package Slic3r::GUI::PreviewCanvas; use strict; use warnings; use Wx::Event qw(EVT_PAINT EVT_SIZE EVT_ERASE_BACKGROUND EVT_IDLE EVT_MOUSEWHEEL EVT_MOUSE_EVENTS); # must load OpenGL *before* Wx::GLCanvas use OpenGL qw(:glconstants :glfunctions :glufunctions :gluconstants); use base qw(Wx::GLCanvas Class::Accessor); use Math::Trig qw(asin); use List::Util qw(reduce min max first); use Slic3r::Geometry qw(X Y Z MIN MAX triangle_normal normalize deg2rad tan scale unscale); use Slic3r::Geometry::Clipper qw(offset_ex intersection_pl); use Wx::GLCanvas qw(:all); __PACKAGE__->mk_accessors( qw(_quat _dirty init enable_picking enable_moving on_hover on_select on_double_click on_right_click on_move volumes print _sphi _stheta cutting_plane_z cut_lines_vertices bed_shape bed_triangles bed_grid_lines origin _mouse_pos _hover_volume_idx _drag_volume_idx _drag_start_pos _drag_start_xy _dragged _camera_target _zoom ) ); use constant TRACKBALLSIZE => 0.8; use constant TURNTABLE_MODE => 1; use constant GROUND_Z => 0.02; use constant SELECTED_COLOR => [0,1,0,1]; use constant HOVER_COLOR => [0.8,0.8,0,1]; use constant COLORS => [ [1,1,0], [1,0.5,0.5], [0.5,1,0.5], [0.5,0.5,1] ]; # make OpenGL::Array thread-safe { no warnings 'redefine'; *OpenGL::Array::CLONE_SKIP = sub { 1 }; } sub new { my ($class, $parent) = @_; # we request a depth buffer explicitely because it looks like it's not created by # default on Linux, causing transparency issues my $self = $class->SUPER::new($parent, -1, Wx::wxDefaultPosition, Wx::wxDefaultSize, 0, "", [WX_GL_RGBA, WX_GL_DOUBLEBUFFER, WX_GL_DEPTH_SIZE, 16, 0]); $self->_quat((0, 0, 0, 1)); $self->_stheta(45); $self->_sphi(45); $self->_zoom(1); # 3D point in model space $self->_camera_target(Slic3r::Pointf3->new(0,0,0)); $self->reset_objects; EVT_PAINT($self, sub { my $dc = Wx::PaintDC->new($self); $self->Render($dc); }); EVT_SIZE($self, sub { $self->_dirty(1) }); EVT_IDLE($self, sub { return unless $self->_dirty; return if !$self->IsShownOnScreen; $self->Resize( $self->GetSizeWH ); $self->Refresh; }); EVT_MOUSEWHEEL($self, sub { my ($self, $e) = @_; # Calculate the zoom delta and apply it to the current zoom factor my $zoom = $e->GetWheelRotation() / $e->GetWheelDelta(); $zoom = max(min($zoom, 4), -4); $zoom /= 10; $self->_zoom($self->_zoom * (1-$zoom)); # In order to zoom around the mouse point we need to translate # the camera target my $size = Slic3r::Pointf->new($self->GetSizeWH); my $pos = Slic3r::Pointf->new($e->GetX, $size->y - $e->GetY); #- $self->_camera_target->translate( # ($pos - $size/2) represents the vector from the viewport center # to the mouse point. By multiplying it by $zoom we get the new, # transformed, length of such vector. # Since we want that point to stay fixed, we move our camera target # in the opposite direction by the delta of the length of such vector # ($zoom - 1). We then scale everything by 1/$self->_zoom since # $self->_camera_target is expressed in terms of model units. -($pos->x - $size->x/2) * ($zoom) / $self->_zoom, -($pos->y - $size->y/2) * ($zoom) / $self->_zoom, 0, ) if 0; $self->_dirty(1); $self->Refresh; }); EVT_MOUSE_EVENTS($self, \&mouse_event); return $self; } sub mouse_event { my ($self, $e) = @_; my $pos = Slic3r::Pointf->new($e->GetPositionXY); if ($e->Entering && &Wx::wxMSW) { # wxMSW needs focus in order to catch mouse wheel events $self->SetFocus; } elsif ($e->LeftDClick) { $self->on_double_click->() if $self->on_double_click; } elsif ($e->LeftDown || $e->RightDown) { # If user pressed left or right button we first check whether this happened # on a volume or not. my $volume_idx = $self->_hover_volume_idx // -1; # select volume in this 3D canvas if ($self->enable_picking) { $self->deselect_volumes; $self->select_volume($volume_idx); $self->Refresh; } # propagate event through callback $self->on_select->($volume_idx) if $self->on_select; if ($volume_idx != -1) { if ($e->LeftDown && $self->enable_moving) { $self->_drag_volume_idx($volume_idx); $self->_drag_start_pos($self->mouse_to_3d(@$pos)); } elsif ($e->RightDown) { # if right clicking on volume, propagate event through callback $self->on_right_click->($e->GetPosition) if $self->on_right_click; } } } elsif ($e->Dragging && $e->LeftIsDown && defined($self->_drag_volume_idx)) { # get volume being dragged my $volume = $self->volumes->[$self->_drag_volume_idx]; # get new position at the same Z of the initial click point my $mouse_ray = $self->mouse_ray($e->GetX, $e->GetY); my $cur_pos = $mouse_ray->intersect_plane($self->_drag_start_pos->z); # calculate the translation vector my $vector = $self->_drag_start_pos->vector_to($cur_pos); # apply new temporary volume origin and ignore Z $volume->origin->translate($vector->x, $vector->y, 0); #,, $self->_drag_start_pos($cur_pos); $self->_dragged(1); $self->Refresh; } elsif ($e->Dragging && !defined $self->_hover_volume_idx) { if ($e->LeftIsDown) { # if dragging over blank area with left button, rotate if (defined $self->_drag_start_pos) { my $orig = $self->_drag_start_pos; if (TURNTABLE_MODE) { $self->_sphi($self->_sphi + ($pos->x - $orig->x) * TRACKBALLSIZE); $self->_stheta($self->_stheta - ($pos->y - $orig->y) * TRACKBALLSIZE); #- $self->_stheta(150) if $self->_stheta > 150; $self->_stheta(0) if $self->_stheta < 0; } else { my $size = $self->GetClientSize; my @quat = trackball( $orig->x / ($size->width / 2) - 1, 1 - $orig->y / ($size->height / 2), #/ $pos->x / ($size->width / 2) - 1, 1 - $pos->y / ($size->height / 2), #/ ); $self->_quat(mulquats($self->_quat, \@quat)); } $self->Refresh; } $self->_drag_start_pos($pos); } elsif ($e->RightIsDown) { # if dragging over blank area with right button, translate if (defined $self->_drag_start_xy) { # get point in model space at Z = 0 my $cur_pos = $self->mouse_ray($e->GetX, $e->GetY)->intersect_plane(0); my $orig = $self->mouse_ray(@{$self->_drag_start_xy})->intersect_plane(0); $self->_camera_target->translate( @{$orig->vector_to($cur_pos)->negative}, ); $self->Refresh; } $self->_drag_start_xy($pos); } } elsif ($e->LeftUp || $e->RightUp) { if ($self->on_move && defined $self->_drag_volume_idx) { $self->on_move->($self->_drag_volume_idx) if $self->_dragged; } $self->_drag_volume_idx(undef); $self->_drag_start_pos(undef); $self->_drag_start_xy(undef); $self->_dragged(undef); } elsif ($e->Moving) { $self->_mouse_pos($pos); $self->Refresh; } else { $e->Skip(); } } sub reset_objects { my ($self) = @_; $self->volumes([]); $self->_dirty(1); } sub zoom_to_bounding_box { my ($self, $bb) = @_; # calculate the zoom factor needed to adjust viewport to # bounding box my $max_size = max(@{$bb->size}) * 2; my $min_viewport_size = min($self->GetSizeWH); $self->_zoom($min_viewport_size / $max_size); # center view around bounding box center $self->_camera_target($bb->center); } sub