bool GLCanvas3D::Gizmos::is_dragging() const { if (!m_enabled) return false; GLGizmoBase* curr = _get_current(); return (curr != nullptr) ? curr->is_dragging() : false; } void GLCanvas3D::Gizmos::start_dragging(const GLCanvas3D::Selection& selection) { if (!m_enabled) return; GLGizmoBase* curr = _get_current(); if (curr != nullptr) curr->start_dragging(selection); } void GLCanvas3D::Gizmos::stop_dragging() { if (!m_enabled) return; GLGizmoBase* curr = _get_current(); if (curr != nullptr) curr->stop_dragging(); } Vec3d GLCanvas3D::Gizmos::get_displacement() const { if (!m_enabled) return Vec3d::Zero(); GizmosMap::const_iterator it = m_gizmos.find(Move); return (it != m_gizmos.end()) ? reinterpret_cast(it->second)->get_displacement() : Vec3d::Zero(); } Vec3d GLCanvas3D::Gizmos::get_scale() const { if (!m_enabled) return Vec3d::Ones(); GizmosMap::const_iterator it = m_gizmos.find(Scale); return (it != m_gizmos.end()) ? reinterpret_cast(it->second)->get_scale() : Vec3d::Ones(); } void GLCanvas3D::Gizmos::set_scale(const Vec3d& scale) { if (!m_enabled) return; GizmosMap::const_iterator it = m_gizmos.find(Scale); if (it != m_gizmos.end()) reinterpret_cast(it->second)->set_scale(scale); } Vec3d GLCanvas3D::Gizmos::get_rotation() const { if (!m_enabled) return Vec3d::Zero(); GizmosMap::const_iterator it = m_gizmos.find(Rotate); return (it != m_gizmos.end()) ? reinterpret_cast(it->second)->get_rotation() : Vec3d::Zero(); } void GLCanvas3D::Gizmos::set_rotation(const Vec3d& rotation) { if (!m_enabled) return; GizmosMap::const_iterator it = m_gizmos.find(Rotate); if (it != m_gizmos.end()) reinterpret_cast(it->second)->set_rotation(rotation); } Vec3d GLCanvas3D::Gizmos::get_flattening_normal() const { if (!m_enabled) return Vec3d::Zero(); GizmosMap::const_iterator it = m_gizmos.find(Flatten); return (it != m_gizmos.end()) ? reinterpret_cast(it->second)->get_flattening_normal() : Vec3d::Zero(); } void GLCanvas3D::Gizmos::set_flattening_data(const ModelObject* model_object) { if (!m_enabled) return; GizmosMap::const_iterator it = m_gizmos.find(Flatten); if (it != m_gizmos.end()) reinterpret_cast(it->second)->set_flattening_data(model_object); } #if ENABLE_SLA_SUPPORT_GIZMO_MOD void GLCanvas3D::Gizmos::set_sla_support_data(ModelObject* model_object, const GLCanvas3D::Selection& selection) #else void GLCanvas3D::Gizmos::set_model_object_ptr(ModelObject* model_object) #endif // ENABLE_SLA_SUPPORT_GIZMO_MOD { if (!m_enabled) return; GizmosMap::const_iterator it = m_gizmos.find(SlaSupports); if (it != m_gizmos.end()) #if ENABLE_SLA_SUPPORT_GIZMO_MOD reinterpret_cast(it->second)->set_sla_support_data(model_object, selection); #else reinterpret_cast(it->second)->set_model_object_ptr(model_object); #endif // ENABLE_SLA_SUPPORT_GIZMO_MOD } void GLCanvas3D::Gizmos::clicked_on_object(const Vec2d& mouse_position) { if (!m_enabled) return; GizmosMap::const_iterator it = m_gizmos.find(SlaSupports); if (it != m_gizmos.end()) reinterpret_cast(it->second)->clicked_on_object(mouse_position); } void GLCanvas3D::Gizmos::delete_current_grabber(bool delete_all) { if (!m_enabled) return; GizmosMap::const_iterator it = m_gizmos.find(SlaSupports); if (it != m_gizmos.end()) reinterpret_cast(it->second)->delete_current_grabber(delete_all); } void GLCanvas3D::Gizmos::render_current_gizmo(const GLCanvas3D::Selection& selection) const { if (!m_enabled) return; _render_current_gizmo(selection); } void GLCanvas3D::Gizmos::render_current_gizmo_for_picking_pass(const GLCanvas3D::Selection& selection) const { if (!m_enabled) return; GLGizmoBase* curr = _get_current(); if (curr != nullptr) curr->render_for_picking(selection); } void GLCanvas3D::Gizmos::render_overlay(const GLCanvas3D& canvas, const GLCanvas3D::Selection& selection) const { if (!m_enabled) return; ::glDisable(GL_DEPTH_TEST); ::glPushMatrix(); ::glLoadIdentity(); _render_overlay(canvas, selection); ::glPopMatrix(); } #if !ENABLE_IMGUI void GLCanvas3D::Gizmos::create_external_gizmo_widgets(wxWindow *parent) { for (auto &entry : m_gizmos) { entry.second->create_external_gizmo_widgets(parent); } } #endif // not ENABLE_IMGUI void GLCanvas3D::Gizmos::_reset() { for (GizmosMap::value_type& gizmo : m_gizmos) { delete gizmo.second; gizmo.second = nullptr; } m_gizmos.clear(); } void GLCanvas3D::Gizmos::_render_overlay(const GLCanvas3D& canvas, const GLCanvas3D::Selection& selection) const { if (m_gizmos.empty()) return; float cnv_w = (float)canvas.get_canvas_size().get_width(); #if ENABLE_IMGUI float cnv_h = (float)canvas.get_canvas_size().get_height(); #endif // ENABLE_IMGUI float zoom = canvas.get_camera_zoom(); float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f; float height = _get_total_overlay_height(); float top_x = (OverlayOffsetX - 0.5f * cnv_w) * inv_zoom; float top_y = 0.5f * height * inv_zoom; float scaled_gap_y = OverlayGapY * inv_zoom; for (GizmosMap::const_iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it) { if ((it->second == nullptr) || !it->second->is_selectable()) continue; float tex_size = (float)it->second->get_textures_size() * OverlayTexturesScale * inv_zoom; GLTexture::render_texture(it->second->get_texture_id(), top_x, top_x + tex_size, top_y - tex_size, top_y); #if ENABLE_IMGUI if (it->second->get_state() == GLGizmoBase::On) it->second->render_input_window(2.0f * OverlayOffsetX + tex_size * zoom, 0.5f * cnv_h - top_y * zoom, selection); #endif // ENABLE_IMGUI top_y -= (tex_size + scaled_gap_y); } } void GLCanvas3D::Gizmos::_render_current_gizmo(const GLCanvas3D::Selection& selection) const { GLGizmoBase* curr = _get_current(); if (curr != nullptr) curr->render(selection); } float GLCanvas3D::Gizmos::_get_total_overlay_height() const { float height = 0.0f; for (GizmosMap::const_iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it) { if (it->first == SlaSupports && wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptSLA) continue; height += (float)it->second->get_textures_size() * OverlayTexturesScale + OverlayGapY; } return height - OverlayGapY; } GLGizmoBase* GLCanvas3D::Gizmos::_get_current() const { GizmosMap::const_iterator it = m_gizmos.find(m_current); return (it != m_gizmos.end()) ? it->second : nullptr; } const unsigned char GLCanvas3D::WarningTexture::Background_Color[3] = { 9, 91, 134 }; const unsigned char GLCanvas3D::WarningTexture::Opacity = 255; GLCanvas3D::WarningTexture::WarningTexture() : GUI::GLTexture() , m_original_width(0) , m_original_height(0) { } bool GLCanvas3D::WarningTexture::generate(const std::string& msg) { reset(); if (msg.empty()) return false; wxMemoryDC memDC; // select default font wxFont font = wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT); font.MakeLarger(); font.MakeBold(); memDC.SetFont(font); // calculates texture size wxCoord w, h; memDC.GetTextExtent(msg, &w, &h); int pow_of_two_size = next_highest_power_of_2(std::max(w, h)); m_original_width = (int)w; m_original_height = (int)h; m_width = pow_of_two_size; m_height = pow_of_two_size; // generates bitmap wxBitmap bitmap(m_width, m_height); memDC.SelectObject(bitmap); memDC.SetBackground(wxBrush(wxColour(Background_Color[0], Background_Color[1], Background_Color[2]))); memDC.Clear(); // draw message memDC.SetTextForeground(*wxWHITE); memDC.DrawText(msg, 0, 0); memDC.SelectObject(wxNullBitmap); // Convert the bitmap into a linear data ready to be loaded into the GPU. wxImage image = bitmap.ConvertToImage(); image.SetMaskColour(Background_Color[0], Background_Color[1], Background_Color[2]); // prepare buffer std::vector data(4 * m_width * m_height, 0); for (int h = 0; h < m_height; ++h) { int hh = h * m_width; unsigned char* px_ptr = data.data() + 4 * hh; for (int w = 0; w < m_width; ++w) { *px_ptr++ = image.GetRed(w, h); *px_ptr++ = image.GetGreen(w, h); *px_ptr++ = image.GetBlue(w, h); *px_ptr++ = image.IsTransparent(w, h) ? 0 : Opacity; } } // sends buffer to gpu ::glPixelStorei(GL_UNPACK_ALIGNMENT, 1); ::glGenTextures(1, &m_id); ::glBindTexture(GL_TEXTURE_2D, (GLuint)m_id); ::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, (GLsizei)m_width, (GLsizei)m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const void*)data.data()); ::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); ::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); ::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1); ::glBindTexture(GL_TEXTURE_2D, 0); return true; } void GLCanvas3D::WarningTexture::render(const GLCanvas3D& canvas) const { if ((m_id > 0) && (m_original_width > 0) && (m_original_height > 0) && (m_width > 0) && (m_height > 0)) { ::glDisable(GL_DEPTH_TEST); ::glPushMatrix(); ::glLoadIdentity(); const Size& cnv_size = canvas.get_canvas_size(); float zoom = canvas.get_camera_zoom(); float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f; float left = (-0.5f * (float)m_original_width) * inv_zoom; float top = (-0.5f * (float)cnv_size.get_height() + (float)m_original_height + 2.0f) * inv_zoom; float right = left + (float)m_original_width * inv_zoom; float bottom = top - (float)m_original_height * inv_zoom; float uv_left = 0.0f; float uv_top = 0.0f; float uv_right = (float)m_original_width / (float)m_width; float uv_bottom = (float)m_original_height / (float)m_height; GLTexture::Quad_UVs uvs; uvs.left_top = { uv_left, uv_top }; uvs.left_bottom = { uv_left, uv_bottom }; uvs.right_bottom = { uv_right, uv_bottom }; uvs.right_top = { uv_right, uv_top }; GLTexture::render_sub_texture(m_id, left, right, bottom, top, uvs); ::glPopMatrix(); ::glEnable(GL_DEPTH_TEST); } } const unsigned char GLCanvas3D::LegendTexture::Squares_Border_Color[3] = { 64, 64, 64 }; const unsigned char GLCanvas3D::LegendTexture::Background_Color[3] = { 9, 91, 134 }; const unsigned char GLCanvas3D::LegendTexture::Opacity = 255; GLCanvas3D::LegendTexture::LegendTexture() : GUI::GLTexture() , m_original_width(0) , m_original_height(0) { } bool GLCanvas3D::LegendTexture::generate(const GCodePreviewData& preview_data, const std::vector& tool_colors, const GLCanvas3D& canvas) { reset(); // collects items to render auto title = _(preview_data.get_legend_title()); std::vector> cp_legend_values; if (preview_data.extrusion.view_type == GCodePreviewData::Extrusion::ColorPrint) { const auto& config = wxGetApp().preset_bundle->full_config(); const std::vector& color_print_values = config.option("colorprint_heights")->values; const int values_cnt = color_print_values.size(); if (values_cnt > 0) { auto print_zs = canvas.get_current_print_zs(true); auto z = 0; for (auto i = 0; i < values_cnt; ++i) { double prev_z = -1.0; for (z; z < print_zs.size(); ++z) if (fabs(color_print_values[i] - print_zs[z]) < EPSILON) { prev_z = print_zs[z - 1]; break; } if (prev_z < 0) continue; cp_legend_values.push_back(std::pair(prev_z, color_print_values[i])); } } } const GCodePreviewData::LegendItemsList& items = preview_data.get_legend_items(tool_colors, /*color_print_values*/cp_legend_values); unsigned int items_count = (unsigned int)items.size(); if (items_count == 0) // nothing to render, return return false; wxMemoryDC memDC; // select default font memDC.SetFont(wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT)); // calculates texture size wxCoord w, h; memDC.GetTextExtent(title, &w, &h); int title_width = (int)w; int title_height = (int)h; int max_text_width = 0; int max_text_height = 0; for (const GCodePreviewData::LegendItem& item : items) { memDC.GetTextExtent(GUI::from_u8(item.text), &w, &h); max_text_width = std::max(max_text_width, (int)w); max_text_height = std::max(max_text_height, (int)h); } m_original_width = std::max(2 * Px_Border + title_width, 2 * (Px_Border + Px_Square_Contour) + Px_Square + Px_Text_Offset + max_text_width); m_original_height = 2 * (Px_Border + Px_Square_Contour) + title_height + Px_Title_Offset + items_count * Px_Square; if (items_count > 1) m_original_height += (items_count - 1) * Px_Square_Contour; int pow_of_two_size = (int)next_highest_power_of_2(std::max(m_original_width, m_original_height)); m_width = pow_of_two_size; m_height = pow_of_two_size; // generates bitmap wxBitmap bitmap(m_width, m_height); memDC.SelectObject(bitmap); memDC.SetBackground(wxBrush(wxColour(Background_Color[0], Background_Color[1], Background_Color[2]))); memDC.Clear(); // draw title memDC.SetTextForeground(*wxWHITE); int title_x = Px_Border; int title_y = Px_Border; memDC.DrawText(title, title_x, title_y); // draw icons contours as background int squares_contour_x = Px_Border; int squares_contour_y = Px_Border + title_height + Px_Title_Offset; int squares_contour_width = Px_Square + 2 * Px_Square_Contour; int squares_contour_height = items_count * Px_Square + 2 * Px_Square_Contour; if (items_count > 1) squares_contour_height += (items_count - 1) * Px_Square_Contour; wxColour color(Squares_Border_Color[0], Squares_Border_Color[1], Squares_Border_Color[2]); wxPen pen(color); wxBrush brush(color); memDC.SetPen(pen); memDC.SetBrush(brush); memDC.DrawRectangle(wxRect(squares_contour_x, squares_contour_y, squares_contour_width, squares_contour_height)); // draw items (colored icon + text) int icon_x = squares_contour_x + Px_Square_Contour; int icon_x_inner = icon_x + 1; int icon_y = squares_contour_y + Px_Square_Contour; int icon_y_step = Px_Square + Px_Square_Contour; int text_x = icon_x + Px_Square + Px_Text_Offset; int text_y_offset = (Px_Square - max_text_height) / 2; int px_inner_square = Px_Square - 2; for (const GCodePreviewData::LegendItem& item : items) { // draw darker icon perimeter const std::vector& item_color_bytes = item.color.as_bytes(); wxImage::HSVValue dark_hsv = wxImage::RGBtoHSV(wxImage::RGBValue(item_color_bytes[0], item_color_bytes[1], item_color_bytes[2])); dark_hsv.value *= 0.75; wxImage::RGBValue dark_rgb = wxImage::HSVtoRGB(dark_hsv); color.Set(dark_rgb.red, dark_rgb.green, dark_rgb.blue, item_color_bytes[3]); pen.SetColour(color); brush.SetColour(color); memDC.SetPen(pen); memDC.SetBrush(brush); memDC.DrawRectangle(wxRect(icon_x, icon_y, Px_Square, Px_Square)); // draw icon interior color.Set(item_color_bytes[0], item_color_bytes[1], item_color_bytes[2], item_color_bytes[3]); pen.SetColour(color); brush.SetColour(color); memDC.SetPen(pen); memDC.SetBrush(brush); memDC.DrawRectangle(wxRect(icon_x_inner, icon_y + 1, px_inner_square, px_inner_square)); // draw text memDC.DrawText(GUI::from_u8(item.text), text_x, icon_y + text_y_offset); // update y icon_y += icon_y_step; } memDC.SelectObject(wxNullBitmap); // Convert the bitmap into a linear data ready to be loaded into the GPU. wxImage image = bitmap.ConvertToImage(); image.SetMaskColour(Background_Color[0], Background_Color[1], Background_Color[2]); // prepare buffer std::vector data(4 * m_width * m_height, 0); for (int h = 0; h < m_height; ++h) { int hh = h * m_width; unsigned char* px_ptr = data.data() + 4 * hh; for (int w = 0; w < m_width; ++w) { *px_ptr++ = image.GetRed(w, h); *px_ptr++ = image.GetGreen(w, h); *px_ptr++ = image.GetBlue(w, h); *px_ptr++ = image.IsTransparent(w, h) ? 