package Slic3r::Print::SupportMaterial; use Moo; use List::Util qw(sum min max); use Slic3r::ExtrusionPath ':roles'; use Slic3r::Geometry qw(scale scaled_epsilon PI rad2deg deg2rad); use Slic3r::Geometry::Clipper qw(offset diff union union_ex intersection offset_ex offset2); use Slic3r::Surface ':types'; has 'config' => (is => 'rw', required => 1); has 'flow' => (is => 'rw', required => 1); use constant DEBUG_CONTACT_ONLY => 0; # how much we extend support around the actual contact area use constant MARGIN => 1.5; # increment used to reach MARGIN in steps to avoid trespassing thin objects use constant MARGIN_STEP => MARGIN/3; sub generate { my ($self, $object) = @_; # Determine the top surfaces of the support, defined as: # contact = overhangs - clearance + margin # This method is responsible for identifying what contact surfaces # should the support material expose to the object in order to guarantee # that it will be effective, regardless of how it's built below. my ($contact, $overhang) = $self->contact_area($object); # Determine the top surfaces of the object. We need these to determine # the layer heights of support material and to clip support to the object # silhouette. my ($top) = $self->object_top($object, $contact); # We now know the upper and lower boundaries for our support material object # (@$contact_z and @$top_z), so we can generate intermediate layers. my ($support_z) = $self->support_layers_z( [ sort keys %$contact ], [ sort keys %$top ], max(map $_->height, @{$object->layers}) ); # If we wanted to apply some special logic to the first support layers lying on # object's top surfaces this is the place to detect them # Propagate contact layers downwards to generate interface layers my ($interface) = $self->generate_interface_layers($support_z, $contact, $top); $self->clip_with_object($interface, $support_z, $object); # Propagate contact layers and interface layers downwards to generate # the main support layers. my ($base) = $self->generate_base_layers($support_z, $contact, $interface, $top); $self->clip_with_object($base, $support_z, $object); # Install support layers into object. push @{$object->support_layers}, map Slic3r::Layer::Support->new( object => $object, id => $_, height => ($_ == 0) ? $support_z->[$_] : ($support_z->[$_] - $support_z->[$_-1]), print_z => $support_z->[$_], slice_z => -1, slices => [], ), 0 .. $#$support_z; # Generate the actual toolpaths and save them into each layer. $self->generate_toolpaths($object, $overhang, $contact, $interface, $base); } sub contact_area { my ($self, $object) = @_; # if user specified a custom angle threshold, convert it to radians my $threshold_rad; if ($self->config->support_material_threshold) { $threshold_rad = deg2rad($self->config->support_material_threshold + 1); # +1 makes the threshold inclusive Slic3r::debugf "Threshold angle = %d°\n", rad2deg($threshold_rad); } # determine contact areas my %contact = (); # contact_z => [ polygons ] my %overhang = (); # contact_z => [ polygons ] - this stores the actual overhang supported by each contact layer for my $layer_id (0 .. $#{$object->layers}) { if ($self->config->raft_layers == 0) { next if $layer_id == 0; } elsif (!$self->config->support_material) { # if we are only going to generate raft just check # the 'overhangs' of the first object layer last if $layer_id > 0; } my $layer = $object->layers->[$layer_id]; my $lower_layer = $object->layers->[$layer_id-1]; # detect overhangs and contact areas needed to support them my (@overhang, @contact) = (); foreach my $layerm (@{$layer->regions}) { my $fw = $layerm->perimeter_flow->scaled_width; my $diff; # If a threshold angle was specified, use a different logic for detecting overhangs. if (defined $threshold_rad || $layer_id < $self->config->support_material_enforce_layers || $self->config->raft_layers > 0) { my $d = defined $threshold_rad ? scale $lower_layer->height * ((cos $threshold_rad) / (sin $threshold_rad)) : 0; $diff = diff( offset([ map $_->p, @{$layerm->slices} ], -$d), [ map @$_, @{$lower_layer->slices} ], ); # only enforce spacing from the object ($fw/2) if the threshold angle # is not too high: in that case, $d will be very small (as we need to catch # very short overhangs), and such contact area would be eaten by the # enforced spacing, resulting in high threshold angles to be almost ignored $diff = diff( offset($diff, $d - $fw/2), [ map @$_, @{$lower_layer->slices} ], ) if $d > $fw/2; } else { $diff = diff( offset([ map $_->p, @{$layerm->slices} ], -$fw/2), [ map @$_, @{$lower_layer->slices} ], ); # collapse very tiny spots $diff = offset2($diff, -$fw/10, +$fw/10); # $diff now contains the ring or stripe comprised between the boundary of # lower slices and the centerline of the last perimeter in this overhanging layer. # Void $diff means that there's no upper perimeter whose centerline is # outside the lower slice boundary, thus no overhang } # TODO: this is the place to remove bridged areas next if !