zoom_to_bed { my ($self) = @_; if ($self->bed_shape) { $self->zoom_to_bounding_box($self->bed_bounding_box); } } sub zoom_to_volume { my ($self, $volume_idx) = @_; my $volume = $self->volumes->[$volume_idx]; my $bb = $volume->bounding_box; $self->zoom_to_bounding_box($bb); } sub zoom_to_volumes { my ($self) = @_; $self->zoom_to_bounding_box($self->volumes_bounding_box); } sub volumes_bounding_box { my ($self) = @_; my $bb = Slic3r::Geometry::BoundingBoxf3->new; $bb->merge($_->bounding_box) for @{$self->volumes}; return $bb; } sub bed_bounding_box { my ($self) = @_; my $bb = Slic3r::Geometry::BoundingBoxf3->new; $bb->merge_point(Slic3r::Pointf3->new(@$_, 0)) for @{$self->bed_shape}; return $bb; } sub max_bounding_box { my ($self) = @_; my $bb = $self->bed_bounding_box; $bb->merge($self->volumes_bounding_box); return $bb; } sub set_auto_bed_shape { my ($self, $bed_shape) = @_; # draw a default square bed around object center my $max_size = max(@{ $self->volumes_bounding_box->size }); my $center = $self->volumes_bounding_box->center; $self->set_bed_shape([ [ $center->x - $max_size, $center->y - $max_size ], #-- [ $center->x + $max_size, $center->y - $max_size ], #-- [ $center->x + $max_size, $center->y + $max_size ], #++ [ $center->x - $max_size, $center->y + $max_size ], #++ ]); $self->origin(Slic3r::Pointf->new(@$center[X,Y])); } sub set_bed_shape { my ($self, $bed_shape) = @_; $self->bed_shape($bed_shape); # triangulate bed my $expolygon = Slic3r::ExPolygon->new([ map [map scale($_), @$_], @$bed_shape ]); my $bed_bb = $expolygon->bounding_box; { my @points = (); foreach my $triangle (@{ $expolygon->triangulate }) { push @points, map {+ unscale($_->x), unscale($_->y), GROUND_Z } @$triangle; #)) } $self->bed_triangles(OpenGL::Array->new_list(GL_FLOAT, @points)); } { my @lines = (); for (my $x = $bed_bb->x_min; $x <= $bed_bb->x_max; $x += scale 10) { push @lines, Slic3r::Polyline->new([$x,$bed_bb->y_min], [$x,$bed_bb->y_max]); } for (my $y = $bed_bb->y_min; $y <= $bed_bb->y_max; $y += scale 10) { push @lines, Slic3r::Polyline->new([$bed_bb->x_min,$y], [$bed_bb->x_max,$y]); } @lines = @{intersection_pl(\@lines, [ @$expolygon ])}; my @points = (); foreach my $polyline (@lines) { push @points, map {+ unscale($_->x), unscale($_->y), GROUND_Z } @$polyline; #)) } $self->bed_grid_lines(OpenGL::Array->new_list(GL_FLOAT, @points)); } $self->origin(Slic3r::Pointf->new(0,0)); } sub load_object { my ($self, $object, $all_instances) = @_; my $z_min = $object->raw_bounding_box->z_min; # color mesh(es) by material my @materials = (); # sort volumes: non-modifiers first my @volumes = sort { ($a->modifier // 0) <=> ($b->modifier // 0) } @{$object->volumes}; my @volumes_idx = (); foreach my $volume (@volumes) { my @instance_idxs = $all_instances ? (0..$#{$object->instances}) : (0); foreach my $instance_idx (@instance_idxs) { my $instance = $object->instances->[$instance_idx]; my $mesh = $volume->mesh->clone; $instance->transform_mesh($mesh); my $material_id = $volume->material_id // '_'; my $color_idx = first { $materials[$_] eq $material_id } 0..$#materials; if (!defined $color_idx) { push @materials, $material_id; $color_idx = $#materials; } my $color = [ @{COLORS->[ $color_idx % scalar(@{&COLORS}) ]} ]; push @$color, $volume->modifier ? 