0 : Opacity; } } // sends buffer to gpu ::glPixelStorei(GL_UNPACK_ALIGNMENT, 1); ::glGenTextures(1, &m_id); ::glBindTexture(GL_TEXTURE_2D, (GLuint)m_id); ::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, (GLsizei)m_width, (GLsizei)m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const void*)data.data()); ::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); ::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); ::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1); ::glBindTexture(GL_TEXTURE_2D, 0); return true; } void GLCanvas3D::LegendTexture::render(const GLCanvas3D& canvas) const { if ((m_id > 0) && (m_original_width > 0) && (m_original_height > 0) && (m_width > 0) && (m_height > 0)) { ::glDisable(GL_DEPTH_TEST); ::glPushMatrix(); ::glLoadIdentity(); const Size& cnv_size = canvas.get_canvas_size(); float zoom = canvas.get_camera_zoom(); float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f; float left = (-0.5f * (float)cnv_size.get_width()) * inv_zoom; float top = (0.5f * (float)cnv_size.get_height()) * inv_zoom; float right = left + (float)m_original_width * inv_zoom; float bottom = top - (float)m_original_height * inv_zoom; float uv_left = 0.0f; float uv_top = 0.0f; float uv_right = (float)m_original_width / (float)m_width; float uv_bottom = (float)m_original_height / (float)m_height; GLTexture::Quad_UVs uvs; uvs.left_top = { uv_left, uv_top }; uvs.left_bottom = { uv_left, uv_bottom }; uvs.right_bottom = { uv_right, uv_bottom }; uvs.right_top = { uv_right, uv_top }; GLTexture::render_sub_texture(m_id, left, right, bottom, top, uvs); ::glPopMatrix(); ::glEnable(GL_DEPTH_TEST); } } wxDEFINE_EVENT(EVT_GLCANVAS_SCHEDULE_BACKGROUND_PROCESS, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_OBJECT_SELECT, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_VIEWPORT_CHANGED, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_RIGHT_CLICK, Vec2dEvent); wxDEFINE_EVENT(EVT_GLCANVAS_MODEL_UPDATE, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_REMOVE_OBJECT, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_ARRANGE, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_INCREASE_INSTANCES, Event); wxDEFINE_EVENT(EVT_GLCANVAS_INSTANCE_MOVED, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_WIPETOWER_MOVED, Vec3dEvent); wxDEFINE_EVENT(EVT_GLCANVAS_ENABLE_ACTION_BUTTONS, Event); wxDEFINE_EVENT(EVT_GLCANVAS_UPDATE_GEOMETRY, Vec3dsEvent<2>); wxDEFINE_EVENT(EVT_GLCANVAS_MOUSE_DRAGGING_FINISHED, SimpleEvent); GLCanvas3D::GLCanvas3D(wxGLCanvas* canvas) : m_canvas(canvas) , m_context(nullptr) , m_in_render(false) , m_toolbar(*this) , m_use_clipping_planes(false) , m_config(nullptr) , m_process(nullptr) , m_model(nullptr) , m_dirty(true) , m_initialized(false) , m_use_VBOs(false) , m_force_zoom_to_bed_enabled(false) , m_apply_zoom_to_volumes_filter(false) , m_hover_volume_id(-1) , m_toolbar_action_running(false) , m_warning_texture_enabled(false) , m_legend_texture_enabled(false) , m_picking_enabled(false) , m_moving_enabled(false) , m_shader_enabled(false) , m_dynamic_background_enabled(false) , m_multisample_allowed(false) , m_regenerate_volumes(true) , m_moving(false) , m_color_by("volume") , m_reload_delayed(false) #if !ENABLE_IMGUI , m_external_gizmo_widgets_parent(nullptr) #endif // not ENABLE_IMGUI { if (m_canvas != nullptr) { #if !ENABLE_USE_UNIQUE_GLCONTEXT m_context = new wxGLContext(m_canvas); #endif // !ENABLE_USE_UNIQUE_GLCONTEXT m_timer.SetOwner(m_canvas); } m_selection.set_volumes(&m_volumes.volumes); } GLCanvas3D::~GLCanvas3D() { reset_volumes(); #if !ENABLE_USE_UNIQUE_GLCONTEXT if (m_context != nullptr) { delete m_context; m_context = nullptr; } #endif // !ENABLE_USE_UNIQUE_GLCONTEXT } void GLCanvas3D::post_event(wxEvent &&event) { event.SetEventObject(m_canvas); wxPostEvent(m_canvas, event); } void GLCanvas3D::viewport_changed() { post_event(SimpleEvent(EVT_GLCANVAS_VIEWPORT_CHANGED)); } bool GLCanvas3D::init(bool useVBOs, bool use_legacy_opengl) { if (m_initialized) return true; if ((m_canvas == nullptr) || (m_context == nullptr)) return false; ::glClearColor(1.0f, 1.0f, 1.0f, 1.0f); ::glClearDepth(1.0f); ::glDepthFunc(GL_LESS); ::glEnable(GL_DEPTH_TEST); ::glEnable(GL_CULL_FACE); ::glEnable(GL_BLEND); ::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Set antialiasing / multisampling ::glDisable(GL_LINE_SMOOTH); ::glDisable(GL_POLYGON_SMOOTH); // ambient lighting GLfloat ambient[4] = { 0.3f, 0.3f, 0.3f, 1.0f }; ::glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambient); ::glEnable(GL_LIGHT0); ::glEnable(GL_LIGHT1); // light from camera GLfloat specular_cam[4] = { 0.3f, 0.3f, 0.3f, 1.0f }; ::glLightfv(GL_LIGHT1, GL_SPECULAR, specular_cam); GLfloat diffuse_cam[4] = { 0.2f, 0.2f, 0.2f, 1.0f }; ::glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuse_cam); // light from above GLfloat specular_top[4] = { 0.2f, 0.2f, 0.2f, 1.0f }; ::glLightfv(GL_LIGHT0, GL_SPECULAR, specular_top); GLfloat diffuse_top[4] = { 0.5f, 0.5f, 0.5f, 1.0f }; ::glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse_top); // Enables Smooth Color Shading; try GL_FLAT for (lack of) fun. ::glShadeModel(GL_SMOOTH); // A handy trick -- have surface material mirror the color. ::glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE); ::glEnable(GL_COLOR_MATERIAL); if (m_multisample_allowed) ::glEnable(GL_MULTISAMPLE); if (useVBOs && !m_shader.init("gouraud.vs", "gouraud.fs")) return false; if (useVBOs && !m_layers_editing.init("variable_layer_height.vs", "variable_layer_height.fs")) return false; m_use_VBOs = useVBOs; m_layers_editing.set_use_legacy_opengl(use_legacy_opengl); // on linux the gl context is not valid until the canvas is not shown on screen // we defer the geometry finalization of volumes until the first call to render() if (!m_volumes.empty()) m_volumes.finalize_geometry(m_use_VBOs); if (m_gizmos.is_enabled()) { if (! m_gizmos.init(*this)) { std::cout << "Unable to initialize gizmos: please, check that all the required textures are available" << std::endl; return false; } #if !ENABLE_IMGUI if (m_external_gizmo_widgets_parent != nullptr) { m_gizmos.create_external_gizmo_widgets(m_external_gizmo_widgets_parent); m_canvas->GetParent()->Layout(); } #endif // not ENABLE_IMGUI } if (!_init_toolbar()) return false; m_initialized = true; return true; } #if !ENABLE_USE_UNIQUE_GLCONTEXT bool GLCanvas3D::set_current() { if ((m_canvas != nullptr) && (m_context != nullptr)) return m_canvas->SetCurrent(*m_context); return false; } #endif // !ENABLE_USE_UNIQUE_GLCONTEXT void GLCanvas3D::set_as_dirty() { m_dirty = true; } unsigned int GLCanvas3D::get_volumes_count() const { return (unsigned int)m_volumes.volumes.size(); } void GLCanvas3D::reset_volumes() { if (!m_volumes.empty()) { #if !ENABLE_USE_UNIQUE_GLCONTEXT // ensures this canvas is current if (!set_current()) return; #endif // !ENABLE_USE_UNIQUE_GLCONTEXT m_selection.clear(); m_volumes.release_geometry(); m_volumes.clear(); m_dirty = true; } enable_warning_texture(false); _reset_warning_texture(); } #if ENABLE_REMOVE_TABS_FROM_PLATER int GLCanvas3D::check_volumes_outside_state() const { ModelInstance::EPrintVolumeState state; m_volumes.check_outside_state(m_config, &state); return (int)state; } #else int GLCanvas3D::check_volumes_outside_state(const DynamicPrintConfig* config) const { ModelInstance::EPrintVolumeState state; m_volumes.check_outside_state(config, &state); return (int)state; } #endif // ENABLE_REMOVE_TABS_FROM_PLATER void GLCanvas3D::set_config(DynamicPrintConfig* config) { m_config = config; } void GLCanvas3D::set_process(BackgroundSlicingProcess *process) { m_process = process; } void GLCanvas3D::set_model(Model* model) { m_model = model; m_selection.set_model(m_model); } void GLCanvas3D::set_bed_shape(const Pointfs& shape) { bool new_shape = m_bed.set_shape(shape); // Set the origin and size for painting of the coordinate system axes. m_axes.origin = Vec3d(0.0, 0.0, (double)GROUND_Z); set_axes_length(0.3f * (float)m_bed.get_bounding_box().max_size()); if (new_shape) zoom_to_bed(); m_dirty = true; } void GLCanvas3D::set_axes_length(float length) { m_axes.length = length; } void GLCanvas3D::set_color_by(const std::string& value) { m_color_by = value; } float GLCanvas3D::get_camera_zoom() const { return m_camera.zoom; } BoundingBoxf3 GLCanvas3D::volumes_bounding_box() const { BoundingBoxf3 bb; for (const GLVolume* volume : m_volumes.volumes) { if (!m_apply_zoom_to_volumes_filter || ((volume != nullptr) && volume->zoom_to_volumes)) bb.merge(volume->transformed_bounding_box()); } return bb; } bool GLCanvas3D::is_layers_editing_enabled() const { return m_layers_editing.is_enabled(); } bool GLCanvas3D::is_layers_editing_allowed() const { return m_layers_editing.is_allowed(); } bool GLCanvas3D::is_reload_delayed() const { return m_reload_delayed; } void GLCanvas3D::enable_layers_editing(bool enable) { m_layers_editing.set_enabled(enable); } void GLCanvas3D::enable_warning_texture(bool enable) { m_warning_texture_enabled = enable; } void GLCanvas3D::enable_legend_texture(bool enable) { m_legend_texture_enabled = enable; } void GLCanvas3D::enable_picking(bool enable) { m_picking_enabled = enable; m_selection.set_mode(Selection::Instance); } void GLCanvas3D::enable_moving(bool enable) { m_moving_enabled = enable; } void GLCanvas3D::enable_gizmos(bool enable) { m_gizmos.set_enabled(enable); } void GLCanvas3D::enable_toolbar(bool enable) { m_toolbar.set_enabled(enable); } void GLCanvas3D::enable_shader(bool enable) { m_shader_enabled = enable; } void GLCanvas3D::enable_force_zoom_to_bed(bool enable) { m_force_zoom_to_bed_enabled = enable; } void GLCanvas3D::enable_dynamic_background(bool enable) { m_dynamic_background_enabled = enable; } void GLCanvas3D::allow_multisample(bool allow) { m_multisample_allowed = allow; } void GLCanvas3D::enable_toolbar_item(const std::string& name, bool enable) { if (enable) m_toolbar.enable_item(name); else m_toolbar.disable_item(name); } bool GLCanvas3D::is_toolbar_item_pressed(const std::string& name) const { return m_toolbar.is_item_pressed(name); } void GLCanvas3D::zoom_to_bed() { _zoom_to_bounding_box(m_bed.get_bounding_box()); } void GLCanvas3D::zoom_to_volumes() { m_apply_zoom_to_volumes_filter = true; _zoom_to_bounding_box(volumes_bounding_box()); m_apply_zoom_to_volumes_filter = false; } #if ENABLE_MODIFIED_CAMERA_TARGET void GLCanvas3D::zoom_to_selection() { if (!m_selection.is_empty()) _zoom_to_bounding_box(m_selection.get_bounding_box()); } #endif // ENABLE_MODIFIED_CAMERA_TARGET void GLCanvas3D::select_view(const std::string& direction) { const float* dir_vec = nullptr; if (direction == "iso") dir_vec = VIEW_DEFAULT; else if (direction == "left") dir_vec = VIEW_LEFT; else if (direction == "right") dir_vec = VIEW_RIGHT; else if (direction == "top") dir_vec = VIEW_TOP; else if (direction == "bottom") dir_vec = VIEW_BOTTOM; else if (direction == "front") dir_vec = VIEW_FRONT; else if (direction == "rear") dir_vec = VIEW_REAR; if (dir_vec != nullptr) { m_camera.phi = dir_vec[0]; m_camera.set_theta(dir_vec[1]); viewport_changed(); if (m_canvas != nullptr) m_canvas->Refresh(); } } void GLCanvas3D::set_viewport_from_scene(const GLCanvas3D& other) { m_camera.phi = other.m_camera.phi; m_camera.set_theta(other.m_camera.get_theta()); m_camera.target = other.m_camera.target; m_camera.zoom = other.m_camera.zoom; m_dirty = true; } void GLCanvas3D::update_volumes_colors_by_extruder() { if (m_config != nullptr) m_volumes.update_colors_by_extruder(m_config); } // Returns a Rect object denoting size and position of the Reset button used by a gizmo. // Returns in either screen or viewport coords. #if !ENABLE_IMGUI Rect GLCanvas3D::get_gizmo_reset_rect(const GLCanvas3D& canvas, bool viewport) const { const Size& cnv_size = canvas.get_canvas_size(); float w = (viewport ? -0.5f : 0.f) * (float)cnv_size.get_width(); float h = (viewport ? 0.5f : 1.f) * (float)cnv_size.get_height(); float zoom = canvas.get_camera_zoom(); float inv_zoom = viewport ? ((zoom != 0.0f) ? 1.0f / zoom : 0.0f) : 1.f; const float gap = 30.f; return Rect((w + gap + 80.f) * inv_zoom, (viewport ? -1.f : 1.f) * (h - GIZMO_RESET_BUTTON_HEIGHT) * inv_zoom, (w + gap + 80.f + GIZMO_RESET_BUTTON_WIDTH) * inv_zoom, (viewport ? -1.f : 1.f) * (h * inv_zoom)); } bool GLCanvas3D::gizmo_reset_rect_contains(const GLCanvas3D& canvas, float x, float y) const { const Rect& rect = get_gizmo_reset_rect(canvas, false); return (rect.get_left() <= x) && (x <= rect.get_right()) && (rect.get_top() <= y) && (y <= rect.get_bottom()); } #endif // not ENABLE_IMGUI void GLCanvas3D::render() { wxCHECK_RET(!m_in_render, "GLCanvas3D::render() called recursively"); m_in_render = true; Slic3r::ScopeGuard in_render_guard([this]() { m_in_render = false; }); (void)in_render_guard; if (m_canvas == nullptr) return; if (!_is_shown_on_screen()) return; // ensures this canvas is current and initialized #if ENABLE_USE_UNIQUE_GLCONTEXT if (!_set_current() || !_3DScene::init(m_canvas)) #else if (!set_current() || !_3DScene::init(m_canvas)) #endif // ENABLE_USE_UNIQUE_GLCONTEXT return; if (m_force_zoom_to_bed_enabled) _force_zoom_to_bed(); _camera_tranform(); GLfloat position_cam[4] = { 1.0f, 0.0f, 1.0f, 0.0f }; ::glLightfv(GL_LIGHT1, GL_POSITION, position_cam); GLfloat position_top[4] = { -0.5f, -0.5f, 1.0f, 0.0f }; ::glLightfv(GL_LIGHT0, GL_POSITION, position_top); float theta = m_camera.get_theta(); bool is_custom_bed = m_bed.is_custom(); set_tooltip(""); #if ENABLE_IMGUI wxGetApp().imgui()->new_frame(); #endif // ENABLE_IMGUI // picking pass _picking_pass(); // draw scene ::glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); _render_background(); if (is_custom_bed) // untextured bed needs to be rendered before objects { _render_bed(theta); // disable depth testing so that axes are not covered by ground _render_axes(false); } _render_objects(); _render_sla_slices(); _render_selection(); if (!is_custom_bed) // textured bed needs to be rendered after objects { _render_axes(true); _render_bed(theta); } // we need to set the mouse's scene position here because the depth buffer // could be invalidated by the following gizmo render methods // this position is used later into on_mouse() to drag the objects m_mouse.scene_position = _mouse_to_3d(m_mouse.position.cast()); _render_current_gizmo(); #if ENABLE_SHOW_CAMERA_TARGET _render_camera_target(); #endif // ENABLE_SHOW_CAMERA_TARGET // draw overlays _render_gizmos_overlay(); _render_warning_texture(); _render_legend_texture(); _render_toolbar(); _render_layer_editing_overlay(); #if ENABLE_IMGUI wxGetApp().imgui()->render(); #endif // ENABLE_IMGUI m_canvas->SwapBuffers(); } void GLCanvas3D::select_all() { m_selection.add_all(); m_dirty = true; } void GLCanvas3D::delete_selected() { m_selection.erase(); } void GLCanvas3D::ensure_on_bed(unsigned int object_idx) { typedef std::map, double> InstancesToZMap; InstancesToZMap instances_min_z; for (GLVolume* volume : m_volumes.volumes) { if ((volume->object_idx() == object_idx) && !volume->is_modifier) { double min_z = volume->transformed_convex_hull_bounding_box().min(2); std::pair instance = std::make_pair(volume->object_idx(), volume->instance_idx()); InstancesToZMap::iterator it = instances_min_z.find(instance); if (it == instances_min_z.end()) it = instances_min_z.insert(InstancesToZMap::value_type(instance, DBL_MAX)).first; it->second = std::min(it->second, min_z); } } for (GLVolume* volume : m_volumes.volumes) { std::pair instance = std::make_pair(volume->object_idx(), volume->instance_idx()); InstancesToZMap::iterator it = instances_min_z.find(instance); if (it != instances_min_z.end()) volume->set_instance_offset(Z, volume->get_instance_offset(Z) - it->second); } } std::vector GLCanvas3D::get_current_print_zs(bool active_only) const { return m_volumes.get_current_print_zs(active_only); } void GLCanvas3D::set_toolpaths_range(double low, double high) { m_volumes.set_range(low, high); } std::vector GLCanvas3D::load_object(const ModelObject& model_object, int obj_idx, std::vector instance_idxs) { if (instance_idxs.empty()) { for (unsigned int i = 0; i < model_object.instances.size(); ++i) { instance_idxs.push_back(i); } } return m_volumes.load_object(&model_object, obj_idx, instance_idxs, m_color_by, m_use_VBOs && m_initialized); } std::vector GLCanvas3D::load_object(const Model& model, int obj_idx) { if ((0 <= obj_idx) && (obj_idx < (int)model.objects.size())) { const ModelObject* model_object = model.objects[obj_idx]; if (model_object != nullptr) return load_object(*model_object, obj_idx, std::vector()); } return std::vector(); } void GLCanvas3D::mirror_selection(Axis axis) { m_selection.mirror(axis); do_mirror(); wxGetApp().obj_manipul()->update_settings_value(m_selection); } // Reload the 3D scene of // 1) Model / ModelObjects / ModelInstances / ModelVolumes // 2) Print bed // 3) SLA support meshes for their respective ModelObjects / ModelInstances // 4) Wipe tower preview // 5) Out of bed collision status & message overlay (texture) void GLCanvas3D::reload_scene(bool refresh_immediately, bool force_full_scene_refresh) { if ((m_canvas == nullptr) || (m_config == nullptr) || (m_model == nullptr)) return; #if !ENABLE_USE_UNIQUE_GLCONTEXT // ensures this canvas is current if (!set_current()) return; #endif // !ENABLE_USE_UNIQUE_GLCONTEXT struct ModelVolumeState { ModelVolumeState(const GLVolume *volume) : model_volume(nullptr), geometry_id(volume->geometry_id), volume_idx(-1) {} ModelVolumeState(const ModelVolume *model_volume, const ModelID &instance_id, const GLVolume::CompositeID &composite_id) : model_volume(model_volume), geometry_id(std::make_pair(model_volume->id().id, instance_id.id)), composite_id(composite_id), volume_idx(-1) {} ModelVolumeState(const ModelID &volume_id, const ModelID &instance_id) : model_volume(nullptr), geometry_id(std::make_pair(volume_id.id, instance_id.id)), volume_idx(-1) {} bool new_geometry() const { return this->volume_idx == size_t(-1); } const ModelVolume *model_volume; // ModelID of ModelVolume + ModelID of ModelInstance // or timestamp of an SLAPrintObjectStep + ModelID of ModelInstance std::pair geometry_id; GLVolume::CompositeID composite_id; // Volume index in the new GLVolume vector. size_t volume_idx; }; std::vector model_volume_state; std::vector aux_volume_state; // SLA steps to pull the preview meshes for. typedef std::array SLASteps; SLASteps sla_steps = { slaposSupportTree, slaposBasePool }; struct SLASupportState { std::array::value> step; }; // State of the sla_steps for all SLAPrintObjects. std::vector sla_support_state; std::vector map_glvolume_old_to_new(m_volumes.volumes.size(), size_t(-1)); std::vector glvolumes_new; glvolumes_new.reserve(m_volumes.volumes.size()); auto model_volume_state_lower = [](const ModelVolumeState &m1, const ModelVolumeState &m2) { return m1.geometry_id < m2.geometry_id; }; m_reload_delayed = ! m_canvas->IsShown() && ! refresh_immediately && ! force_full_scene_refresh; PrinterTechnology printer_technology = m_process->current_printer_technology(); if (m_regenerate_volumes) { // Release invalidated volumes to conserve GPU memory in case of delayed refresh (see m_reload_delayed). // First initialize model_volumes_new_sorted & model_instances_new_sorted. for (int object_idx = 0; object_idx < (int)m_model->objects.size(); ++ object_idx) { const ModelObject *model_object = m_model->objects[object_idx]; for (int instance_idx = 0; instance_idx < (int)model_object->instances.size(); ++ instance_idx) { const ModelInstance *model_instance = model_object->instances[instance_idx]; for (int volume_idx = 0; volume_idx < (int)model_object->volumes.size(); ++ volume_idx) { const ModelVolume *model_volume = model_object->volumes[volume_idx]; model_volume_state.emplace_back(model_volume, model_instance->id(), GLVolume::CompositeID(object_idx, volume_idx, instance_idx)); } } } if (printer_technology == ptSLA) { const SLAPrint *sla_print = this->sla_print(); #ifdef _DEBUG // Verify that the SLAPrint object is synchronized with m_model. check_model_ids_equal(*m_model, sla_print->model()); #endif /* _DEBUG */ sla_support_state.reserve(sla_print->objects().size()); for (const SLAPrintObject *print_object : sla_print->objects()) { SLASupportState state; for (size_t istep = 0; istep < sla_steps.size(); ++ istep) { state.step[istep] = print_object->step_state_with_timestamp(sla_steps[istep]); if (state.step[istep].state == PrintStateBase::DONE) { if (! print_object->has_mesh(sla_steps[istep])) // Consider the DONE step without a valid mesh as invalid for the purpose // of mesh visualization. state.step[istep].state = PrintStateBase::INVALID; else for (const ModelInstance *model_instance : print_object->model_object()->instances) aux_volume_state.emplace_back(state.step[istep].timestamp, model_instance->id()); } } sla_support_state.emplace_back(state); } } std::sort(model_volume_state.begin(), model_volume_state.end(), model_volume_state_lower); std::sort(aux_volume_state .begin(), aux_volume_state .end(), model_volume_state_lower); // Release all ModelVolume based GLVolumes not found in the current Model. for (size_t volume_id = 0; volume_id < m_volumes.volumes.size(); ++ volume_id) { GLVolume *volume = m_volumes.volumes[volume_id]; ModelVolumeState key(volume); ModelVolumeState *mvs = nullptr; if (volume->volume_idx() < 0) { auto it = std::lower_bound(aux_volume_state.begin(), aux_volume_state.end(), key, model_volume_state_lower); if (it != aux_volume_state.end() && it->geometry_id == key.geometry_id) mvs = &(*it); } else { auto it = std::lower_bound(model_volume_state.begin(), model_volume_state.end(), key, model_volume_state_lower); if (it != model_volume_state.end() && it->geometry_id == key.geometry_id) mvs = &(*it); } if (mvs == nullptr || force_full_scene_refresh) { // This GLVolume will be released. volume->release_geometry(); if (! m_reload_delayed) delete volume; } else { // This GLVolume will be reused. volume->set_sla_shift_z(0.0); map_glvolume_old_to_new[volume_id] = glvolumes_new.size(); mvs->volume_idx = glvolumes_new.size(); glvolumes_new.emplace_back(volume); // Update color of the volume based on the current extruder. if (mvs->model_volume != nullptr) { int extruder_id = mvs->model_volume->extruder_id(); if (extruder_id != -1) volume->extruder_id = extruder_id; // updates volumes transformations volume->set_instance_transformation(mvs->model_volume->get_object()->instances[mvs->composite_id.instance_id]->get_transformation()); volume->set_volume_transformation(mvs->model_volume->get_transformation()); } } } } if (m_reload_delayed) return; set_bed_shape(dynamic_cast(m_config->option("bed_shape"))->values); if (m_regenerate_volumes) { m_volumes.volumes = std::move(glvolumes_new); for (unsigned int obj_idx = 0; obj_idx < (unsigned int)m_model->objects.size(); ++ obj_idx) { const ModelObject &model_object = *m_model->objects[obj_idx]; // Object will share a single common layer height texture between all printable volumes. std::shared_ptr layer_height_texture; for (int volume_idx = 0; volume_idx < (int)model_object.volumes.size(); ++ volume_idx) { const ModelVolume &model_volume = *model_object.volumes[volume_idx]; for (int instance_idx = 0; instance_idx < (int)model_object.instances.size(); ++ instance_idx) { const ModelInstance &model_instance = *model_object.instances[instance_idx]; ModelVolumeState key(model_volume.id(), model_instance.id()); auto it = std::lower_bound(model_volume_state.begin(), model_volume_state.end(), key, model_volume_state_lower); assert(it != model_volume_state.end() && it->geometry_id == key.geometry_id); if (it->new_geometry()) { // New volume. if (model_volume.is_model_part() && ! layer_height_texture) { // New object part needs to have the layer height texture assigned, which is shared with the other volumes of the same part. // Search for the layer height texture in the other volumes. for (int iv = volume_idx; iv < (int)model_object.volumes.size(); ++ iv) { const ModelVolume &mv = *model_object.volumes[iv]; if (mv.is_model_part()) for (int ii = instance_idx; ii < (int)model_object.instances.size(); ++ ii) { const ModelInstance &mi = *model_object.instances[ii]; ModelVolumeState key(mv.id(), mi.id()); auto it = std::lower_bound(model_volume_state.begin(), model_volume_state.end(), key, model_volume_state_lower); assert(it != model_volume_state.end() && it->geometry_id == key.geometry_id); if (! it->new_geometry()) { // Found an old printable GLVolume (existing before this function was called). assert(m_volumes.volumes[it->volume_idx]->geometry_id == key.geometry_id); // Reuse the layer height texture. const GLVolume *volume = m_volumes.volumes[it->volume_idx]; assert(volume->layer_height_texture); layer_height_texture = volume->layer_height_texture; goto iv_end; } } } iv_end: if (! layer_height_texture) layer_height_texture = std::make_shared(); } m_volumes.load_object_volume(&model_object, layer_height_texture, obj_idx, volume_idx, instance_idx, m_color_by, m_use_VBOs && m_initialized); m_volumes.volumes.back()->geometry_id = key.geometry_id; } else { // Recycling an old GLVolume. GLVolume &existing_volume = *m_volumes.volumes[it->volume_idx]; assert(existing_volume.geometry_id == key.geometry_id); // Update the Object/Volume/Instance indices into the current Model. existing_volume.composite_id = it->composite_id; if (model_volume.is_model_part() && ! layer_height_texture) { assert(existing_volume.layer_height_texture); // cache its layer height texture layer_height_texture = existing_volume.layer_height_texture; } } } } } if (printer_technology == ptSLA) { size_t idx = 0; const SLAPrint *sla_print = this->sla_print(); std::vector shift_zs(m_model->objects.size(), 0); for (const SLAPrintObject *print_object : sla_print->objects()) { SLASupportState &state = sla_support_state[idx ++]; const ModelObject *model_object = print_object->model_object(); // Find an index of the ModelObject int object_idx; if (std::all_of(state.step.begin(), state.step.end(), [](const PrintStateBase::StateWithTimeStamp &state){ return state.state != PrintStateBase::DONE; })) continue; // There may be new SLA volumes added to the scene for this print_object. // Find the object index of this print_object in the Model::objects list. auto it = std::find(sla_print->model().objects.begin(), sla_print->model().objects.end(), model_object); assert(it != sla_print->model().objects.end()); object_idx = it - sla_print->model().objects.begin(); // Cache the Z offset to be applied to all volumes with this object_idx. shift_zs[object_idx] = print_object->get_current_elevation(); // Collect indices of this print_object's instances, for which the SLA support meshes are to be added to the scene. // pairs of std::vector> instances[std::tuple_size::value]; for (size_t print_instance_idx = 0; print_instance_idx < print_object->instances().size(); ++ print_instance_idx) { const SLAPrintObject::Instance &instance = print_object->instances()[print_instance_idx]; // Find index of ModelInstance corresponding to this SLAPrintObject::Instance. auto it = std::find_if(model_object->instances.begin(), model_object->instances.end(), [&instance](const ModelInstance *mi) { return mi->id() == instance.instance_id; }); assert(it != model_object->instances.end()); int instance_idx = it - model_object->instances.begin(); for (size_t istep = 0; istep < sla_steps.size(); ++ istep) if (state.step[istep].state == PrintStateBase::DONE) { ModelVolumeState key(state.step[istep].timestamp, instance.instance_id.id); auto it = std::lower_bound(aux_volume_state.begin(), aux_volume_state.end(), key, model_volume_state_lower); assert(it != aux_volume_state.end() && it->geometry_id == key.geometry_id); if (it->new_geometry()) instances[istep].emplace_back(std::pair(instance_idx, print_instance_idx)); else // Recycling an old GLVolume. Update the Object/Instance indices into the current Model. m_volumes.volumes[it->volume_idx]->composite_id = GLVolume::CompositeID(object_idx, m_volumes.volumes[it->volume_idx]->volume_idx(), instance_idx); } } // stores the current volumes count size_t volumes_count = m_volumes.volumes.size(); for (size_t istep = 0; istep < sla_steps.size(); ++istep) if (!instances[istep].empty()) m_volumes.load_object_auxiliary(print_object, object_idx, instances[istep], sla_steps[istep], state.step[istep].timestamp, m_use_VBOs && m_initialized); } // Shift-up all volumes of the object so that it has the right elevation with respect to the print bed for (GLVolume* volume : m_volumes.volumes) volume->set_sla_shift_z(shift_zs[volume->object_idx()]); } if (printer_technology == ptFFF && m_config->has("nozzle_diameter")) { // Should the wipe tower be visualized ? unsigned int extruders_count = (unsigned int)dynamic_cast(m_config->option("nozzle_diameter"))->values.size(); bool semm = dynamic_cast(m_config->option("single_extruder_multi_material"))->value; bool wt = dynamic_cast(m_config->option("wipe_tower"))->value; bool co = dynamic_cast(m_config->option("complete_objects"))->value; if ((extruders_count > 1) && semm && wt && !co) { // Height of a print (Show at least a slab) double height = std::max(m_model->bounding_box().max(2), 10.0); float x = dynamic_cast(m_config->option("wipe_tower_x"))->value; float y = dynamic_cast(m_config->option("wipe_tower_y"))->value; float w = dynamic_cast(m_config->option("wipe_tower_width"))->value; float a = dynamic_cast(m_config->option("wipe_tower_rotation_angle"))->value; const Print *print = m_process->fff_print(); float depth = print->get_wipe_tower_depth(); if (!print->is_step_done(psWipeTower)) depth = (900.f/w) * (float)(extruders_count - 1) ; m_volumes.load_wipe_tower_preview(1000, x, y, w, depth, (float)height, a, m_use_VBOs && m_initialized, !print->is_step_done(psWipeTower), print->config().nozzle_diameter.values[0] * 1.25f * 4.5f); } } update_volumes_colors_by_extruder(); // Update selection indices based on the old/new GLVolumeCollection. m_selection.volumes_changed(map_glvolume_old_to_new); } _update_gizmos_data(); // Update the toolbar post_event(SimpleEvent(EVT_GLCANVAS_OBJECT_SELECT)); // checks for geometry outside the print volume to render it accordingly if (!m_volumes.empty()) { ModelInstance::EPrintVolumeState state; bool contained = m_volumes.check_outside_state(m_config, &state); if (!contained) { enable_warning_texture(true); _generate_warning_texture(L("Detected object outside print volume")); post_event(Event(EVT_GLCANVAS_ENABLE_ACTION_BUTTONS, state == ModelInstance::PVS_Fully_Outside)); } else { enable_warning_texture(false); m_volumes.reset_outside_state(); _reset_warning_texture(); post_event(Event(EVT_GLCANVAS_ENABLE_ACTION_BUTTONS, !m_model->objects.empty())); } } else { enable_warning_texture(false); _reset_warning_texture(); post_event(Event(EVT_GLCANVAS_ENABLE_ACTION_BUTTONS, false)); } // restore to default value m_regenerate_volumes = true; // and force this canvas to be redrawn. m_dirty = true; } void GLCanvas3D::load_gcode_preview(const GCodePreviewData& preview_data, const std::vector& str_tool_colors) { const Print *print = this->fff_print(); if ((m_canvas != nullptr) && (print != nullptr)) { #if !ENABLE_USE_UNIQUE_GLCONTEXT // ensures that this canvas is current if (!set_current()) return; #endif // !ENABLE_USE_UNIQUE_GLCONTEXT if (m_volumes.empty()) { std::vector tool_colors = _parse_colors(str_tool_colors); m_gcode_preview_volume_index.reset(); _load_gcode_extrusion_paths(preview_data, tool_colors); _load_gcode_travel_paths(preview_data, tool_colors); _load_gcode_retractions(preview_data); _load_gcode_unretractions(preview_data); if (m_volumes.empty()) reset_legend_texture(); else { _generate_legend_texture(preview_data, tool_colors); // removes empty volumes m_volumes.volumes.erase(std::remove_if(m_volumes.volumes.begin(), m_volumes.volumes.end(), [](const GLVolume* volume) { return volume->print_zs.empty(); }), m_volumes.volumes.end()); _load_shells_fff(); } _update_toolpath_volumes_outside_state(); } _update_gcode_volumes_visibility(preview_data); _show_warning_texture_if_needed(); } } void GLCanvas3D::load_sla_preview() { const SLAPrint* print = this->sla_print(); if ((m_canvas != nullptr) && (print != nullptr)) { _load_shells_sla(); } } void GLCanvas3D::load_preview(const std::vector& str_tool_colors) { const Print *print = this->fff_print(); if (print == nullptr) return; _load_print_toolpaths(); _load_wipe_tower_toolpaths(str_tool_colors); for (const PrintObject* object : print->objects()) { if (object != nullptr) _load_print_object_toolpaths(*object, str_tool_colors); } for (GLVolume* volume : m_volumes.volumes) { volume->is_extrusion_path = true; } _update_toolpath_volumes_outside_state(); _show_warning_texture_if_needed(); reset_legend_texture(); } void GLCanvas3D::bind_event_handlers() { if (m_canvas != nullptr) { m_canvas->Bind(wxEVT_SIZE, &GLCanvas3D::on_size, this); m_canvas->Bind(wxEVT_IDLE, &GLCanvas3D::on_idle, this); m_canvas->Bind(wxEVT_CHAR, &GLCanvas3D::on_char, this); m_canvas->Bind(wxEVT_MOUSEWHEEL, &GLCanvas3D::on_mouse_wheel, this); m_canvas->Bind(wxEVT_TIMER, &GLCanvas3D::on_timer, this); m_canvas->Bind(wxEVT_LEFT_DOWN, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_LEFT_UP, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_MIDDLE_DOWN, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_MIDDLE_UP, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_RIGHT_DOWN, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_RIGHT_UP, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_MOTION, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_ENTER_WINDOW, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_LEAVE_WINDOW, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_LEFT_DCLICK, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_MIDDLE_DCLICK, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_RIGHT_DCLICK, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_PAINT, &GLCanvas3D::on_paint, this); m_canvas->Bind(wxEVT_KEY_DOWN, &GLCanvas3D::on_key_down, this); } } void GLCanvas3D::unbind_event_handlers() { if (m_canvas != nullptr) { m_canvas->Unbind(wxEVT_SIZE, &GLCanvas3D::on_size, this); m_canvas->Unbind(wxEVT_IDLE, &GLCanvas3D::on_idle, this); m_canvas->Unbind(wxEVT_CHAR, &GLCanvas3D::on_char, this); m_canvas->Unbind(wxEVT_MOUSEWHEEL, &GLCanvas3D::on_mouse_wheel, this); m_canvas->Unbind(wxEVT_TIMER, &GLCanvas3D::on_timer, this); m_canvas->Unbind(wxEVT_LEFT_DOWN, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_LEFT_UP, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_MIDDLE_DOWN, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_MIDDLE_UP, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_RIGHT_DOWN, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_RIGHT_UP, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_MOTION, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_ENTER_WINDOW, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_LEAVE_WINDOW, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_LEFT_DCLICK, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_MIDDLE_DCLICK, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_RIGHT_DCLICK, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_PAINT, &GLCanvas3D::on_paint, this); m_canvas->Unbind(wxEVT_KEY_DOWN, &GLCanvas3D::on_key_down, this); } } void GLCanvas3D::on_size(wxSizeEvent& evt) { m_dirty = true; } void GLCanvas3D::on_idle(wxIdleEvent& evt) { if (!m_dirty) return; _refresh_if_shown_on_screen(); } void GLCanvas3D::on_char(wxKeyEvent& evt) { if (evt.HasModifiers()) evt.Skip(); else { int keyCode = evt.GetKeyCode(); switch (keyCode - 48) { // numerical input case 0: { select_view("iso"); break; } case 1: { select_view("top"); break; } case 2: { select_view("bottom"); break; } case 3: { select_view("front"); break; } case 4: { select_view("rear"); break; } case 5: { select_view("left"); break; } case 6: { select_view("right"); break; } default: { // text input switch (keyCode) { // key ESC case 27: { m_gizmos.reset_all_states(); m_dirty = true; break; } // key + case 43: { post_event(Event(EVT_GLCANVAS_INCREASE_INSTANCES, +1)); break; } // key - case 45: { post_event(Event(EVT_GLCANVAS_INCREASE_INSTANCES, -1)); break; } // key A/a case 65: case 97: { post_event(SimpleEvent(EVT_GLCANVAS_ARRANGE)); break; } // key B/b case 66: case 98: { zoom_to_bed(); break; } // key I/i case 73: case 105: { set_camera_zoom(1.0f); break; } // key O/o case 79: case 111: { set_camera_zoom(-1.0f); break; } #if ENABLE_MODIFIED_CAMERA_TARGET // key Z/z case 90: case 122: { if (m_selection.is_empty()) zoom_to_volumes(); else zoom_to_selection(); break; } #else // key Z/z case 90: case 122: { zoom_to_volumes(); break; } #endif // ENABLE_MODIFIED_CAMERA_TARGET default: { if (m_gizmos.handle_shortcut(keyCode, m_selection)) { _update_gizmos_data(); m_dirty = true; } else evt.Skip(); break; } } } } } } void GLCanvas3D::on_mouse_wheel(wxMouseEvent& evt) { // Ignore the wheel events if the middle button is pressed. if (evt.MiddleIsDown()) return; // Performs layers editing updates, if enabled if (is_layers_editing_enabled()) { int object_idx_selected = m_selection.get_object_idx(); if (object_idx_selected != -1) { // A volume is selected. Test, whether hovering over a layer thickness bar. if (m_layers_editing.bar_rect_contains(*this, (float)evt.GetX(), (float)evt.GetY())) { // Adjust the width of the selection. m_layers_editing.band_width = std::max(std::min(m_layers_editing.band_width * (1.0f + 0.1f * (float)evt.GetWheelRotation() / (float)evt.GetWheelDelta()), 10.0f), 1.5f); if (m_canvas != nullptr) m_canvas->Refresh(); return; } } } // Calculate the zoom delta and apply it to the current zoom factor float zoom = (float)evt.GetWheelRotation() / (float)evt.GetWheelDelta(); set_camera_zoom(zoom); } void GLCanvas3D::on_timer(wxTimerEvent& evt) { if (m_layers_editing.state != LayersEditing::Editing) return; _perform_layer_editing_action(); } void GLCanvas3D::on_mouse(wxMouseEvent& evt) { #if ENABLE_IMGUI auto imgui = wxGetApp().imgui(); if (imgui->update_mouse_data(evt)) { render(); if (imgui->want_any_input()) { return; } } #endif // ENABLE_IMGUI Point pos(evt.GetX(), evt.GetY()); int selected_object_idx = m_selection.get_object_idx(); int layer_editing_object_idx = is_layers_editing_enabled() ? selected_object_idx : -1; m_layers_editing.last_object_id = layer_editing_object_idx; bool gizmos_overlay_contains_mouse = m_gizmos.overlay_contains_mouse(*this, m_mouse.position); int toolbar_contains_mouse = m_toolbar.contains_mouse(m_mouse.position); if (evt.Entering()) { #if defined(__WXMSW__) || defined(__linux__) // On Windows and Linux needs focus in order to catch key events if (m_canvas != nullptr) m_canvas->SetFocus(); m_mouse.set_start_position_2D_as_invalid(); #endif } else if (evt.Leaving()) { // to remove hover on objects when the mouse goes out of this canvas m_mouse.position = Vec2d(-1.0, -1.0); m_dirty = true; } else if (evt.LeftDClick() && (toolbar_contains_mouse != -1)) { m_toolbar_action_running = true; m_toolbar.do_action((unsigned int)toolbar_contains_mouse); } else if (evt.LeftDown() || evt.RightDown()) { m_mouse.left_down = evt.LeftDown(); // If user pressed left or right button we first check whether this happened // on a volume or not. m_layers_editing.state = LayersEditing::Unknown; if ((layer_editing_object_idx != -1) && m_layers_editing.bar_rect_contains(*this, pos(0), pos(1))) { // A volume is selected and the mouse is inside the layer thickness bar. // Start editing the layer height. m_layers_editing.state = LayersEditing::Editing; _perform_layer_editing_action(&evt); } else if ((layer_editing_object_idx != -1) && m_layers_editing.reset_rect_contains(*this, pos(0), pos(1))) { if (evt.LeftDown()) { // A volume is selected and the mouse is inside the reset button. // The PrintObject::adjust_layer_height_profile() call adjusts the profile of its associated ModelObject, it does not modify the profile of the PrintObject itself, // therefore it is safe to call it while the background processing is running. const_cast(this->fff_print()->get_object(layer_editing_object_idx))->reset_layer_height_profile(); // Index 2 means no editing, just wait for mouse up event. m_layers_editing.state = LayersEditing::Completed; m_dirty = true; } } #if !ENABLE_IMGUI else if ((m_gizmos.get_current_type() == Gizmos::SlaSupports) && gizmo_reset_rect_contains(*this, pos(0), pos(1))) { if (evt.LeftDown()) { m_gizmos.delete_current_grabber(true); m_dirty = true; } } #endif // not ENABLE_IMGUI else if (!m_selection.is_empty() && gizmos_overlay_contains_mouse) { m_gizmos.update_on_off_state(*this, m_mouse.position, m_selection); _update_gizmos_data(); m_dirty = true; } else if (evt.LeftDown() && !m_selection.is_empty() && m_gizmos.grabber_contains_mouse()) { _update_gizmos_data(); m_selection.start_dragging(); m_gizmos.start_dragging(m_selection); if (m_gizmos.get_current_type() == Gizmos::Flatten) { // Rotate the object so the normal points downward: m_selection.flattening_rotate(m_gizmos.get_flattening_normal()); do_flatten(); wxGetApp().obj_manipul()->update_settings_value(m_selection); } m_dirty = true; } else if ((selected_object_idx != -1) && m_gizmos.grabber_contains_mouse() && evt.RightDown()) { if (m_gizmos.get_current_type() == Gizmos::SlaSupports) m_gizmos.delete_current_grabber(); } else if (toolbar_contains_mouse != -1) { m_toolbar_action_running = true; m_toolbar.do_action((unsigned int)toolbar_contains_mouse); m_mouse.left_down = false; } else { // Select volume in this 3D canvas. // Don't deselect a volume if layer editing is enabled. We want the object to stay selected // during the scene manipulation. if (m_picking_enabled && ((m_hover_volume_id != -1) || !is_layers_editing_enabled())) { if (evt.LeftDown() && (m_hover_volume_id != -1)) { bool already_selected = m_selection.contains_volume(m_hover_volume_id); bool shift_down = evt.ShiftDown(); if (already_selected && shift_down) m_selection.remove(m_hover_volume_id); else { bool add_as_single = !already_selected && !shift_down; m_selection.add(m_hover_volume_id, add_as_single); } m_gizmos.update_on_off_state(m_selection); _update_gizmos_data(); wxGetApp().obj_manipul()->update_settings_value(m_selection); post_event(SimpleEvent(EVT_GLCANVAS_OBJECT_SELECT)); m_dirty = true; } } // propagate event through callback if (m_hover_volume_id != -1) { if (evt.LeftDown() && m_moving_enabled && (m_mouse.drag.move_volume_idx == -1)) { // Only accept the initial position, if it is inside the volume bounding box. BoundingBoxf3 volume_bbox = m_volumes.volumes[m_hover_volume_id]->transformed_bounding_box(); volume_bbox.offset(1.0); if (volume_bbox.contains(m_mouse.scene_position)) { // The dragging operation is initiated. m_mouse.drag.move_volume_idx = m_hover_volume_id; m_selection.start_dragging(); m_mouse.drag.start_position_3D = m_mouse.scene_position; m_moving = true; } } else if (evt.RightDown()) { // forces a frame render to ensure that m_hover_volume_id is updated even when the user right clicks while // the context menu is already shown, ensuring it to disappear if the mouse is outside any volume m_mouse.position = Vec2d((double)pos(0), (double)pos(1)); render(); if (m_hover_volume_id != -1) { // if right clicking on volume, propagate event through callback (shows context menu) if (m_volumes.volumes[m_hover_volume_id]->hover && !m_volumes.volumes[m_hover_volume_id]->is_wipe_tower) { // forces the selection of the volume m_selection.add(m_hover_volume_id); m_gizmos.update_on_off_state(m_selection); post_event(SimpleEvent(EVT_GLCANVAS_OBJECT_SELECT)); _update_gizmos_data(); wxGetApp().obj_manipul()->update_settings_value(m_selection); // forces a frame render to update the view before the context menu is shown render(); post_event(Vec2dEvent(EVT_GLCANVAS_RIGHT_CLICK, pos.cast())); } } } } } } else if (evt.Dragging() && evt.LeftIsDown() && !gizmos_overlay_contains_mouse && (m_layers_editing.state == LayersEditing::Unknown) && (m_mouse.drag.move_volume_idx != -1)) { m_mouse.dragging = true; // Get new position at the same Z of the initial click point. float z0 = 0.0f; float z1 = 1.0f; // we do not want to translate objects if the user just clicked on an object while pressing shift to remove it from the selection and then drag Vec3d cur_pos = m_selection.contains_volume(m_hover_volume_id) ? Linef3(_mouse_to_3d(pos, &z0), _mouse_to_3d(pos, &z1)).intersect_plane(m_mouse.drag.start_position_3D(2)) : m_mouse.drag.start_position_3D; m_selection.translate(cur_pos - m_mouse.drag.start_position_3D); wxGetApp().obj_manipul()->update_settings_value(m_selection); m_dirty = true; } else if (evt.Dragging() && m_gizmos.is_dragging()) { if (!m_canvas->HasCapture()) m_canvas->CaptureMouse(); m_mouse.dragging = true; m_gizmos.update(mouse_ray(pos), evt.ShiftDown(), &pos); switch (m_gizmos.get_current_type()) { case Gizmos::Move: { // Apply new temporary offset m_selection.translate(m_gizmos.get_displacement()); wxGetApp().obj_manipul()->update_settings_value(m_selection); break; } case Gizmos::Scale: { // Apply new temporary scale factors m_selection.scale(m_gizmos.get_scale(), evt.AltDown()); wxGetApp().obj_manipul()->update_settings_value(m_selection); break; } case Gizmos::Rotate: { // Apply new temporary rotations m_selection.rotate(m_gizmos.get_rotation(), evt.AltDown()); wxGetApp().obj_manipul()->update_settings_value(m_selection); break; } default: break; } // if (!volumes.empty()) // { // BoundingBoxf3 bb; // for (const GLVolume* volume : volumes) // { // bb.merge(volume->transformed_bounding_box()); // } // const Vec3d& size = bb.size(); // const Vec3d& scale = m_gizmos.get_scale(); // post_event(Vec3dsEvent<2>(EVT_GLCANVAS_UPDATE_GEOMETRY, {size, scale})); // } m_dirty = true; } else if (evt.Dragging() && !gizmos_overlay_contains_mouse) { m_mouse.dragging = true; if ((m_layers_editing.state != LayersEditing::Unknown) && (layer_editing_object_idx != -1)) { if (m_layers_editing.state == LayersEditing::Editing) _perform_layer_editing_action(&evt); } else if (evt.LeftIsDown()) { // if dragging over blank area with left button, rotate if (m_mouse.is_start_position_3D_defined()) { const Vec3d& orig = m_mouse.drag.start_position_3D; m_camera.phi += (((float)pos(0) - (float)orig(0)) * TRACKBALLSIZE); m_camera.set_theta(m_camera.get_theta() - ((float)pos(1) - (float)orig(1)) * TRACKBALLSIZE); viewport_changed(); m_dirty = true; } m_mouse.drag.start_position_3D = Vec3d((double)pos(0), (double)pos(1), 0.0); } else if (evt.MiddleIsDown() || evt.RightIsDown()) { // If dragging over blank area with right button, pan. if (m_mouse.is_start_position_2D_defined()) { // get point in model space at Z = 0 float z = 0.0f; const Vec3d& cur_pos = _mouse_to_3d(pos, &z); Vec3d orig = _mouse_to_3d(m_mouse.drag.start_position_2D, &z); m_camera.target += orig - cur_pos; viewport_changed(); m_dirty = true; } m_mouse.drag.start_position_2D = pos; } } else if (evt.LeftUp() || evt.MiddleUp() || evt.RightUp()) { if (m_layers_editing.state != LayersEditing::Unknown) { m_layers_editing.state = LayersEditing::Unknown; _stop_timer(); if (layer_editing_object_idx != -1) post_event(SimpleEvent(EVT_GLCANVAS_MODEL_UPDATE)); } else if ((m_mouse.drag.move_volume_idx != -1) && m_mouse.dragging) { m_regenerate_volumes = false; do_move(); wxGetApp().obj_manipul()->update_settings_value(m_selection); // Let the platter know that the dragging finished, so a delayed refresh // of the scene with the background processing data should be performed. post_event(SimpleEvent(EVT_GLCANVAS_MOUSE_DRAGGING_FINISHED)); } else if (evt.LeftUp() && m_gizmos.get_current_type() == Gizmos::SlaSupports && m_hover_volume_id != -1) { int id = m_selection.get_object_idx(); if ((id != -1) && (m_model != nullptr)) { m_gizmos.clicked_on_object(Vec2d(pos(0), pos(1))); } } else if (evt.LeftUp() && !m_mouse.dragging && (m_hover_volume_id == -1) && !gizmos_overlay_contains_mouse && !m_gizmos.is_dragging() && !is_layers_editing_enabled()) { // deselect and propagate event through callback if (m_picking_enabled && !m_toolbar_action_running) { m_selection.clear(); m_selection.set_mode(Selection::Instance); wxGetApp().obj_manipul()->update_settings_value(m_selection); post_event(SimpleEvent(EVT_GLCANVAS_OBJECT_SELECT)); _update_gizmos_data(); } } else if (evt.LeftUp() && m_gizmos.is_dragging()) { switch (m_gizmos.get_current_type()) { case Gizmos::Move: { m_regenerate_volumes = false; do_move(); break; } case Gizmos::Scale: { do_scale(); break; } case Gizmos::Rotate: { do_rotate(); break; } case Gizmos::SlaSupports: // End of mouse dragging, update the SLAPrint/SLAPrintObjects with the new support points. post_event(SimpleEvent(EVT_GLCANVAS_SCHEDULE_BACKGROUND_PROCESS)); break; default: break; } m_gizmos.stop_dragging(); #if ENABLE_WORLD_ROTATIONS _update_gizmos_data(); #endif // ENABLE_WORLD_ROTATIONS wxGetApp().obj_manipul()->update_settings_value(m_selection); // Let the platter know that the dragging finished, so a delayed refresh // of the scene with the background processing data should be performed. post_event(SimpleEvent(EVT_GLCANVAS_MOUSE_DRAGGING_FINISHED)); } m_moving = false; m_mouse.drag.move_volume_idx = -1; m_mouse.set_start_position_3D_as_invalid(); m_mouse.set_start_position_2D_as_invalid(); m_mouse.dragging = false; m_mouse.left_down = false; m_toolbar_action_running = false; m_dirty = true; if (m_canvas->HasCapture()) m_canvas->ReleaseMouse(); } else if (evt.Moving()) { m_mouse.position = Vec2d((double)pos(0), (double)pos(1)); // Only refresh if picking is enabled, in that case the objects may get highlighted if the mouse cursor hovers over. if (m_picking_enabled) m_dirty = true; } else evt.Skip(); } void GLCanvas3D::on_paint(wxPaintEvent& evt) { render(); } void GLCanvas3D::on_key_down(wxKeyEvent& evt) { if (evt.HasModifiers()) evt.Skip(); else { int key = evt.GetKeyCode(); #ifdef __WXOSX__ if (key == WXK_BACK) #else if (key == WXK_DELETE) #endif // __WXOSX__ post_event(SimpleEvent(EVT_GLCANVAS_REMOVE_OBJECT)); else evt.Skip(); } } Size GLCanvas3D::get_canvas_size() const { int w = 0; int h = 0; if (m_canvas != nullptr) m_canvas->GetSize(&w, &h); return Size(w, h); } Point GLCanvas3D::get_local_mouse_position() const { if (m_canvas == nullptr) return Point(); wxPoint mouse_pos = m_canvas->ScreenToClient(wxGetMousePosition()); return Point(mouse_pos.x, mouse_pos.y); } void GLCanvas3D::reset_legend_texture() { #if !ENABLE_USE_UNIQUE_GLCONTEXT if (!set_current()) return; #endif // !ENABLE_USE_UNIQUE_GLCONTEXT m_legend_texture.reset(); } void GLCanvas3D::set_tooltip(const std::string& tooltip) const { if (m_canvas != nullptr) { wxToolTip* t = m_canvas->GetToolTip(); if (t != nullptr) { if (t->GetTip() != tooltip) t->SetTip(tooltip); } else m_canvas->SetToolTip(tooltip); } } #if !ENABLE_IMGUI void GLCanvas3D::set_external_gizmo_widgets_parent(wxWindow *parent) { m_external_gizmo_widgets_parent = parent; } #endif // not ENABLE_IMGUI void GLCanvas3D::do_move() { if (m_model == nullptr) return; std::set> done; // keeps track of modified instances bool object_moved = false; Vec3d wipe_tower_origin = Vec3d::Zero(); Selection::EMode selection_mode = m_selection.get_mode(); for (const GLVolume* v : m_volumes.volumes) { int object_idx = v->object_idx(); int instance_idx = v->instance_idx(); int volume_idx = v->volume_idx(); std::pair done_id(object_idx, instance_idx); if ((0 <= object_idx) && (object_idx < (int)m_model->objects.size())) { done.insert(done_id); // Move instances/volumes ModelObject* model_object = m_model->objects[object_idx]; if (model_object != nullptr) { #if ENABLE_MODELVOLUME_TRANSFORM if (selection_mode == Selection::Instance) { model_object->instances[instance_idx]->set_offset(v->get_instance_offset()); object_moved = true; } else if (selection_mode == Selection::Volume) { model_object->volumes[volume_idx]->set_offset(v->get_volume_offset()); object_moved = true; } if (object_moved) #else model_object->instances[instance_idx]->set_offset(v->get_offset()); object_moved = true; #endif // ENABLE_MODELVOLUME_TRANSFORM model_object->invalidate_bounding_box(); } } else if (object_idx == 1000) // Move a wipe tower proxy. #if ENABLE_MODELVOLUME_TRANSFORM wipe_tower_origin = v->get_volume_offset(); #else wipe_tower_origin = v->get_offset(); #endif // ENABLE_MODELVOLUME_TRANSFORM } // Fixes sinking/flying instances for (const std::pair& i : done) { ModelObject* m = m_model->objects[i.first]; Vec3d shift(0.0, 0.0, -m->get_instance_min_z(i.second)); m_selection.translate(i.first, i.second, shift); m->translate_instance(i.second, shift); } if (object_moved) post_event(SimpleEvent(EVT_GLCANVAS_INSTANCE_MOVED)); if (wipe_tower_origin != Vec3d::Zero()) post_event(Vec3dEvent(EVT_GLCANVAS_WIPETOWER_MOVED, std::move(wipe_tower_origin))); } void GLCanvas3D::do_rotate() { if (m_model == nullptr) return; std::set> done; // keeps track of modified instances Selection::EMode selection_mode = m_selection.get_mode(); for (const GLVolume* v : m_volumes.volumes) { int object_idx = v->object_idx(); if ((object_idx < 0) || ((int)m_model->objects.size() <= object_idx)) continue; int instance_idx = v->instance_idx(); int volume_idx = v->volume_idx(); done.insert(std::pair(object_idx, instance_idx)); // Rotate instances/volumes. ModelObject* model_object = m_model->objects[object_idx]; if (model_object != nullptr) { #if ENABLE_MODELVOLUME_TRANSFORM if (selection_mode == Selection::Instance) { model_object->instances[instance_idx]->set_rotation(v->get_instance_rotation()); model_object->instances[instance_idx]->set_offset(v->get_instance_offset()); } else if (selection_mode == Selection::Volume) { model_object->volumes[volume_idx]->set_rotation(v->get_volume_rotation()); model_object->volumes[volume_idx]->set_offset(v->get_volume_offset()); } #else model_object->instances[instance_idx]->set_rotation(v->get_rotation()); model_object->instances[instance_idx]->set_offset(v->get_offset()); #endif // ENABLE_MODELVOLUME_TRANSFORM