0.5 : 1; push @{$self->volumes}, my $v = Slic3r::GUI::PreviewCanvas::Volume->new( instance_idx => $instance_idx, mesh => $mesh, color => $color, origin => Slic3r::Pointf3->new(0,0,-$z_min), ); push @volumes_idx, $#{$self->volumes}; { my $vertices = $mesh->vertices; my @verts = map @{ $vertices->[$_] }, map @$_, @{$mesh->facets}; $v->verts(OpenGL::Array->new_list(GL_FLOAT, @verts)); } { my @norms = map { @$_, @$_, @$_ } @{$mesh->normals}; $v->norms(OpenGL::Array->new_list(GL_FLOAT, @norms)); } } } return @volumes_idx; } sub deselect_volumes { my ($self) = @_; $_->selected(0) for @{$self->volumes}; } sub select_volume { my ($self, $volume_idx) = @_; $self->volumes->[$volume_idx]->selected(1) if $volume_idx != -1; } sub SetCuttingPlane { my ($self, $z) = @_; $self->cutting_plane_z($z); # perform cut and cache section lines my @verts = (); foreach my $volume (@{$self->volumes}) { foreach my $volume (@{$self->volumes}) { my $expolygons = $volume->mesh->slice([ $z - $volume->origin->z ])->[0]; $expolygons = offset_ex([ map @$_, @$expolygons ], scale 0.1); foreach my $line (map @{$_->lines}, map @$_, @$expolygons) { push @verts, ( unscale($line->a->x), unscale($line->a->y), $z, #)) unscale($line->b->x), unscale($line->b->y), $z, #)) ); } } } $self->cut_lines_vertices(OpenGL::Array->new_list(GL_FLOAT, @verts)); } # Given an axis and angle, compute quaternion. sub axis_to_quat { my ($ax, $phi) = @_; my $lena = sqrt(reduce { $a + $b } (map { $_ * $_ } @$ax)); my @q = map { $_ * (1 / $lena) } @$ax; @q = map { $_ * sin($phi / 2.0) } @q; $q[$#q + 1] = cos($phi / 2.0); return @q; } # Project a point on the virtual trackball. # If it is inside the sphere, map it to the sphere, if it outside map it # to a hyperbola. sub project_to_sphere { my ($r, $x, $y) = @_; my $d = sqrt($x * $x + $y * $y); if ($d < $r * 0.70710678118654752440) { # Inside sphere return sqrt($r * $r - $d * $d); } else { # On hyperbola my $t = $r / 1.41421356237309504880; return $t * $t / $d; } } sub cross { my ($v1, $v2) = @_; return (@$v1[1] * @$v2[2] - @$v1[2] * @$v2[1], @$v1[2] * @$v2[0] - @$v1[0] * @$v2[2], @$v1[0] * @$v2[1] - @$v1[1] * @$v2[0]); } # Simulate a track-ball. Project the points onto the virtual trackball, # then figure out the axis of rotation, which is the cross product of # P1 P2 and O P1 (O is the center of the ball, 0,0,0) Note: This is a # deformed trackball-- is a trackball in the center, but is deformed # into a hyperbolic sheet of rotation away from the center. # It is assumed that the arguments to this routine are in the range # (-1.0 ... 1.0). sub trackball { my ($p1x, $p1y, $p2x, $p2y) = @_; if ($p1x == $p2x && $p1y == $p2y) { # zero rotation return (0.0, 0.0, 0.0, 1.0); } # First, figure out z-coordinates for projection of P1 and P2 to # deformed sphere my @p1 = ($p1x, $p1y, project_to_sphere(TRACKBALLSIZE, $p1x, $p1y)); my @p2 = ($p2x, $p2y, project_to_sphere(TRACKBALLSIZE, $p2x, $p2y)); # axis of rotation (cross product of P1 and P2) my @a = cross(\@p2, \@p1); # Figure out how much to rotate around that axis. my @d = map { $_ * $_ } (map { $p1[$_] - $p2[$_] } 0 .. $#p1); my $t = sqrt(reduce { $a + $b } @d) / (2.0 * TRACKBALLSIZE); # Avoid problems with out-of-control values... $t = 1.0 if ($t > 1.0); $t = -1.0 if ($t < -1.0); my $phi = 2.0 * asin($t); return axis_to_quat(\@a, $phi); } # Build a rotation matrix, given a quaternion rotation. sub quat_to_rotmatrix { my ($q) = @_; my @m = (); $m[0] = 1.0 - 2.0 * (@$q[1] * @$q[1] + @$q[2] * @$q[2]); $m[1] = 2.0 * (@$q[0] * @$q[1] - @$q[2] * @$q[3]); $m[2] = 2.0 * (@$q[2] * @$q[0] + @$q[1] * @$q[3]); $m[3] = 0.0; $m[4] = 2.0 * (@$q[0] * @$q[1] + @$q[2] * @$q[3]); $m[5] = 1.0 - 2.0 * (@$q[2] * @$q[2] + @$q[0] * @$q[0]); $m[6] = 2.0 * (@$q[1] * @$q[2] - @$q[0] * @$q[3]); $m[7] = 0.0; $m[8] = 2.0 * (@$q[2] * @$q[0] - @$q[1] * @$q[3]); $m[9] = 2.0 * (@$q[1] * @$q[2] + @$q[0] * @$q[3]); $m[10] = 1.0 - 2.0 * (@$q[1] * @$q[1] + @$q[0] * @$q[0]); $m[11] = 0.0; $m[12] = 0.0; $m[13] = 0.0; $m[14] = 0.0; $m[15] = 1.0; return @m; } sub mulquats { my ($q1, $rq) = @_; return (@$q1[3] * @$rq[0] + @$q1[0] * @$rq[3] + @$q1[1] * @$rq[2] - @$q1[2] * @$rq[1], @$q1[3] * @$rq[1] + @$q1[1] * @$rq[3] + @$q1[2] * @$rq[0] - @$q1[0] * @$rq[2], @$q1[3] * @$rq[2] + @$q1[2] * @$rq[3] + @$q1[0] * @$rq[1] - @$q1[1] * @$rq[0], @$q1[3] * @$rq[3] - @$q1[0] * @$rq[0] - @$q1[1] * @$rq[1] - @$q1[2] * @$rq[2]) } sub mouse_to_3d { my ($self, $x, $y, $z) = @_; my @viewport = glGetIntegerv_p(GL_VIEWPORT); # 4 items my @mview = glGetDoublev_p(GL_MODELVIEW_MATRIX); # 16 items my @proj = glGetDoublev_p(GL_PROJECTION_MATRIX); # 16 items $y = $viewport[3] - $y; $z //= glReadPixels_p($x, $y, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT); my @projected = gluUnProject_p($x, $y, $z, @mview, @proj, @viewport); return Slic3r::Pointf3->new(@projected); } sub mouse_ray { my ($self, $x, $y) = @_; return Slic3r::Linef3->new( $self->mouse_to_3d($x, $y, 0), $self->mouse_to_3d($x, $y, 1), ); } sub GetContext { my ($self) = @_; if (Wx::wxVERSION >= 2.009) { return $self->{context} ||= Wx::GLContext->new($self); } else { return $self->SUPER::GetContext; } } sub SetCurrent { my ($self, $context) = @_; if (Wx::wxVERSION >= 2.009) { return $self->SUPER::SetCurrent($context); } else { return $self->SUPER::SetCurrent; } } sub Resize { my ($self, $x, $y) = @_; return unless $self->GetContext; $self->_dirty(0); $self->SetCurrent($self->GetContext); glViewport(0, 0, $x, $y); $x /= $self->_zoom; $y /= $self->_zoom; glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrtho( -$x/2, $x/2, -$y/2, $y/2, -200, 10 * max(@{ $self->max_bounding_box->size }), ); glMatrixMode(GL_MODELVIEW); } sub InitGL { my $self = shift; return if $self->init; return unless $self->GetContext; $self->init(1); glClearColor(0, 0, 0, 1); glColor3f(1, 0, 0); glEnable(GL_DEPTH_TEST); glClearDepth(1.0); glDepthFunc(GL_LEQUAL); glEnable(GL_CULL_FACE); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); # Set antialiasing/multisampling glDisable(GL_LINE_SMOOTH); glDisable(GL_POLYGON_SMOOTH); glEnable(GL_MULTISAMPLE); # ambient lighting glLightModelfv_p(GL_LIGHT_MODEL_AMBIENT, 0.1, 0.1, 0.1, 1); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); glEnable(GL_LIGHT1); glLightfv_p(GL_LIGHT0, GL_POSITION, 0.5, 0.5, 1, 0); glLightfv_p(GL_LIGHT0, GL_SPECULAR, 0.5, 0.5, 0.5, 1); glLightfv_p(GL_LIGHT0, GL_DIFFUSE, 0.8, 0.8, 0.8, 1); glLightfv_p(GL_LIGHT1, GL_POSITION, 1, 0, 0.5, 0); glLightfv_p(GL_LIGHT1, GL_SPECULAR, 0.5, 0.5, 0.5, 1); glLightfv_p(GL_LIGHT1, GL_DIFFUSE, 1, 1, 1, 1); # Enables Smooth Color Shading; try GL_FLAT for (lack of) fun. glShadeModel(GL_SMOOTH); glMaterialfv_p(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, 0.5, 0.3, 0.3, 1); glMaterialfv_p(GL_FRONT_AND_BACK, GL_SPECULAR, 1, 1, 1, 1); glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 50); glMaterialfv_p(GL_FRONT_AND_BACK, GL_EMISSION, 