model_object->invalidate_bounding_box(); } } // Fixes sinking/flying instances for (const std::pair& i : done) { ModelObject* m = m_model->objects[i.first]; Vec3d shift(0.0, 0.0, -m->get_instance_min_z(i.second)); m_selection.translate(i.first, i.second, shift); m->translate_instance(i.second, shift); } post_event(SimpleEvent(EVT_GLCANVAS_SCHEDULE_BACKGROUND_PROCESS)); } void GLCanvas3D::do_scale() { if (m_model == nullptr) return; std::set> done; // keeps track of modified instances Selection::EMode selection_mode = m_selection.get_mode(); for (const GLVolume* v : m_volumes.volumes) { int object_idx = v->object_idx(); if ((object_idx < 0) || ((int)m_model->objects.size() <= object_idx)) continue; int instance_idx = v->instance_idx(); int volume_idx = v->volume_idx(); done.insert(std::pair(object_idx, instance_idx)); // Rotate instances/volumes ModelObject* model_object = m_model->objects[object_idx]; if (model_object != nullptr) { #if ENABLE_MODELVOLUME_TRANSFORM if (selection_mode == Selection::Instance) { model_object->instances[instance_idx]->set_scaling_factor(v->get_instance_scaling_factor()); model_object->instances[instance_idx]->set_offset(v->get_instance_offset()); } else if (selection_mode == Selection::Volume) { model_object->instances[instance_idx]->set_offset(v->get_instance_offset()); model_object->volumes[volume_idx]->set_scaling_factor(v->get_volume_scaling_factor()); model_object->volumes[volume_idx]->set_offset(v->get_volume_offset()); } #else model_object->instances[instance_idx]->set_scaling_factor(v->get_scaling_factor()); model_object->instances[instance_idx]->set_offset(v->get_offset()); #endif // ENABLE_MODELVOLUME_TRANSFORM model_object->invalidate_bounding_box(); } } // Fixes sinking/flying instances for (const std::pair& i : done) { ModelObject* m = m_model->objects[i.first]; Vec3d shift(0.0, 0.0, -m->get_instance_min_z(i.second)); m_selection.translate(i.first, i.second, shift); m->translate_instance(i.second, shift); } post_event(SimpleEvent(EVT_GLCANVAS_SCHEDULE_BACKGROUND_PROCESS)); } void GLCanvas3D::do_flatten() { do_rotate(); } void GLCanvas3D::do_mirror() { if (m_model == nullptr) return; std::set> done; // keeps track of modified instances Selection::EMode selection_mode = m_selection.get_mode(); for (const GLVolume* v : m_volumes.volumes) { int object_idx = v->object_idx(); if ((object_idx < 0) || ((int)m_model->objects.size() <= object_idx)) continue; int instance_idx = v->instance_idx(); int volume_idx = v->volume_idx(); done.insert(std::pair(object_idx, instance_idx)); // Mirror instances/volumes ModelObject* model_object = m_model->objects[object_idx]; if (model_object != nullptr) { #if ENABLE_MODELVOLUME_TRANSFORM if (selection_mode == Selection::Instance) model_object->instances[instance_idx]->set_mirror(v->get_instance_mirror()); else if (selection_mode == Selection::Volume) model_object->volumes[volume_idx]->set_mirror(v->get_volume_mirror()); #else model_object->instances[instance_idx]->set_mirror(v->get_mirror()); #endif // ENABLE_MODELVOLUME_TRANSFORM model_object->invalidate_bounding_box(); } } post_event(SimpleEvent(EVT_GLCANVAS_SCHEDULE_BACKGROUND_PROCESS)); } void GLCanvas3D::set_camera_zoom(float zoom) { zoom = std::max(std::min(zoom, 4.0f), -4.0f) / 10.0f; zoom = get_camera_zoom() / (1.0f - zoom); // Don't allow to zoom too far outside the scene. float zoom_min = _get_zoom_to_bounding_box_factor(_max_bounding_box()); if (zoom_min > 0.0f) zoom = std::max(zoom, zoom_min * 0.8f); m_camera.zoom = zoom; viewport_changed(); _refresh_if_shown_on_screen(); } void GLCanvas3D::update_gizmos_on_off_state() { set_as_dirty(); m_gizmos.update_on_off_state(get_selection()); } bool GLCanvas3D::_is_shown_on_screen() const { return (m_canvas != nullptr) ? m_canvas->IsShownOnScreen() : false; } void GLCanvas3D::_force_zoom_to_bed() { zoom_to_bed(); m_force_zoom_to_bed_enabled = false; } bool GLCanvas3D::_init_toolbar() { if (!m_toolbar.is_enabled()) return true; if (!m_toolbar.init("toolbar.png", 36, 1, 1)) { // unable to init the toolbar texture, disable it m_toolbar.set_enabled(false); return true; } // m_toolbar.set_layout_type(GLToolbar::Layout::Vertical); m_toolbar.set_layout_type(GLToolbar::Layout::Horizontal); m_toolbar.set_separator_size(5); m_toolbar.set_gap_size(2); GLToolbarItem::Data item; item.name = "add"; item.tooltip = GUI::L_str("Add..."); item.sprite_id = 0; item.is_toggable = false; item.action_event = EVT_GLTOOLBAR_ADD; if (!m_toolbar.add_item(item)) return false; item.name = "delete"; item.tooltip = GUI::L_str("Delete"); item.sprite_id = 1; item.is_toggable = false; item.action_event = EVT_GLTOOLBAR_DELETE; if (!m_toolbar.add_item(item)) return false; item.name = "deleteall"; item.tooltip = GUI::L_str("Delete all"); item.sprite_id = 2; item.is_toggable = false; item.action_event = EVT_GLTOOLBAR_DELETE_ALL; if (!m_toolbar.add_item(item)) return false; item.name = "arrange"; item.tooltip = GUI::L_str("Arrange"); item.sprite_id = 3; item.is_toggable = false; item.action_event = EVT_GLTOOLBAR_ARRANGE; if (!m_toolbar.add_item(item)) return false; if (!m_toolbar.add_separator()) return false; item.name = "more"; item.tooltip = GUI::L_str("Add instance"); item.sprite_id = 4; item.is_toggable = false; item.action_event = EVT_GLTOOLBAR_MORE; if (!m_toolbar.add_item(item)) return false; item.name = "fewer"; item.tooltip = GUI::L_str("Remove instance"); item.sprite_id = 5; item.is_toggable = false; item.action_event = EVT_GLTOOLBAR_FEWER; if (!m_toolbar.add_item(item)) return false; if (!m_toolbar.add_separator()) return false; item.name = "splitobjects"; item.tooltip = GUI::L_str("Split to objects"); item.sprite_id = 6; item.is_toggable = false; item.action_event = EVT_GLTOOLBAR_SPLIT_OBJECTS; if (!m_toolbar.add_item(item)) return false; item.name = "splitvolumes"; item.tooltip = GUI::L_str("Split to parts"); item.sprite_id = 8; item.is_toggable = false; item.action_event = EVT_GLTOOLBAR_SPLIT_VOLUMES; if (!m_toolbar.add_item(item)) return false; if (!m_toolbar.add_separator()) return false; item.name = "layersediting"; item.tooltip = GUI::L_str("Layers editing"); item.sprite_id = 7; item.is_toggable = true; item.action_event = EVT_GLTOOLBAR_LAYERSEDITING; if (!m_toolbar.add_item(item)) return false; if (!m_toolbar.add_separator()) return false; enable_toolbar_item("add", true); return true; } #if ENABLE_USE_UNIQUE_GLCONTEXT bool GLCanvas3D::_set_current() { if ((m_canvas != nullptr) && (m_context != nullptr)) return m_canvas->SetCurrent(*m_context); return false; } #endif ENABLE_USE_UNIQUE_GLCONTEXT void GLCanvas3D::_resize(unsigned int w, unsigned int h) { if ((m_canvas == nullptr) && (m_context == nullptr)) return; #if ENABLE_IMGUI wxGetApp().imgui()->set_display_size((float)w, (float)h); #endif // ENABLE_IMGUI // ensures that this canvas is current #if ENABLE_USE_UNIQUE_GLCONTEXT _set_current(); #else set_current(); #endif // ENABLE_USE_UNIQUE_GLCONTEXT ::glViewport(0, 0, w, h); ::glMatrixMode(GL_PROJECTION); ::glLoadIdentity(); const BoundingBoxf3& bbox = _max_bounding_box(); switch (m_camera.type) { case Camera::Ortho: { float w2 = w; float h2 = h; float two_zoom = 2.0f * get_camera_zoom(); if (two_zoom != 0.0f) { float inv_two_zoom = 1.0f / two_zoom; w2 *= inv_two_zoom; h2 *= inv_two_zoom; } // FIXME: calculate a tighter value for depth will improve z-fighting float depth = 5.0f * (float)bbox.max_size(); ::glOrtho(-w2, w2, -h2, h2, -depth, depth); break; } // case Camera::Perspective: // { // float bbox_r = (float)bbox.radius(); // float fov = PI * 45.0f / 180.0f; // float fov_tan = tan(0.5f * fov); // float cam_distance = 0.5f * bbox_r / fov_tan; // m_camera.distance = cam_distance; // // float nr = cam_distance - bbox_r * 1.1f; // float fr = cam_distance + bbox_r * 1.1f; // if (nr < 1.0f) // nr = 1.0f; // // if (fr < nr + 1.0f) // fr = nr + 1.0f; // // float h2 = fov_tan * nr; // float w2 = h2 * w / h; // ::glFrustum(-w2, w2, -h2, h2, nr, fr); // // break; // } default: { throw std::runtime_error("Invalid camera type."); break; } } ::glMatrixMode(GL_MODELVIEW); m_dirty = false; } BoundingBoxf3 GLCanvas3D::_max_bounding_box() const { BoundingBoxf3 bb = m_bed.get_bounding_box(); bb.merge(volumes_bounding_box()); return bb; } void GLCanvas3D::_zoom_to_bounding_box(const BoundingBoxf3& bbox) { // Calculate the zoom factor needed to adjust viewport to bounding box. float zoom = _get_zoom_to_bounding_box_factor(bbox); if (zoom > 0.0f) { m_camera.zoom = zoom; // center view around bounding box center m_camera.target = bbox.center(); viewport_changed(); _refresh_if_shown_on_screen(); } } float GLCanvas3D::_get_zoom_to_bounding_box_factor(const BoundingBoxf3& bbox) const { float max_bb_size = bbox.max_size(); if (max_bb_size == 0.0f) return -1.0f; // project the bbox vertices on a plane perpendicular to the camera forward axis // then calculates the vertices coordinate on this plane along the camera xy axes // we need the view matrix, we let opengl calculate it (same as done in render()) _camera_tranform(); // get the view matrix back from opengl GLfloat matrix[16]; ::glGetFloatv(GL_MODELVIEW_MATRIX, matrix); // camera axes Vec3d right((double)matrix[0], (double)matrix[4], (double)matrix[8]); Vec3d up((double)matrix[1], (double)matrix[5], (double)matrix[9]); Vec3d forward((double)matrix[2], (double)matrix[6], (double)matrix[10]); Vec3d bb_min = bbox.min; Vec3d bb_max = bbox.max; Vec3d bb_center = bbox.center(); // bbox vertices in world space std::vector vertices; vertices.reserve(8); vertices.push_back(bb_min); vertices.emplace_back(bb_max(0), bb_min(1), bb_min(2)); vertices.emplace_back(bb_max(0), bb_max(1), bb_min(2)); vertices.emplace_back(bb_min(0), bb_max(1), bb_min(2)); vertices.emplace_back(bb_min(0), bb_min(1), bb_max(2)); vertices.emplace_back(bb_max(0), bb_min(1), bb_max(2)); vertices.push_back(bb_max); vertices.emplace_back(bb_min(0), bb_max(1), bb_max(2)); double max_x = 0.0; double max_y = 0.0; // margin factor to give some empty space around the bbox double margin_factor = 1.25; for (const Vec3d v : vertices) { // project vertex on the plane perpendicular to camera forward axis Vec3d pos(v(0) - bb_center(0), v(1) - bb_center(1), v(2) - bb_center(2)); Vec3d proj_on_plane = pos - pos.dot(forward) * forward; // calculates vertex coordinate along camera xy axes double x_on_plane = proj_on_plane.dot(right); double y_on_plane = proj_on_plane.dot(up); max_x = std::max(max_x, margin_factor * std::abs(x_on_plane)); max_y = std::max(max_y, margin_factor * std::abs(y_on_plane)); } if ((max_x == 0.0) || (max_y == 0.0)) return -1.0f; max_x *= 2.0; max_y *= 2.0; const Size& cnv_size = get_canvas_size(); return (float)std::min((double)cnv_size.get_width() / max_x, (double)cnv_size.get_height() / max_y); } void GLCanvas3D::_mark_volumes_for_layer_height() const { const Print *print = (m_process == nullptr) ? nullptr : m_process->fff_print(); if (print == nullptr) return; for (GLVolume* vol : m_volumes.volumes) { int object_id = vol->object_idx(); int shader_id = m_layers_editing.get_shader_program_id(); if (is_layers_editing_enabled() && (shader_id != -1) && vol->selected && vol->has_layer_height_texture() && (object_id < (int)print->objects().size())) { vol->set_layer_height_texture_data(m_layers_editing.get_z_texture_id(), shader_id, print->get_object(object_id), _get_layers_editing_cursor_z_relative(), m_layers_editing.band_width); } else vol->reset_layer_height_texture_data(); } } void GLCanvas3D::_refresh_if_shown_on_screen() { if (_is_shown_on_screen()) { const Size& cnv_size = get_canvas_size(); _resize((unsigned int)cnv_size.get_width(), (unsigned int)cnv_size.get_height()); // Because of performance problems on macOS, where PaintEvents are not delivered // frequently enough, we call render() here directly when we can. // We can't do that when m_force_zoom_to_bed_enabled == true, because then render() // ends up calling back here via _force_zoom_to_bed(), causing a stack overflow. if (m_canvas != nullptr) { m_force_zoom_to_bed_enabled ? m_canvas->Refresh() : render(); } } } void GLCanvas3D::_camera_tranform() const { ::glMatrixMode(GL_MODELVIEW); ::glLoadIdentity(); ::glRotatef(-m_camera.get_theta(), 1.0f, 0.0f, 0.0f); // pitch ::glRotatef(m_camera.phi, 0.0f, 0.0f, 1.0f); // yaw ::glTranslated(-m_camera.target(0), -m_camera.target(1), -m_camera.target(2)); } void GLCanvas3D::_picking_pass() const { const Vec2d& pos = m_mouse.position; if (m_picking_enabled && !m_mouse.dragging && !m_mouse.left_down && (pos != Vec2d(DBL_MAX, DBL_MAX))) { // Render the object for picking. // FIXME This cannot possibly work in a multi - sampled context as the color gets mangled by the anti - aliasing. // Better to use software ray - casting on a bounding - box hierarchy. if (m_multisample_allowed) ::glDisable(GL_MULTISAMPLE); ::glDisable(GL_BLEND); ::glEnable(GL_DEPTH_TEST); ::glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); _render_volumes(true); m_gizmos.render_current_gizmo_for_picking_pass(m_selection); if (m_multisample_allowed) ::glEnable(GL_MULTISAMPLE); int volume_id = -1; GLubyte color[4] = { 0, 0, 0, 0 }; const Size& cnv_size = get_canvas_size(); bool inside = (0 <= pos(0)) && (pos(0) < cnv_size.get_width()) && (0 <= pos(1)) && (pos(1) < cnv_size.get_height()); if (inside) { ::glReadPixels(pos(0), cnv_size.get_height() - pos(1) - 1, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, (void*)color); volume_id = color[0] + color[1] * 256 + color[2] * 256 * 256; } if ((0 <= volume_id) && (volume_id < (int)m_volumes.volumes.size())) { m_hover_volume_id = volume_id; m_gizmos.set_hover_id(-1); } else { m_hover_volume_id = -1; m_gizmos.set_hover_id(inside ? (254 - (int)color[2]) : -1); } _update_volumes_hover_state(); // updates gizmos overlay if (!m_selection.is_empty()) { std::string name = m_gizmos.update_hover_state(*this, pos, m_selection); if (!name.empty()) set_tooltip(name); } else m_gizmos.reset_all_states(); m_toolbar.update_hover_state(pos); } } void GLCanvas3D::_render_background() const { ::glPushMatrix(); ::glLoadIdentity(); ::glMatrixMode(GL_PROJECTION); ::glPushMatrix(); ::glLoadIdentity(); // Draws a bluish bottom to top gradient over the complete screen. ::glDisable(GL_DEPTH_TEST); ::glBegin(GL_QUADS); ::glColor3f(0.0f, 0.0f, 0.0f); ::glVertex2f(-1.0f, -1.0f); ::glVertex2f(1.0f, -1.0f); if (m_dynamic_background_enabled && _is_any_volume_outside()) ::glColor3fv(ERROR_BG_COLOR); else ::glColor3fv(DEFAULT_BG_COLOR); ::glVertex2f(1.0f, 1.0f); ::glVertex2f(-1.0f, 1.0f); ::glEnd(); ::glEnable(GL_DEPTH_TEST); ::glPopMatrix(); ::glMatrixMode(GL_MODELVIEW); ::glPopMatrix(); } void GLCanvas3D::_render_bed(float theta) const { m_bed.render(theta); } void GLCanvas3D::_render_axes(bool depth_test) const { m_axes.render(depth_test); } void GLCanvas3D::_render_objects() const { if (m_volumes.empty()) return; ::glEnable(GL_LIGHTING); ::glEnable(GL_DEPTH_TEST); if (!m_shader_enabled) _render_volumes(false); else if (m_use_VBOs) { if (m_picking_enabled) { _mark_volumes_for_layer_height(); if (m_config != nullptr) { const BoundingBoxf3& bed_bb = m_bed.get_bounding_box(); m_volumes.set_print_box((float)bed_bb.min(0), (float)bed_bb.min(1), 0.0f, (float)bed_bb.max(0), (float)bed_bb.max(1), (float)m_config->opt_float("max_print_height")); m_volumes.check_outside_state(m_config, nullptr); } // do not cull backfaces to show broken geometry, if any ::glDisable(GL_CULL_FACE); } if (m_use_clipping_planes) m_volumes.set_z_range(-m_clipping_planes[0].get_data()[3], m_clipping_planes[1].get_data()[3]); else m_volumes.set_z_range(-FLT_MAX, FLT_MAX); m_shader.start_using(); m_volumes.render_VBOs(); m_shader.stop_using(); if (m_picking_enabled) ::glEnable(GL_CULL_FACE); } else { if (m_use_clipping_planes) { ::glClipPlane(GL_CLIP_PLANE0, (GLdouble*)m_clipping_planes[0].get_data()); ::glEnable(GL_CLIP_PLANE0); ::glClipPlane(GL_CLIP_PLANE1, (GLdouble*)m_clipping_planes[1].get_data()); ::glEnable(GL_CLIP_PLANE1); } // do not cull backfaces to show broken geometry, if any if (m_picking_enabled) ::glDisable(GL_CULL_FACE); m_volumes.render_legacy(); if (m_picking_enabled) ::glEnable(GL_CULL_FACE); if (m_use_clipping_planes) { ::glDisable(GL_CLIP_PLANE0); ::glDisable(GL_CLIP_PLANE1); } } ::glDisable(GL_LIGHTING); } void GLCanvas3D::_render_selection() const { if (!m_gizmos.is_running()) m_selection.render(); } void GLCanvas3D::_render_warning_texture() const { if (!m_warning_texture_enabled) return; m_warning_texture.render(*this); } void GLCanvas3D::_render_legend_texture() const { if (!m_legend_texture_enabled) return; m_legend_texture.render(*this); } void GLCanvas3D::_render_layer_editing_overlay() const { const Print *print = this->fff_print(); if ((print == nullptr) || print->objects().empty()) return; GLVolume* volume = nullptr; for (GLVolume* vol : m_volumes.volumes) { if ((vol != nullptr) && vol->selected && vol->has_layer_height_texture()) { volume = vol; break; } } if (volume == nullptr) return; // If the active object was not allocated at the Print, go away.This should only be a momentary case between an object addition / deletion // and an update by Platter::async_apply_config. int object_idx = volume->object_idx(); if ((int)print->objects().size() <= object_idx) return; const