0.1, 0, 0, 0.9); # A handy trick -- have surface material mirror the color. glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE); glEnable(GL_COLOR_MATERIAL); glEnable(GL_MULTISAMPLE); } sub Render { my ($self, $dc) = @_; # prevent calling SetCurrent() when window is not shown yet return unless $self->IsShownOnScreen; return unless my $context = $self->GetContext; $self->SetCurrent($context); $self->InitGL; glClearColor(1, 1, 1, 1); glClearDepth(1); glDepthFunc(GL_LESS); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); if (TURNTABLE_MODE) { glRotatef(-$self->_stheta, 1, 0, 0); # pitch glRotatef($self->_sphi, 0, 0, 1); # yaw } else { my @rotmat = quat_to_rotmatrix($self->quat); glMultMatrixd_p(@rotmat[0..15]); } glTranslatef(@{ $self->_camera_target->negative }); if ($self->enable_picking) { glDisable(GL_LIGHTING); $self->draw_volumes(1); glFlush(); glFinish(); if (my $pos = $self->_mouse_pos) { my $col = [ glReadPixels_p($pos->x, $self->GetSize->GetHeight - $pos->y, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE) ]; my $volume_idx = $col->[0] + $col->[1]*256 + $col->[2]*256*256; $self->_hover_volume_idx(undef); $_->hover(0) for @{$self->volumes}; if ($volume_idx <= $#{$self->volumes}) { $self->_hover_volume_idx($volume_idx); $self->volumes->[$volume_idx]->hover(1); $self->on_hover->($volume_idx) if $self->on_hover; } } glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glFlush(); glFinish(); glEnable(GL_LIGHTING); } # draw objects $self->draw_volumes; # draw ground and axes glDisable(GL_LIGHTING); my $z0 = 0; { # draw ground my $ground_z = GROUND_Z; if ($self->bed_triangles) { glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnableClientState(GL_VERTEX_ARRAY); glColor4f(0.6, 0.7, 0.5, 0.3); glNormal3d(0,0,1); glVertexPointer_p(3, $self->bed_triangles); glDrawArrays(GL_TRIANGLES, 0, $self->bed_triangles->elements / 3); glDisableClientState(GL_VERTEX_ARRAY); glDisable(GL_BLEND); # draw grid glTranslatef(0, 0, 0.02); glLineWidth(3); glColor3f(0.95, 0.95, 0.95); glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer_p(3, $self->bed_grid_lines); glDrawArrays(GL_LINES, 0, $self->bed_grid_lines->elements / 3); glDisableClientState(GL_VERTEX_ARRAY); } my $volumes_bb = $self->volumes_bounding_box; { # draw axes $ground_z += 0.02; my $origin = $self->origin; my $axis_len = max( 0.3 * max(@{ $self->bed_bounding_box->size }), 2 * max(@{ $volumes_bb->size }), ); glLineWidth(2); glBegin(GL_LINES); # draw line for x axis glColor3f(1, 0, 0); glVertex3f(@$origin, $ground_z); glVertex3f($origin->x + $axis_len, $origin->y, $ground_z); #,, # draw line for y axis glColor3f(0, 1, 0); glVertex3f(@$origin, $ground_z); glVertex3f($origin->x, $origin->y + $axis_len, $ground_z); #++ # draw line for Z axis glColor3f(0, 0, 1); glVertex3f(@$origin, $ground_z); glVertex3f(@$origin, $ground_z+$axis_len); glEnd(); } # draw cutting plane if (defined $self->cutting_plane_z) { my $plane_z = $z0 + $self->cutting_plane_z; my $bb = $volumes_bb; glDisable(GL_CULL_FACE); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glBegin(GL_QUADS); glColor4f(0.8, 0.8, 0.8, 0.5); glVertex3f($bb->x_min-20, $bb->y_min-20, $plane_z); glVertex3f($bb->x_max+20, $bb->y_min-20, $plane_z); glVertex3f($bb->x_max+20, $bb->y_max+20, $plane_z); glVertex3f($bb->x_min-20, $bb->y_max+20, $plane_z); glEnd(); glEnable(GL_CULL_FACE); glDisable(GL_BLEND); } } glEnable(GL_LIGHTING); glFlush(); $self->SwapBuffers(); } sub draw_volumes { my ($self, $fakecolor) = @_; glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); if (defined($self->print) && !$fakecolor) { my $tess = gluNewTess(); gluTessCallback($tess, GLU_TESS_BEGIN, 'DEFAULT'); gluTessCallback($tess, GLU_TESS_END, 'DEFAULT'); gluTessCallback($tess, GLU_TESS_VERTEX, 'DEFAULT'); gluTessCallback($tess, GLU_TESS_COMBINE, 'DEFAULT'); gluTessCallback($tess, GLU_TESS_ERROR, 'DEFAULT'); gluTessCallback($tess, GLU_TESS_EDGE_FLAG, 'DEFAULT'); foreach my $object (@{$self->print->objects}) { foreach my $layer (@{$object->layers}) { my $gap = 0; my $top_z = $layer->print_z; my $bottom_z = $layer->print_z - $layer->height + $gap; foreach my $copy (@{ $object->_shifted_copies }) { glPushMatrix(); glTranslatef(map unscale($_), @$copy, 0); foreach my $slice (@{$layer->slices}) { glColor3f(@{COLORS->[0]}); gluTessBeginPolygon($tess); glNormal3f(0,0,1); foreach my $polygon (@$slice) { gluTessBeginContour($tess); gluTessVertex_p($tess, (map unscale($_), @$_), $layer->print_z) for @$polygon; gluTessEndContour($tess); } gluTessEndPolygon($tess); foreach my $polygon (@$slice) { foreach my $line (@{$polygon->lines}) { if (0) { glLineWidth(1); glColor3f(0,0,0); glBegin(GL_LINES); glVertex3f((map unscale($_), @{$line->a}), $bottom_z); glVertex3f((map unscale($_), @{$line->b}), $bottom_z); glEnd(); } glLineWidth(0); glColor3f(@{COLORS->[0]}); glBegin(GL_QUADS); glNormal3f((map $_/$line->length, @{$line->normal}), 0); glVertex3f((map unscale($_), @{$line->a}), $bottom_z); glVertex3f((map unscale($_), @{$line->b}), $bottom_z); glVertex3f((map unscale($_), @{$line->b}), $top_z); glVertex3f((map unscale($_), @{$line->a}), $top_z); glEnd(); } } } glPopMatrix(); # copy } } } gluDeleteTess($tess); return; } glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); foreach my $volume_idx (0..$#{$self->volumes}) { my $volume = $self->volumes->[$volume_idx]; glPushMatrix(); glTranslatef(@{$volume->origin}); glVertexPointer_p(3, $volume->verts); glCullFace(GL_BACK); glNormalPointer_p($volume->norms); if ($fakecolor) { my $r = ($volume_idx & 0x000000FF) >> 0; my $g = ($volume_idx & 0x0000FF00) >> 8; my $b = ($volume_idx & 0x00FF0000) >> 16; glColor4f($r/255.0, $g/255.0, $b/255.0, 1); } elsif ($volume->selected) { glColor4f(@{ &SELECTED_COLOR }); } elsif ($volume->hover) { glColor4f(@{ &HOVER_COLOR }); } else { glColor4f(@{ $volume->color }); } glDrawArrays(GL_TRIANGLES, 0, $volume->verts->elements / 3); glPopMatrix(); } glDisableClientState(GL_NORMAL_ARRAY); glDisable(GL_BLEND); if (defined $self->cutting_plane_z) { glLineWidth(2); glColor3f(0, 0, 0); glVertexPointer_p(3, $self->cut_lines_vertices); glDrawArrays(GL_LINES, 0, $self->cut_lines_vertices->elements / 3); } glDisableClientState(GL_VERTEX_ARRAY); } package Slic3r::GUI::PreviewCanvas::Volume; use Moo; has 'mesh' => (is => 'ro', required => 1); has 'color' => (is => 'ro', required => 1); has 'instance_idx' => (is => 'ro', default => sub { 0 }); has 'origin' => (is => 'rw', default => sub { Slic3r::Pointf3->new(0,0,0) }); has 'verts' => (is => 'rw'); has 'norms' => (is => 'rw'); has 'selected' => (is => 'rw', default => sub { 0 }); has 'hover' => (is => 'rw', default => sub { 0 }); sub bounding_box { my ($self) = @_; my $bb = $self->mesh->bounding_box; $bb->translate(@{$self->origin}); return $bb; } 1;