PrintObject* print_object = print->get_object(object_idx); if (print_object == nullptr) return; m_layers_editing.render(*this, *print_object, *volume); } void GLCanvas3D::_render_volumes(bool fake_colors) const { static const GLfloat INV_255 = 1.0f / 255.0f; if (!fake_colors) ::glEnable(GL_LIGHTING); // do not cull backfaces to show broken geometry, if any ::glDisable(GL_CULL_FACE); ::glEnable(GL_BLEND); ::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); ::glEnableClientState(GL_VERTEX_ARRAY); ::glEnableClientState(GL_NORMAL_ARRAY); unsigned int volume_id = 0; for (GLVolume* vol : m_volumes.volumes) { if (fake_colors) { // Object picking mode. Render the object with a color encoding the object index. unsigned int r = (volume_id & 0x000000FF) >> 0; unsigned int g = (volume_id & 0x0000FF00) >> 8; unsigned int b = (volume_id & 0x00FF0000) >> 16; ::glColor3f((GLfloat)r * INV_255, (GLfloat)g * INV_255, (GLfloat)b * INV_255); } else { vol->set_render_color(); ::glColor4fv(vol->render_color); } if (!fake_colors || !vol->disabled) vol->render(); ++volume_id; } ::glDisableClientState(GL_NORMAL_ARRAY); ::glDisableClientState(GL_VERTEX_ARRAY); ::glDisable(GL_BLEND); ::glEnable(GL_CULL_FACE); if (!fake_colors) ::glDisable(GL_LIGHTING); } void GLCanvas3D::_render_current_gizmo() const { m_gizmos.render_current_gizmo(m_selection); } void GLCanvas3D::_render_gizmos_overlay() const { m_gizmos.render_overlay(*this, m_selection); } void GLCanvas3D::_render_toolbar() const { _resize_toolbar(); m_toolbar.render(); } #if ENABLE_SHOW_CAMERA_TARGET void GLCanvas3D::_render_camera_target() const { double half_length = 5.0; ::glDisable(GL_DEPTH_TEST); ::glLineWidth(2.0f); ::glBegin(GL_LINES); // draw line for x axis ::glColor3f(1.0f, 0.0f, 0.0f); ::glVertex3d(m_camera.target(0) - half_length, m_camera.target(1), m_camera.target(2)); ::glVertex3d(m_camera.target(0) + half_length, m_camera.target(1), m_camera.target(2)); // draw line for y axis ::glColor3f(0.0f, 1.0f, 0.0f); ::glVertex3d(m_camera.target(0), m_camera.target(1) - half_length, m_camera.target(2)); ::glVertex3d(m_camera.target(0), m_camera.target(1) + half_length, m_camera.target(2)); ::glEnd(); ::glBegin(GL_LINES); ::glColor3f(0.0f, 0.0f, 1.0f); ::glVertex3d(m_camera.target(0), m_camera.target(1), m_camera.target(2) - half_length); ::glVertex3d(m_camera.target(0), m_camera.target(1), m_camera.target(2) + half_length); ::glEnd(); } #endif // ENABLE_SHOW_CAMERA_TARGET void GLCanvas3D::_render_sla_slices() const { if (!m_use_clipping_planes || wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptSLA) return; const SLAPrint* print = this->sla_print(); if (print->objects().empty()) // nothing to render, return return; double clip_min_z = -m_clipping_planes[0].get_data()[3]; double clip_max_z = m_clipping_planes[1].get_data()[3]; for (const SLAPrintObject* obj : print->objects()) { if (obj->is_step_done(slaposIndexSlices)) { const std::vector& model_slices = obj->get_model_slices(); const std::vector& support_slices = obj->get_support_slices(); const std::vector& instances = obj->instances(); double shift_z = obj->get_current_elevation(); struct InstanceTransform { Vec3d offset; float rotation; }; std::vector instance_transforms; for (const SLAPrintObject::Instance& inst : instances) { instance_transforms.push_back({ to_3d(unscale(inst.shift), shift_z), Geometry::rad2deg(inst.rotation) }); } double min_z = clip_min_z - shift_z; double max_z = clip_max_z - shift_z; Pointf3s bottom_triangles; Pointf3s top_triangles; if (m_sla_caps[0].matches(min_z)) bottom_triangles = m_sla_caps[0].triangles; if (m_sla_caps[1].matches(max_z)) top_triangles = m_sla_caps[1].triangles; if (bottom_triangles.empty() || top_triangles.empty()) { const SLAPrintObject::SliceIndex& index = obj->get_slice_index(); SLAPrintObject::SliceIndex::const_iterator it_min_z = std::find_if(index.begin(), index.end(), [min_z](const SLAPrintObject::SliceIndex::value_type& id) -> bool { return std::abs(min_z - id.first) < EPSILON; }); SLAPrintObject::SliceIndex::const_iterator it_max_z = std::find_if(index.begin(), index.end(), [max_z](const SLAPrintObject::SliceIndex::value_type& id) -> bool { return std::abs(max_z - id.first) < EPSILON; }); if (bottom_triangles.empty() && (it_min_z != index.end())) { // calculate model bottom cap if (it_min_z->second.model_slices_idx < model_slices.size()) { const ExPolygons& polys = model_slices[it_min_z->second.model_slices_idx]; for (const ExPolygon& poly : polys) { Polygons triangles; poly.triangulate(&triangles); for (const Polygon& t : triangles) { for (int v = 2; v >= 0; --v) { bottom_triangles.emplace_back(to_3d(unscale(t.points[v]), min_z)); } } } } // calculate support bottom cap if (it_min_z->second.support_slices_idx < support_slices.size()) { const ExPolygons& polys = support_slices[it_min_z->second.support_slices_idx]; for (const ExPolygon& poly : polys) { Polygons triangles; poly.triangulate(&triangles); for (const Polygon& t : triangles) { for (int v = 2; v >= 0; --v) { bottom_triangles.emplace_back(to_3d(unscale(t.points[v]), min_z)); } } } } m_sla_caps[0].z = min_z; m_sla_caps[0].triangles = bottom_triangles; } if (top_triangles.empty() && (it_max_z != index.end())) { // calculate model top cap if (it_max_z->second.model_slices_idx < model_slices.size()) { const ExPolygons& polys = model_slices[it_max_z->second.model_slices_idx]; for (const ExPolygon& poly : polys) { Polygons triangles; poly.triangulate(&triangles); for (const Polygon& t : triangles) { for (int v = 0; v < 3; ++v) { top_triangles.emplace_back(to_3d(unscale(t.points[v]), max_z)); } } } } // calculate support top cap if (it_max_z->second.support_slices_idx < support_slices.size()) { const ExPolygons& polys = support_slices[it_max_z->second.support_slices_idx]; for (const ExPolygon& poly : polys) { Polygons triangles; poly.triangulate(&triangles); for (const Polygon& t : triangles) { for (int v = 0; v < 3; ++v) { top_triangles.emplace_back(to_3d(unscale(t.points[v]), max_z)); } } } } m_sla_caps[1].z = max_z; m_sla_caps[1].triangles = top_triangles; } } if (!bottom_triangles.empty() || !top_triangles.empty()) { ::glColor3f(1.0f, 0.37f, 0.0f); for (const InstanceTransform& inst : instance_transforms) { ::glPushMatrix(); ::glTranslated(inst.offset(0), inst.offset(1), inst.offset(2)); ::glRotatef(inst.rotation, 0.0, 0.0, 1.0); ::glBegin(GL_TRIANGLES); if (!bottom_triangles.empty()) { for (const Vec3d& v : bottom_triangles) { ::glVertex3dv((GLdouble*)v.data()); } } if (!top_triangles.empty()) { for (const Vec3d& v : top_triangles) { ::glVertex3dv((GLdouble*)v.data()); } } ::glEnd(); ::glPopMatrix(); } } } } } void GLCanvas3D::_update_volumes_hover_state() const { for (GLVolume* v : m_volumes.volumes) { v->hover = false; } if (m_hover_volume_id == -1) return; GLVolume* volume = m_volumes.volumes[m_hover_volume_id]; switch (m_selection.get_mode()) { case Selection::Volume: { volume->hover = true; break; } case Selection::Instance: { int object_idx = volume->object_idx(); int instance_idx = volume->instance_idx(); for (GLVolume* v : m_volumes.volumes) { if ((v->object_idx() == object_idx) && (v->instance_idx() == instance_idx)) v->hover = true; } break; } } } void GLCanvas3D::_update_gizmos_data() { if (!m_gizmos.is_enabled()) return; bool enable_move_z = !m_selection.is_wipe_tower(); m_gizmos.enable_grabber(Gizmos::Move, 2, enable_move_z); bool enable_scale_xyz = m_selection.is_single_full_instance() || m_selection.is_single_volume() || m_selection.is_single_modifier(); for (int i = 0; i < 6; ++i) { m_gizmos.enable_grabber(Gizmos::Scale, i, enable_scale_xyz); } if (m_selection.is_single_full_instance()) { #if ENABLE_MODELVOLUME_TRANSFORM // all volumes in the selection belongs to the same instance, any of them contains the needed data, so we take the first const GLVolume* volume = m_volumes.volumes[*m_selection.get_volume_idxs().begin()]; m_gizmos.set_scale(volume->get_instance_scaling_factor()); #if ENABLE_WORLD_ROTATIONS m_gizmos.set_rotation(Vec3d::Zero()); #else m_gizmos.set_rotation(volume->get_instance_rotation()); #endif // ENABLE_WORLD_ROTATIONS ModelObject* model_object = m_model->objects[m_selection.get_object_idx()]; m_gizmos.set_flattening_data(model_object); #if ENABLE_SLA_SUPPORT_GIZMO_MOD m_gizmos.set_sla_support_data(model_object, m_selection); #else m_gizmos.set_model_object_ptr(model_object); #endif // ENABLE_SLA_SUPPORT_GIZMO_MOD #else ModelObject* model_object = m_model->objects[m_selection.get_object_idx()]; ModelInstance* model_instance = model_object->instances[m_selection.get_instance_idx()]; m_gizmos.set_scale(model_instance->get_scaling_factor()); #if ENABLE_WORLD_ROTATIONS m_gizmos.set_rotation(Vec3d::Zero()); #else m_gizmos.set_rotation(model_instance->get_rotation()); #endif // ENABLE_WORLD_ROTATIONS m_gizmos.set_flattening_data(model_object); #if ENABLE_SLA_SUPPORT_GIZMO_MOD m_gizmos.set_sla_support_data(model_object, m_selection); #else m_gizmos.set_model_object_ptr(model_object); #endif // ENABLE_SLA_SUPPORT_GIZMO_MOD #endif // ENABLE_MODELVOLUME_TRANSFORM } #if ENABLE_MODELVOLUME_TRANSFORM else if (m_selection.is_single_volume() || m_selection.is_single_modifier()) { const GLVolume* volume = m_volumes.volumes[*m_selection.get_volume_idxs().begin()]; m_gizmos.set_scale(volume->get_volume_scaling_factor()); #if ENABLE_WORLD_ROTATIONS m_gizmos.set_rotation(Vec3d::Zero()); #else m_gizmos.set_rotation(volume->get_volume_rotation()); #endif // ENABLE_WORLD_ROTATIONS m_gizmos.set_flattening_data(nullptr); #if ENABLE_SLA_SUPPORT_GIZMO_MOD m_gizmos.set_sla_support_data(nullptr, m_selection); #else m_gizmos.set_model_object_ptr(nullptr); #endif // ENABLE_SLA_SUPPORT_GIZMO_MOD } #endif // ENABLE_MODELVOLUME_TRANSFORM else { m_gizmos.set_scale(Vec3d::Ones()); m_gizmos.set_rotation(Vec3d::Zero()); m_gizmos.set_flattening_data(m_selection.is_from_single_object() ? m_model->objects[m_selection.get_object_idx()] : nullptr); #if ENABLE_SLA_SUPPORT_GIZMO_MOD m_gizmos.set_sla_support_data(nullptr, m_selection); #else m_gizmos.set_model_object_ptr(nullptr); #endif // ENABLE_SLA_SUPPORT_GIZMO_MOD } } float GLCanvas3D::_get_layers_editing_cursor_z_relative() const { return m_layers_editing.get_cursor_z_relative(*this); } void GLCanvas3D::_perform_layer_editing_action(wxMouseEvent* evt) { int object_idx_selected = m_layers_editing.last_object_id; if (object_idx_selected == -1) return; const Print *print = this->fff_print(); if (print == nullptr) return; const PrintObject* selected_obj = print->get_object(object_idx_selected); if (selected_obj == nullptr) return; // A volume is selected. Test, whether hovering over a layer thickness bar. if (evt != nullptr) { const Rect& rect = LayersEditing::get_bar_rect_screen(*this); float b = rect.get_bottom(); m_layers_editing.last_z = unscale(selected_obj->size(2)) * (b - evt->GetY() - 1.0f) / (b - rect.get_top()); m_layers_editing.last_action = evt->ShiftDown() ? (evt->RightIsDown() ? 3 : 2) : (evt->RightIsDown() ? 0 : 1); } // Mark the volume as modified, so Print will pick its layer height profile ? Where to mark it ? // Start a timer to refresh the print ? schedule_background_process() ? // The PrintObject::adjust_layer_height_profile() call adjusts the profile of its associated ModelObject, it does not modify the profile of the PrintObject itself, // therefore it is safe to call it while the background processing is running. const_cast(selected_obj)->adjust_layer_height_profile(m_layers_editing.last_z, m_layers_editing.strength, m_layers_editing.band_width, m_layers_editing.last_action); // searches the id of the first volume of the selected object int volume_idx = 0; for (int i = 0; i < object_idx_selected; ++i) { const PrintObject* obj = print->get_object(i); if (obj != nullptr) { for (int j = 0; j < (int)obj->region_volumes.size(); ++j) { volume_idx += (int)obj->region_volumes[j].size(); } } } m_volumes.volumes[volume_idx]->generate_layer_height_texture(selected_obj, 1); _refresh_if_shown_on_screen(); // Automatic action on mouse down with the same coordinate. _start_timer(); } Vec3d GLCanvas3D::_mouse_to_3d(const Point& mouse_pos, float* z) { if (m_canvas == nullptr) return Vec3d(DBL_MAX, DBL_MAX, DBL_MAX); _camera_tranform(); GLint viewport[4]; ::glGetIntegerv(GL_VIEWPORT, viewport); GLdouble modelview_matrix[16]; ::glGetDoublev(GL_MODELVIEW_MATRIX, modelview_matrix); GLdouble projection_matrix[16]; ::glGetDoublev(GL_PROJECTION_MATRIX, projection_matrix); GLint y = viewport[3] - (GLint)mouse_pos(1); GLfloat mouse_z; if (z == nullptr) ::glReadPixels((GLint)mouse_pos(0), y, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, (void*)&mouse_z); else mouse_z = *z; GLdouble out_x, out_y, out_z; ::gluUnProject((GLdouble)mouse_pos(0), (GLdouble)y, (GLdouble)mouse_z, modelview_matrix, projection_matrix, viewport, &out_x, &out_y, &out_z); return Vec3d((double)out_x, (double)out_y, (double)out_z); } Vec3d GLCanvas3D::_mouse_to_bed_3d(const Point& mouse_pos) { return mouse_ray(mouse_pos).intersect_plane(0.0); } Linef3 GLCanvas3D::mouse_ray(const Point& mouse_pos) { float z0 = 0.0f; float z1 = 1.0f; return Linef3(_mouse_to_3d(mouse_pos, &z0), _mouse_to_3d(mouse_pos, &z1)); } void GLCanvas3D::_start_timer() { m_timer.Start(100, wxTIMER_CONTINUOUS); } void GLCanvas3D::_stop_timer() { m_timer.Stop(); } void GLCanvas3D::_load_print_toolpaths() { #if !ENABLE_USE_UNIQUE_GLCONTEXT // ensures this canvas is current if (!set_current()) return; #endif // !ENABLE_USE_UNIQUE_GLCONTEXT const Print *print = this->fff_print(); if (print == nullptr) return; if (!print->is_step_done(psSkirt) || !print->is_step_done(psBrim)) return; if (!print->has_skirt() && (print->config().brim_width.value == 0)) return; const float color[] = { 0.5f, 1.0f, 0.5f, 1.0f }; // greenish // number of skirt layers size_t total_layer_count = 0; for (const PrintObject* print_object : print->objects()) { total_layer_count = std::max(total_layer_count, print_object->total_layer_count()); } size_t skirt_height = print->has_infinite_skirt() ? total_layer_count : std::min(print->config().skirt_height.value, total_layer_count); if ((skirt_height == 0) && (print->config().brim_width.value > 0)) skirt_height = 1; // get first skirt_height layers (maybe this should be moved to a PrintObject method?) const PrintObject* object0 = print->objects().front(); std::vector print_zs; print_zs.reserve(skirt_height * 2); for (size_t i = 0; i < std::min(skirt_height, object0->layers().size()); ++i) { print_zs.push_back(float(object0->layers()[i]->print_z)); } //FIXME why there are support layers? for (size_t i = 0; i < std::min(skirt_height, object0->support_layers().size()); ++i) { print_zs.push_back(float(object0->support_layers()[i]->print_z)); } sort_remove_duplicates(print_zs); if (print_zs.size() > skirt_height) print_zs.erase(print_zs.begin() + skirt_height, print_zs.end()); m_volumes.volumes.emplace_back(new GLVolume(color)); GLVolume& volume = *m_volumes.volumes.back(); for (size_t i = 0; i < skirt_height; ++i) { volume.print_zs.push_back(print_zs[i]); volume.offsets.push_back(volume.indexed_vertex_array.quad_indices.size()); volume.offsets.push_back(volume.indexed_vertex_array.triangle_indices.size()); if (i == 0) _3DScene::extrusionentity_to_verts(print->brim(), print_zs[i], Point(0, 0), volume); _3DScene::extrusionentity_to_verts(print->skirt(), print_zs[i], Point(0, 0), volume); } volume.bounding_box = volume.indexed_vertex_array.bounding_box(); volume.indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized); } void GLCanvas3D::_load_print_object_toolpaths(const PrintObject& print_object, const std::vector& str_tool_colors) { std::vector tool_colors = _parse_colors(str_tool_colors); struct Ctxt { const Points *shifted_copies; std::vector layers; bool has_perimeters; bool has_infill; bool has_support; const std::vector* tool_colors; // Number of vertices (each vertex is 6x4=24 bytes long) static const size_t alloc_size_max() { return 131072; } // 3.15MB // static const size_t alloc_size_max () { return 65536; } // 1.57MB // static const size_t alloc_size_max () { return 32768; } // 786kB static const size_t alloc_size_reserve() { return alloc_size_max() * 2; } static const float* color_perimeters() { static float color[4] = { 1.0f, 1.0f, 0.0f, 1.f }; return color; } // yellow static const float* color_infill() { static float color[4] = { 1.0f, 0.5f, 0.5f, 1.f }; return color; } // redish static const float* color_support() { static float color[4] = { 0.5f, 1.0f, 0.5f, 1.f }; return color; } // greenish // For cloring by a tool, return a parsed color. bool color_by_tool() const { return tool_colors != nullptr; } size_t number_tools() const { return this->color_by_tool() ? tool_colors->size() / 4 : 0; } const float* color_tool(size_t tool) const { return tool_colors->data() + tool * 4; } int volume_idx(int extruder, int feature) const { return this->color_by_tool() ? std::min(this->number_tools() - 1, std::max(extruder - 1, 0)) : feature; } } ctxt; ctxt.shifted_copies = &print_object.copies(); // order layers by print_z ctxt.layers.reserve(print_object.layers().size() + print_object.support_layers().size()); for (const Layer *layer : print_object.layers()) ctxt.layers.push_back(layer); for (const Layer *layer : print_object.support_layers()) ctxt.layers.push_back(layer); std::sort(ctxt.layers.begin(), ctxt.layers.end(), [](const Layer *l1, const Layer *l2) { return l1->print_z < l2->print_z; }); // Maximum size of an allocation block: 32MB / sizeof(float) ctxt.has_perimeters = print_object.is_step_done(posPerimeters); ctxt.has_infill = print_object.is_step_done(posInfill); ctxt.has_support = print_object.is_step_done(posSupportMaterial); ctxt.tool_colors = tool_colors.empty() ? nullptr : &tool_colors; BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - start"; //FIXME Improve the heuristics for a grain size. size_t grain_size = std::max(ctxt.layers.size() / 16, size_t(1)); tbb::spin_mutex new_volume_mutex; auto new_volume = [this, &new_volume_mutex](const float *color) -> GLVolume* { auto *volume = new GLVolume(color); new_volume_mutex.lock(); m_volumes.volumes.emplace_back(volume); new_volume_mutex.unlock(); return volume; }; const size_t volumes_cnt_initial = m_volumes.volumes.size(); std::vector volumes_per_thread(ctxt.layers.size()); tbb::parallel_for( tbb::blocked_range(0, ctxt.layers.size(), grain_size), [&ctxt, &new_volume](const tbb::blocked_range& range) { GLVolumePtrs vols; if (ctxt.color_by_tool()) { for (size_t i = 0; i < ctxt.number_tools(); ++i) vols.emplace_back(new_volume(ctxt.color_tool(i))); } else vols = { new_volume(ctxt.color_perimeters()), new_volume(ctxt.color_infill()), new_volume(ctxt.color_support()) }; for (GLVolume *vol : vols) vol->indexed_vertex_array.reserve(ctxt.alloc_size_reserve()); for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++idx_layer) { const Layer *layer = ctxt.layers[idx_layer]; for (size_t i = 0; i < vols.size(); ++i) { GLVolume &vol = *vols[i]; if (vol.print_zs.empty() || vol.print_zs.back() != layer->print_z) { vol.print_zs.push_back(layer->print_z); vol.offsets.push_back(vol.indexed_vertex_array.quad_indices.size()); vol.offsets.push_back(vol.indexed_vertex_array.triangle_indices.size()); } } for (const Point © : *ctxt.shifted_copies) { for (const LayerRegion *layerm : layer->regions()) { if (ctxt.has_perimeters) _3DScene::extrusionentity_to_verts(layerm->perimeters, float(layer->print_z), copy, *vols[ctxt.volume_idx(layerm->region()->config().perimeter_extruder.value, 0)]); if (ctxt.has_infill) { for (const ExtrusionEntity *ee : layerm->fills.entities) { // fill represents infill extrusions of a single island. const auto *fill = dynamic_cast(ee); if (!fill->entities.empty()) _3DScene::extrusionentity_to_verts(*fill, float(layer->print_z), copy, *vols[ctxt.volume_idx( is_solid_infill(fill->entities.front()->role()) ? layerm->region()->config().solid_infill_extruder : layerm->region()->config().infill_extruder, 1)]); } } } if (ctxt.has_support) { const SupportLayer *support_layer = dynamic_cast(layer); if (support_layer) { for (const ExtrusionEntity *extrusion_entity : support_layer->support_fills.entities) _3DScene::extrusionentity_to_verts(extrusion_entity, float(layer->print_z), copy, *vols[ctxt.volume_idx( (extrusion_entity->role() == erSupportMaterial) ? support_layer->object()->config().support_material_extruder : support_layer->object()->config().support_material_interface_extruder, 2)]); } } } for (size_t i = 0; i < vols.size(); ++i) { GLVolume &vol = *vols[i]; if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() / 6 > ctxt.alloc_size_max()) { // Store the vertex arrays and restart their containers, vols[i] = new_volume(vol.color); GLVolume &vol_new = *vols[i]; // Assign the large pre-allocated buffers to the new GLVolume. vol_new.indexed_vertex_array = std::move(vol.indexed_vertex_array); // Copy the content back to the old GLVolume. vol.indexed_vertex_array = vol_new.indexed_vertex_array; // Finalize a bounding box of the old GLVolume. vol.bounding_box = vol.indexed_vertex_array.bounding_box(); // Clear the buffers, but keep them pre-allocated. vol_new.indexed_vertex_array.clear(); // Just make sure that clear did not clear the reserved memory. vol_new.indexed_vertex_array.reserve(ctxt.alloc_size_reserve()); } } } for (GLVolume *vol : vols) { vol->bounding_box = vol->indexed_vertex_array.bounding_box(); vol->indexed_vertex_array.shrink_to_fit(); } }); BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - finalizing results"; // Remove empty volumes from the newly added volumes. m_volumes.volumes.erase( std::remove_if(m_volumes.volumes.begin() + volumes_cnt_initial, m_volumes.volumes.end(), [](const GLVolume *volume) { return volume->empty(); }), m_volumes.volumes.end()); for (size_t i = volumes_cnt_initial; i < m_volumes.volumes.size(); ++i) m_volumes.volumes[i]->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized); BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - end"; } void GLCanvas3D::_load_wipe_tower_toolpaths(const std::vector& str_tool_colors) { const Print *print = this->fff_print(); if ((print == nullptr) || print->wipe_tower_data().tool_changes.empty()) return; if (!print->is_step_done(psWipeTower)) return; std::vector tool_colors = _parse_colors(str_tool_colors); struct Ctxt { const Print *print; const std::vector *tool_colors; WipeTower::xy wipe_tower_pos; float wipe_tower_angle; // Number of vertices (each vertex is 6x4=24 bytes long) static const size_t alloc_size_max() { return 131072; } // 3.15MB static const size_t alloc_size_reserve() { return alloc_size_max() * 2; } static const float* color_support() { static float color[4] = { 0.5f, 1.0f, 0.5f, 1.f }; return color; } // greenish // For cloring by a tool, return a parsed color. bool color_by_tool() const { return tool_colors != nullptr; } size_t number_tools() const { return this->color_by_tool() ? tool_colors->size() / 4 : 0; } const float* color_tool(size_t tool) const { return tool_colors->data() + tool * 4; } int volume_idx(int tool, int feature) const { return this->color_by_tool() ? std::min(this->number_tools() - 1, std::max(tool, 0)) : feature; } const std::vector& tool_change(size_t idx) { const auto &tool_changes = print->wipe_tower_data().tool_changes; return priming.empty() ? ((idx == tool_changes.size()) ? final : tool_changes[idx]) : ((idx == 0) ? priming : (idx == tool_changes.size() + 1) ? final : tool_changes[idx - 1]); } std::vector priming; std::vector final; } ctxt; ctxt.print = print; ctxt.tool_colors = tool_colors.empty() ? nullptr : &tool_colors; if (print->wipe_tower_data().priming && print->config().single_extruder_multi_material_priming) ctxt.priming.emplace_back(*print->wipe_tower_data().priming.get()); if (print->wipe_tower_data().final_purge) ctxt.final.emplace_back(*print->wipe_tower_data().final_purge.get()); ctxt.wipe_tower_angle = ctxt.print->config().wipe_tower_rotation_angle.value/180.f * PI; ctxt.wipe_tower_pos = WipeTower::xy(ctxt.print->config().wipe_tower_x.value, ctxt.print->config().wipe_tower_y.value); BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - start"; //FIXME Improve the heuristics for a grain size. size_t n_items = print->wipe_tower_data().tool_changes.size() + (ctxt.priming.empty() ? 0 : 1); size_t grain_size = std::max(n_items / 128, size_t(1)); tbb::spin_mutex new_volume_mutex; auto new_volume = [this, &new_volume_mutex](const float *color) -> GLVolume* { auto *volume = new GLVolume(color); new_volume_mutex.lock(); m_volumes.volumes.emplace_back(volume); new_volume_mutex.unlock(); return volume; }; const size_t volumes_cnt_initial = m_volumes.volumes.size(); std::vector volumes_per_thread(n_items); tbb::parallel_for( tbb::blocked_range(0, n_items, grain_size), [&ctxt, &new_volume](const tbb::blocked_range& range) { // Bounding box of this slab of a wipe tower. GLVolumePtrs vols; if (ctxt.color_by_tool()) { for (size_t i = 0; i < ctxt.number_tools(); ++i) vols.emplace_back(new_volume(ctxt.color_tool(i))); } else vols = { new_volume(ctxt.color_support()) }; for (GLVolume *volume : vols) volume->indexed_vertex_array.reserve(ctxt.alloc_size_reserve()); for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++idx_layer) { const std::vector &layer = ctxt.tool_change(idx_layer); for (size_t i = 0; i < vols.size(); ++i) { GLVolume &vol = *vols[i]; if (vol.print_zs.empty() || vol.print_zs.back() != layer.front().print_z) { vol.print_zs.push_back(layer.front().print_z); vol.offsets.push_back(vol.indexed_vertex_array.quad_indices.size()); vol.offsets.push_back(vol.indexed_vertex_array.triangle_indices.size()); } } for (const WipeTower::ToolChangeResult &extrusions : layer) { for (size_t i = 1; i < extrusions.extrusions.size();) { const WipeTower::Extrusion &e = extrusions.extrusions[i]; if (e.width == 0.) { ++i; continue; } size_t j = i + 1; if (ctxt.color_by_tool()) for (; j < extrusions.extrusions.size() && extrusions.extrusions[j].tool == e.tool && extrusions.extrusions[j].width > 0.f; ++j); else for (; j < extrusions.extrusions.size() && extrusions.extrusions[j].width > 0.f; ++j); size_t n_lines = j - i; Lines lines; std::vector widths; std::vector heights; lines.reserve(n_lines); widths.reserve(n_lines); heights.assign(n_lines, extrusions.layer_height); WipeTower::Extrusion e_prev = extrusions.extrusions[i-1]; if (!extrusions.priming) { // wipe tower extrusions describe the wipe tower at the origin with no rotation e_prev.pos.rotate(ctxt.wipe_tower_angle); e_prev.pos.translate(ctxt.wipe_tower_pos); } for (; i < j; ++i) { WipeTower::Extrusion e = extrusions.extrusions[i]; assert(e.width > 0.f); if (!extrusions.priming) { e.pos.rotate(ctxt.wipe_tower_angle); e.pos.translate(ctxt.wipe_tower_pos); } lines.emplace_back(Point::new_scale(e_prev.pos.x, e_prev.pos.y), Point::new_scale(e.pos.x, e.pos.y)); widths.emplace_back(e.width); e_prev = e; } _3DScene::thick_lines_to_verts(lines, widths, heights, lines.front().a == lines.back().b, extrusions.print_z, *vols[ctxt.volume_idx(e.tool, 0)]); } } } for (size_t i = 0; i < vols.size(); ++i) { GLVolume &vol = *vols[i]; if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() / 6 > ctxt.alloc_size_max()) { // Store the vertex arrays and restart their containers, vols[i] = new_volume(vol.color); GLVolume &vol_new = *vols[i]; // Assign the large pre-allocated buffers to the new GLVolume. vol_new.indexed_vertex_array = std::move(vol.indexed_vertex_array); // Copy the content back to the old GLVolume. vol.indexed_vertex_array = vol_new.indexed_vertex_array; // Finalize a bounding box of the old GLVolume. vol.bounding_box = vol.indexed_vertex_array.bounding_box(); // Clear the buffers, but keep them pre-allocated. vol_new.indexed_vertex_array.clear(); // Just make sure that clear did not clear the reserved memory. vol_new.indexed_vertex_array.reserve(ctxt.alloc_size_reserve()); } } for (GLVolume *vol : vols) { vol->bounding_box = vol->indexed_vertex_array.bounding_box(); vol->indexed_vertex_array.shrink_to_fit(); } }); BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - finalizing results"; // Remove empty volumes from the newly added volumes. m_volumes.volumes.erase( std::remove_if(m_volumes.volumes.begin() + volumes_cnt_initial, m_volumes.volumes.end(), [](const GLVolume *volume) { return volume->empty(); }), m_volumes.volumes.end()); for (size_t i = volumes_cnt_initial; i < m_volumes.volumes.size(); ++i) m_volumes.volumes[i]->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized); BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - end"; } static inline int hex_digit_to_int(const char c) { return (c >= '0' && c <= '9') ? int(c - '0') : (c >= 'A' && c <= 'F') ? int(c - 'A') + 10 : (c >= 'a' && c <= 'f') ? int(c - 'a') + 10 : -1; } void GLCanvas3D::_load_gcode_extrusion_paths(const GCodePreviewData& preview_data, const std::vector& tool_colors) { // helper functions to select data in dependence of the extrusion view type struct Helper { static float path_filter(GCodePreviewData::Extrusion::EViewType type, const ExtrusionPath& path) { switch (type) { case GCodePreviewData::Extrusion::FeatureType: return (float)path.role(); case GCodePreviewData::Extrusion::Height: return path.height; case GCodePreviewData::Extrusion::Width: return path.width; case GCodePreviewData::Extrusion::Feedrate: return path.feedrate; case GCodePreviewData::Extrusion::VolumetricRate: return path.feedrate * (float)path.mm3_per_mm; case GCodePreviewData::Extrusion::Tool: return (float)path.extruder_id; case GCodePreviewData::Extrusion::ColorPrint: return (float)path.cp_color_id; default: return 0.0f; } return 0.0f; } static GCodePreviewData::Color path_color(const GCodePreviewData& data, const std::vector& tool_colors, float value) { switch (data.extrusion.view_type) { case GCodePreviewData::Extrusion::FeatureType: return data.get_extrusion_role_color((ExtrusionRole)(int)value); case GCodePreviewData::Extrusion::Height: return data.get_height_color(value); case GCodePreviewData::Extrusion::Width: return data.get_width_color(value); case GCodePreviewData::Extrusion::Feedrate: return data.get_feedrate_color(value); case GCodePreviewData::Extrusion::VolumetricRate: return data.get_volumetric_rate_color(value); case GCodePreviewData::Extrusion::Tool: { GCodePreviewData::Color color; ::memcpy((void*)color.rgba, (const void*)(tool_colors.data() + (unsigned int)value * 4), 4 * sizeof(float)); return color; } case GCodePreviewData::Extrusion::ColorPrint: { int val = int(value); while (val >= GCodePreviewData::Range::Colors_Count) val -= GCodePreviewData::Range::Colors_Count; GCodePreviewData::Color color = GCodePreviewData::Range::Default_Colors[val]; return color; } default: return GCodePreviewData::Color::Dummy; } return GCodePreviewData::Color::Dummy; } }; // Helper structure for filters struct Filter { float value; ExtrusionRole role; GLVolume* volume; Filter(float value, ExtrusionRole role) : value(value) , role(role) , volume(nullptr) { } bool operator == (const Filter& other) const { if (value != other.value) return false; if (role != other.role) return false; return true; } }; typedef std::vector FiltersList; size_t initial_volumes_count = m_volumes.volumes.size(); // detects filters FiltersList filters; for (const GCodePreviewData::Extrusion::Layer& layer : preview_data.extrusion.layers) { for (const ExtrusionPath& path : layer.paths) { ExtrusionRole role = path.role(); float path_filter = Helper::path_filter(preview_data.extrusion.view_type, path); if (std::find(filters.begin(), filters.end(), Filter(path_filter, role)) == filters.end()) filters.emplace_back(path_filter, role); } } // nothing to render, return if (filters.empty()) return; // creates a new volume for each filter for (Filter& filter : filters) { m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Extrusion, (unsigned int)filter.role, (unsigned int)m_volumes.volumes.size()); GLVolume* volume = new GLVolume(Helper::path_color(preview_data, tool_colors, filter.value).rgba); if (volume != nullptr) { filter.volume = volume; volume->is_extrusion_path = true; m_volumes.volumes.emplace_back(volume); } else { // an error occourred - restore to previous state and return m_gcode_preview_volume_index.first_volumes.pop_back(); if (initial_volumes_count != m_volumes.volumes.size()) { GLVolumePtrs::iterator begin = m_volumes.volumes.begin() + initial_volumes_count; GLVolumePtrs::iterator end = m_volumes.volumes.end(); for (GLVolumePtrs::iterator it = begin; it < end; ++it) { GLVolume* volume = *it; delete volume; } m_volumes.volumes.erase(begin, end); return; } } } // populates volumes for (const GCodePreviewData::Extrusion::Layer& layer : preview_data.extrusion.layers) { for (const ExtrusionPath& path : layer.paths) { float path_filter = Helper::path_filter(preview_data.extrusion.view_type, path); FiltersList::iterator filter = std::find(filters.begin(), filters.end(), Filter(path_filter, path.role())); if (filter != filters.end()) { filter->volume->print_zs.push_back(layer.z); filter->volume->offsets.push_back(filter->volume->indexed_vertex_array.quad_indices.size()); filter->volume->offsets.push_back(filter->volume->indexed_vertex_array.triangle_indices.size()); _3DScene::extrusionentity_to_verts(path, layer.z, *filter->volume); } } } // finalize volumes and sends geometry to gpu if (m_volumes.volumes.size() > initial_volumes_count) { for (size_t i = initial_volumes_count; i < m_volumes.volumes.size(); ++i) { GLVolume* volume = m_volumes.volumes[i]; volume->bounding_box = volume->indexed_vertex_array.bounding_box(); volume->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized); } } } void GLCanvas3D::_load_gcode_travel_paths(const GCodePreviewData& preview_data, const std::vector& tool_colors) { size_t initial_volumes_count = m_volumes.volumes.size(); m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Travel, 0, (unsigned int)initial_volumes_count); bool res = true; switch (preview_data.extrusion.view_type) { case GCodePreviewData::Extrusion::Feedrate: { res = _travel_paths_by_feedrate(preview_data); break; } case GCodePreviewData::Extrusion::Tool: { res = _travel_paths_by_tool(preview_data, tool_colors); break; } default: { res = _travel_paths_by_type(preview_data); break; } } if (!res) { // an error occourred - restore to previous state and return if (initial_volumes_count != m_volumes.volumes.size()) { GLVolumePtrs::iterator begin = m_volumes.volumes.begin() + initial_volumes_count; GLVolumePtrs::iterator end = m_volumes.volumes.end(); for (GLVolumePtrs::iterator it = begin; it < end; ++it) { GLVolume* volume = *it; delete volume; } m_volumes.volumes.erase(begin, end); } return; } // finalize volumes and sends geometry to gpu if (m_volumes.volumes.size() > initial_volumes_count) { for (size_t i = initial_volumes_count; i < m_volumes.volumes.size(); ++i) { GLVolume* volume = m_volumes.volumes[i]; volume->bounding_box = volume->indexed_vertex_array.bounding_box(); volume->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized); } } } bool GLCanvas3D::_travel_paths_by_type(const GCodePreviewData& preview_data) { // Helper structure for types struct Type { GCodePreviewData::Travel::EType value; GLVolume* volume; explicit Type(GCodePreviewData::Travel::EType value) : value(value) , volume(nullptr) { } bool operator == (const Type& other) const { return value == other.value; } }; typedef std::vector TypesList; // colors travels by travel type // detects types TypesList types; for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines) { if (std::find(types.begin(), types.end(), Type(polyline.type)) == types.end()) types.emplace_back(polyline.type); } // nothing to render, return if (types.empty()) return true; // creates a new volume for each type for (Type& type : types) { GLVolume* volume = new GLVolume(preview_data.travel.type_colors[type.value].rgba); if (volume == nullptr) return false; else { type.volume = volume; m_volumes.volumes.emplace_back(volume); } } // populates volumes for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines) { TypesList::iterator type = std::find(types.begin(), types.end(), Type(polyline.type)); if (type != types.end()) { type->volume->print_zs.push_back(unscale(polyline.polyline.bounding_box().min(2))); type->volume->offsets.push_back(type->volume->indexed_vertex_array.quad_indices.size()); type->volume->offsets.push_back(type->volume->indexed_vertex_array.triangle_indices.size()); _3DScene::polyline3_to_verts(polyline.polyline, preview_data.travel.width, preview_data.travel.height, *type->volume); } } return true; } bool GLCanvas3D::_travel_paths_by_feedrate(const GCodePreviewData& preview_data) { // Helper structure for feedrate struct Feedrate { float value; GLVolume* volume; explicit Feedrate(float value) : value(value) , volume(nullptr) { } bool operator == (const Feedrate& other) const { return value == other.value; } }; typedef std::vector FeedratesList; // colors travels by feedrate // detects feedrates FeedratesList feedrates; for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines) { if (std::find(feedrates.begin(), feedrates.end(), Feedrate(polyline.feedrate)) == feedrates.end()) feedrates.emplace_back(polyline.feedrate); } // nothing to render, return if (feedrates.empty()) return true; // creates a new volume for each feedrate for (Feedrate& feedrate : feedrates) { GLVolume* volume = new GLVolume(preview_data.get_feedrate_color(feedrate.value).rgba); if (volume == nullptr) return false; else { feedrate.volume = volume; m_volumes.volumes.emplace_back(volume); } } // populates volumes for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines) { FeedratesList::iterator feedrate = std::find(feedrates.begin(), feedrates.end(), Feedrate(polyline.feedrate)); if (feedrate != feedrates.end()) { feedrate->volume->print_zs.push_back(unscale(polyline.polyline.bounding_box().min(2))); feedrate->volume->offsets.push_back(feedrate->volume->indexed_vertex_array.quad_indices.size()); feedrate->volume->offsets.push_back(feedrate->volume->indexed_vertex_array.triangle_indices.size()); _3DScene::polyline3_to_verts(polyline.polyline, preview_data.travel.width, preview_data.travel.height, *feedrate->volume); } } return true; } bool GLCanvas3D::_travel_paths_by_tool(const GCodePreviewData& preview_data, const std::vector& tool_colors) { // Helper structure for tool struct Tool { unsigned int value; GLVolume* volume; explicit Tool(unsigned int value) : value(value) , volume(nullptr) { } bool operator == (const Tool& other) const { return value == other.value; } }; typedef std::vector ToolsList; // colors travels by tool // detects tools ToolsList tools; for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines) { if (std::find(tools.begin(), tools.end(), Tool(polyline.extruder_id)) == tools.end()) tools.emplace_back(polyline.extruder_id); } // nothing to render, return if (tools.empty()) return true; // creates a new volume for each tool for (Tool& tool : tools) { GLVolume* volume = new GLVolume(tool_colors.data() + tool.value * 4); if (volume == nullptr) return false; else { tool.volume = volume; m_volumes.volumes.emplace_back(volume); } } // populates volumes for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines) { ToolsList::iterator tool = std::find(tools.begin(), tools.end(), Tool(polyline.extruder_id)); if (tool != tools.end()) { tool->volume->print_zs.push_back(unscale(polyline.polyline.bounding_box().min(2))); tool->volume->offsets.push_back(tool->volume->indexed_vertex_array.quad_indices.size()); tool->volume->offsets.push_back(tool->volume->indexed_vertex_array.triangle_indices.size()); _3DScene::polyline3_to_verts(polyline.polyline, preview_data.travel.width, preview_data.travel.height, *tool->volume); } } return true; } void GLCanvas3D::_load_gcode_retractions(const GCodePreviewData& preview_data) { m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Retraction, 0, (unsigned int)m_volumes.volumes.size()); // nothing to render, return if (preview_data.retraction.positions.empty()) return; GLVolume* volume = new GLVolume(preview_data.retraction.color.rgba); if (volume != nullptr) { m_volumes.volumes.emplace_back(volume); GCodePreviewData::Retraction::PositionsList copy(preview_data.retraction.positions); std::sort(copy.begin(), copy.end(), [](const GCodePreviewData::Retraction::Position& p1, const GCodePreviewData::Retraction::Position& p2){ return p1.position(2) < p2.position(2); }); for (const GCodePreviewData::Retraction::Position& position : copy) { volume->print_zs.push_back(unscale(position.position(2))); volume->offsets.push_back(volume->indexed_vertex_array.quad_indices.size()); volume->offsets.push_back(volume->indexed_vertex_array.triangle_indices.size()); _3DScene::point3_to_verts(position.position, position.width, position.height, *volume); } // finalize volumes and sends geometry to gpu volume->bounding_box = volume->indexed_vertex_array.bounding_box(); volume->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized); } } void GLCanvas3D::_load_gcode_unretractions(const GCodePreviewData& preview_data) { m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Unretraction, 0, (unsigned int)m_volumes.volumes.size()); // nothing to render, return if (preview_data.unretraction.positions.empty()) return; GLVolume* volume = new GLVolume(preview_data.unretraction.color.rgba); if (volume != nullptr) { m_volumes.volumes.emplace_back(volume); GCodePreviewData::Retraction::PositionsList copy(preview_data.unretraction.positions); std::sort(copy.begin(), copy.end(), [](const GCodePreviewData::Retraction::Position& p1, const GCodePreviewData::Retraction::Position& p2){ return p1.position(2) < p2.position(2); }); for (const GCodePreviewData::Retraction::Position& position : copy) { volume->print_zs.push_back(unscale(position.position(2))); volume->offsets.push_back(volume->indexed_vertex_array.quad_indices.size()); volume->offsets.push_back(volume->indexed_vertex_array.triangle_indices.size()); _3DScene::point3_to_verts(position.position, position.width, position.height, *volume); } // finalize volumes and sends geometry to gpu volume->bounding_box = volume->indexed_vertex_array.bounding_box(); volume->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized); } } void GLCanvas3D::_load_shells_fff() { size_t initial_volumes_count = m_volumes.volumes.size(); m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Shell, 0, (unsigned int)initial_volumes_count); const Print *print = this->fff_print(); if (print->objects().empty()) // nothing to render, return return; // adds objects' volumes int object_id = 0; for (const PrintObject* obj : print->objects()) { const ModelObject* model_obj = obj->model_object(); std::vector instance_ids(model_obj->instances.size()); for (int i = 0; i < (int)model_obj->instances.size(); ++i) { instance_ids[i] = i; } m_volumes.load_object(model_obj, object_id, instance_ids, "object", m_use_VBOs && m_initialized); ++object_id; } if (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() == ptFFF) { // adds wipe tower's volume double max_z = print->objects()[0]->model_object()->get_model()->bounding_box().max(2); const PrintConfig& config = print->config(); unsigned int extruders_count = config.nozzle_diameter.size(); if ((extruders_count > 1) && config.single_extruder_multi_material && config.wipe_tower && !config.complete_objects) { float depth = print->get_wipe_tower_depth(); if (!print->is_step_done(psWipeTower)) depth = (900.f/config.wipe_tower_width) * (float)(extruders_count - 1) ; m_volumes.load_wipe_tower_preview(1000, config.wipe_tower_x, config.wipe_tower_y, config.wipe_tower_width, depth, max_z, config.wipe_tower_rotation_angle, m_use_VBOs && m_initialized, !print->is_step_done(psWipeTower), print->config().nozzle_diameter.values[0] * 1.25f * 4.5f); } } } void GLCanvas3D::_load_shells_sla() { const SLAPrint* print = this->sla_print(); if (print->objects().empty()) // nothing to render, return return; // adds objects' volumes int obj_idx = 0; for (const SLAPrintObject* obj : print->objects()) { unsigned int initial_volumes_count = (unsigned int)m_volumes.volumes.size(); const ModelObject* model_obj = obj->model_object(); std::vector instance_idxs(model_obj->instances.size()); for (int i = 0; i < (int)model_obj->instances.size(); ++i) { instance_idxs[i] = i; } m_volumes.load_object(model_obj, obj_idx, instance_idxs, "object", m_use_VBOs && m_initialized); const std::vector& instances = obj->instances(); for (const SLAPrintObject::Instance& instance : instances) { Vec3d offset = unscale(instance.shift(0), instance.shift(1), 0); Vec3d rotation(0.0, 0.0, (double)instance.rotation); unsigned int partial_volumes_count = (unsigned int)m_volumes.volumes.size(); // add supports if (obj->is_step_done(slaposSupportTree) && obj->has_mesh(slaposSupportTree)) { const TriangleMesh& mesh = obj->support_mesh(); m_volumes.volumes.emplace_back(new GLVolume(GLVolume::SLA_SUPPORT_COLOR)); GLVolume& v = *m_volumes.volumes.back(); if (m_use_VBOs) v.indexed_vertex_array.load_mesh_full_shading(mesh); else v.indexed_vertex_array.load_mesh_flat_shading(mesh); v.shader_outside_printer_detection_enabled = true; v.composite_id.volume_id = -1; v.set_instance_offset(offset); v.set_instance_rotation(rotation); } // add pad if (obj->is_step_done(slaposBasePool) && obj->has_mesh(slaposBasePool)) { const TriangleMesh& mesh = obj->pad_mesh(); m_volumes.volumes.emplace_back(new GLVolume(GLVolume::SLA_PAD_COLOR)); GLVolume& v = *m_volumes.volumes.back(); if (m_use_VBOs) v.indexed_vertex_array.load_mesh_full_shading(mesh); else v.indexed_vertex_array.load_mesh_flat_shading(mesh); v.shader_outside_printer_detection_enabled = true; v.composite_id.volume_id = -1; v.set_instance_offset(offset); v.set_instance_rotation(rotation); } // finalize volumes and sends geometry to gpu for (unsigned int i = partial_volumes_count; i < m_volumes.volumes.size(); ++i) { GLVolume& v = *m_volumes.volumes[i]; v.bounding_box = v.indexed_vertex_array.bounding_box(); v.indexed_vertex_array.finalize_geometry(m_use_VBOs); } ++obj_idx; } // apply shift z double shift_z = obj->get_current_elevation(); for (unsigned int i = initial_volumes_count; i < m_volumes.volumes.size(); ++i) { m_volumes.volumes[i]->set_sla_shift_z(shift_z); } } update_volumes_colors_by_extruder(); } void GLCanvas3D::_update_gcode_volumes_visibility(const GCodePreviewData& preview_data) { unsigned int size = (unsigned int)m_gcode_preview_volume_index.first_volumes.size(); for (unsigned int i = 0; i < size; ++i) { GLVolumePtrs::iterator begin = m_volumes.volumes.begin() + m_gcode_preview_volume_index.first_volumes[i].id; GLVolumePtrs::iterator end = (i + 1 < size) ? m_volumes.volumes.begin() + m_gcode_preview_volume_index.first_volumes[i + 1].id : m_volumes.volumes.end(); for (GLVolumePtrs::iterator it = begin; it != end; ++it) { GLVolume* volume = *it; switch (m_gcode_preview_volume_index.first_volumes[i].type) { case GCodePreviewVolumeIndex::Extrusion: { if ((ExtrusionRole)m_gcode_preview_volume_index.first_volumes[i].flag == erCustom) volume->zoom_to_volumes = false; volume->is_active = preview_data.extrusion.is_role_flag_set((ExtrusionRole)m_gcode_preview_volume_index.first_volumes[i].flag); break; } case GCodePreviewVolumeIndex::Travel: { volume->is_active = preview_data.travel.is_visible; volume->zoom_to_volumes = false; break; } case GCodePreviewVolumeIndex::Retraction: { volume->is_active = preview_data.retraction.is_visible; volume->zoom_to_volumes = false; break; } case GCodePreviewVolumeIndex::Unretraction: { volume->is_active = preview_data.unretraction.is_visible; volume->zoom_to_volumes = false; break; } case GCodePreviewVolumeIndex::Shell: { volume->is_active = preview_data.shell.is_visible; volume->color[3] = 0.25f; volume->zoom_to_volumes = false; break; } default: { volume->is_active = false; volume->zoom_to_volumes = false; break; } } } } } void GLCanvas3D::_update_toolpath_volumes_outside_state() { // tolerance to avoid false detection at bed edges static const double tolerance_x = 0.05; static const double tolerance_y = 0.05; BoundingBoxf3 print_volume; if (m_config != nullptr) { const ConfigOptionPoints* opt = dynamic_cast(m_config->option("bed_shape")); if (opt != nullptr) { BoundingBox bed_box_2D = get_extents(Polygon::new_scale(opt->values)); print_volume = BoundingBoxf3(Vec3d(unscale(bed_box_2D.min(0)) - tolerance_x, unscale(bed_box_2D.min(1)) - tolerance_y, 0.0), Vec3d(unscale(bed_box_2D.max(0)) + tolerance_x, unscale(bed_box_2D.max(1)) + tolerance_y, m_config->opt_float("max_print_height"))); // Allow the objects to protrude below the print bed print_volume.min(2) = -1e10; } } for (GLVolume* volume : m_volumes.volumes) { volume->is_outside = ((print_volume.radius() > 0.0) && volume->is_extrusion_path) ? !print_volume.contains(volume->bounding_box) : false; } } void GLCanvas3D::_show_warning_texture_if_needed() { if (_is_any_volume_outside()) { enable_warning_texture(true); _generate_warning_texture(L("Detected toolpath outside print volume")); } else { enable_warning_texture(false); _reset_warning_texture(); } } std::vector GLCanvas3D::_parse_colors(const std::vector& colors) { static const float INV_255 = 1.0f / 255.0f; std::vector output(colors.size() * 4, 1.0f); for (size_t i = 0; i < colors.size(); ++i) { const std::string& color = colors[i]; const char* c = color.data() + 1; if ((color.size() == 7) && (color.front() == '#')) { for (size_t j = 0; j < 3; ++j) { int digit1 = hex_digit_to_int(*c++); int digit2 = hex_digit_to_int(*c++); if ((digit1 == -1) || (digit2 == -1)) break; output[i * 4 + j] = float(digit1 * 16 + digit2) * INV_255; } } } return output; } void GLCanvas3D::_generate_legend_texture(const GCodePreviewData& preview_data, const std::vector& tool_colors) { #if !ENABLE_USE_UNIQUE_GLCONTEXT if (!set_current()) return; #endif // !ENABLE_USE_UNIQUE_GLCONTEXT m_legend_texture.generate(preview_data, tool_colors, *this); } void GLCanvas3D::_generate_warning_texture(const std::string& msg) { #if !ENABLE_USE_UNIQUE_GLCONTEXT if (!set_current()) return; #endif // !ENABLE_USE_UNIQUE_GLCONTEXT m_warning_texture.generate(msg); } void GLCanvas3D::_reset_warning_texture() { #if !ENABLE_USE_UNIQUE_GLCONTEXT if (!set_current()) return; #endif // !ENABLE_USE_UNIQUE_GLCONTEXT m_warning_texture.reset(); } bool GLCanvas3D::_is_any_volume_outside() const { for (const GLVolume* volume : m_volumes.volumes) { if ((volume != nullptr) && volume->is_outside) return true; } return false; } void GLCanvas3D::_resize_toolbar() const { Size cnv_size = get_canvas_size(); float zoom = get_camera_zoom(); float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f; switch (m_toolbar.get_layout_type()) { default: case GLToolbar::Layout::Horizontal: { // centers the toolbar on the top edge of the 3d scene unsigned int toolbar_width = m_toolbar.get_width(); float top = (0.5f * (float)cnv_size.get_height() - 2.0f) * inv_zoom; float left = -0.5f * (float)toolbar_width * inv_zoom; m_toolbar.set_position(top, left); break; } case GLToolbar::Layout::Vertical: { // centers the toolbar on the right edge of the 3d scene unsigned int toolbar_width = m_toolbar.get_width(); unsigned int toolbar_height = m_toolbar.get_height(); float top = 0.5f * (float)toolbar_height * inv_zoom; float left = (0.5f * (float)cnv_size.get_width() - toolbar_width - 2.0f) * inv_zoom; m_toolbar.set_position(top, left); break; } } } const Print* GLCanvas3D::fff_print() const { return (m_process == nullptr) ? nullptr : m_process->fff_print(); } const SLAPrint* GLCanvas3D::sla_print() const { return (m_process == nullptr) ? nullptr : m_process->sla_print(); } } // namespace GUI } // namespace Slic3r