@$diff; push @overhang, @$diff; # NOTE: this is not the full overhang as it misses the outermost half of the perimeter width! # Let's define the required contact area by using a max gap of half the upper # extrusion width and extending the area according to the configured margin. # We increment the area in steps because we don't want our support to overflow # on the other side of the object (if it's very thin). { my @slices_margin = @{offset([ map @$_, @{$lower_layer->slices} ], $fw/2)}; for ($fw/2, map {scale MARGIN_STEP} 1..(MARGIN / MARGIN_STEP)) { $diff = diff( offset($diff, $_), \@slices_margin, ); } } push @contact, @$diff; } next if !@contact; # now apply the contact areas to the layer were they need to be made { # get the average nozzle diameter used on this layer my @nozzle_diameters = map $_->nozzle_diameter, map { $_->perimeter_flow, $_->solid_infill_flow } @{$layer->regions}; my $nozzle_diameter = sum(@nozzle_diameters)/@nozzle_diameters; my $contact_z = $layer->print_z - $nozzle_diameter * 1.5; ###$contact_z = $layer->print_z - $layer->height; # ignore this contact area if it's too low next if $contact_z < $Slic3r::Config->get_value('first_layer_height'); $contact{$contact_z} = [ @contact ]; $overhang{$contact_z} = [ @overhang ]; if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output("contact_" . $contact_z . ".svg", expolygons => union_ex(\@contact), red_expolygons => \@overhang, ); } } } return (\%contact, \%overhang); } sub object_top { my ($self, $object, $contact) = @_; # find object top surfaces # we'll use them to clip our support and detect where does it stick my %top = (); # print_z => [ expolygons ] my $projection = []; foreach my $layer (reverse @{$object->layers}) { if (my @top = map @{$_->slices->filter_by_type(S_TYPE_TOP)}, @{$layer->regions}) { # compute projection of the contact areas above this top layer # first add all the 'new' contact areas to the current projection # ('new' means all the areas that are lower than the last top layer # we considered) my $min_top = min(keys %top) // max(keys %$contact); # use <= instead of just < because otherwise we'd ignore any contact regions # having the same Z of top layers push @$projection, map @{$contact->{$_}}, grep { $_ > $layer->print_z && $_ <= $min_top } keys %$contact; # now find whether any projection falls onto this top surface my $touching = intersection($projection, [ map $_->p, @top ]); if (@$touching) { # grow top surfaces so that interface and support generation are generated # with some spacing from object - it looks we don't need the actual # top shapes so this can be done here $top{ $layer->print_z } = offset($touching, $self->flow->scaled_width); } # remove the areas that touched from the projection that will continue on # next, lower, top surfaces $projection = diff($projection, $touching); } } return \%top; } sub support_layers_z { my ($self, $contact_z, $top_z, $max_object_layer_height) = @_; # quick table to check whether a given Z is a top surface my %top = map { $_ => 1 } @$top_z; # determine layer height for any non-contact layer # we use max() to prevent many ultra-thin layers to be inserted in case # layer_height > nozzle_diameter * 0.75 my $nozzle_diameter = $self->flow->nozzle_diameter; my $support_material_height = max($max_object_layer_height, $nozzle_diameter * 0.75); my @z = sort { $a <=> $b } @$contact_z, @$top_z, (map $_ + $nozzle_diameter, @$top_z); # enforce first layer height my $first_layer_height = $self->config->get_value('first_layer_height'); shift @z while @z && $z[0] <= $first_layer_height; unshift @z, $first_layer_height; # add raft layers by dividing the space between first layer and # first contact layer evenly if ($self->config->raft_layers > 1 && @z >= 2) { # $z[1] is last raft layer (contact layer for the first layer object) my $height = ($z[1] - $z[0]) / ($self->config->raft_layers - 1); splice @z, 1, 0, map { int($_*100)/100 } map { $z[0] + $height * $_ } 0..($self->config->raft_layers - 1); } for (my $i = $#z; $i >= 0; $i--) { my $target_height = $support_material_height; if ($i > 0 && $top{ $z[$i-1] }) { $target_height = $nozzle_diameter; } # enforce first layer height if (($i == 0 && $z[$i] > $target_height + $first_layer_height) || ($z[$i] - $z[$i-1] > $target_height + Slic3r::Geometry::epsilon)) { splice @z, $i, 0, ($z[$i] - $target_height); $i++; } } # remove duplicates and make sure all 0.x values have the leading 0 { my %sl = map { 1 * $_ => 1 } @z; @z = sort { $a <=> $b } keys %sl; } return \@z; } sub generate_interface_layers { my ($self, $support_z, $contact, $top) = @_; # let's now generate interface layers below contact areas my %interface = (); # layer_id => [ polygons ] my $interface_layers = $self->config->support_material_interface_layers; for my $layer_id (0 .. $#$support_z) { my $z = $support_z->[$layer_id]; my $this = $contact->{$z} // next; # count contact layer as interface layer for (my $i = $layer_id-1; $i >= 0 && $i > $layer_id-$interface_layers; $i--) { $z = $support_z->[$i]; my @overlapping_layers = $self->overlapping_layers($i, $support_z); my @overlapping_z = map $support_z->[$_], @overlapping_layers; # Compute interface area on this layer as diff of upper contact area # (or upper interface area) and layer slices. # This diff is responsible of the contact between support material and # the top surfaces of the object. We should probably offset the top # surfaces vertically before performing the diff, but this needs # investigation. $this = $interface{$i} = diff( [ @$this, # clipped projection of the current contact regions @{ $interface{$i} || [] }, # interface regions already applied to this layer ], [ (map @$_, map $top->{$_}, grep exists $top->{$_}, @overlapping_z), # top slices on this layer (map @$_, map $contact->{$_}, grep exists $contact->{$_}, @overlapping_z), # contact regions on this layer ], 1, ); } } return \%interface; } sub generate_base_layers { my ($self, $support_z, $contact, $interface, $top) = @_; # let's now generate support layers under interface layers my $base = {}; # layer_id => [ polygons ] { for my $i (reverse 0 .. $#$support_z-1) { my $z = $support_z->[$i]; my @overlapping_layers = $self->overlapping_layers($i, $support_z); my @overlapping_z = map $support_z->[$_], @overlapping_layers; # in case we have no interface layers, look at upper contact my @upper_contact = (); if ($self->config->support_material_interface_layers == 0) { @upper_contact = @{ $contact->{$support_z->[$i+1]} || [] }; } $base->{$i} = diff( [ @{ $base->{$i+1} || [] }, # support regions on upper layer @{ $interface->{$i+1} || [] }, # interface regions on upper layer @upper_contact, # contact regions on upper layer ], [ (map @$_, map $top->{$_}, grep exists $top->{$_}, @overlapping_z), # top slices on this layer (map @$_, map $interface->{$_}, grep exists $interface->{$_}, @overlapping_layers), # interface regions on this layer (map @$_, map $contact->{$_}, grep exists $contact->{$_}, @overlapping_z), # contact regions on this layer ], 1, ); } } return $base; } sub clip_with_object { my ($self, $support, $support_z, $object) = @_; foreach my $i (keys %$support) { next if !@{$support->{$i}}; my $zmax = $support_z->[$i]; my $zmin = ($i == 0) ? 0 : $support_z->[$i-1]; my @layers = grep { $_->print_z > $zmin && ($_->print_z - $_->height) < $zmax } @{$object->layers}; $support->{$i} = diff( $support->{$i}, offset([ map @$_, map @{$_->slices}, @layers ], +$self->flow->scaled_width), ); } } sub generate_toolpaths { my ($self, $object, $overhang, $contact, $interface, $base) = @_; my $flow = $self->flow; # shape of contact area my $contact_loops = 1; my $circle_radius = 1.5 * $flow->scaled_width; my $circle_distance = 3 * $circle_radius; my $circle = Slic3r::Polygon->new(map [ $circle_radius * cos $_, $circle_radius * sin $_ ], (5*PI/3, 4*PI/3, PI, 2*PI/3, PI/3, 0)); Slic3r::debugf "Generating patterns\n"; # prepare fillers my $pattern = $self->config->support_material_pattern; my @angles = ($self->config->support_material_angle); if ($pattern eq 'rectilinear-grid') { $pattern = 'rectilinear'; push @angles, $angles[0] + 90; } my %fillers = ( interface => $object->fill_maker->filler('rectilinear'), support => $object->fill_maker->filler($pattern), ); my $interface_angle = $self->config->support_material_angle + 90; my $interface_spacing = $self->config->support_material_interface_spacing + $flow->spacing; my $interface_density = $interface_spacing == 0 ? 1 : $flow->spacing / $interface_spacing; my $support_spacing = $self->config->support_material_spacing + $flow->spacing; my $support_density = $support_spacing == 0 ? 1 : $flow->spacing / $support_spacing; my $process_layer = sub { my ($layer_id) = @_; my $layer = $object->support_layers->[$layer_id]; my $z = $layer->print_z; my $overhang = $overhang->{$z} || []; my $contact = $contact->{$z} || []; my $interface = $interface->{$layer_id} || []; my $base = $base->{$layer_id} || []; if (DEBUG_CONTACT_ONLY) { $interface = []; $base = []; } if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output("layer_" . $z . ".svg", red_expolygons => union_ex($contact), green_expolygons => union_ex($interface), ); } # islands $layer->support_islands->append(@{union_ex([ @$interface, @$base, @$contact ])}); # contact my $contact_infill = []; if ($self->config->support_material_interface_layers == 0) { # if no interface layers were requested we treat the contact layer # exactly as a generic base layer push @$base, @$contact; } elsif (@$contact && $contact_loops > 0) { # generate the outermost loop my @loops0 = (); { # find centerline of the external loop of the contours my @external_loops = @{offset($contact, -$flow->scaled_width/2)}; # only consider the loops facing the overhang { my $overhang_with_margin = offset_ex($overhang, +$flow->scaled_width/2); @external_loops = grep { @{ Boost::Geometry::Utils::multi_polygon_multi_linestring_intersection( [ map $_->pp, @$overhang_with_margin ], [ $_->split_at_first_point->pp ], ) } } @external_loops; } # apply a pattern to the loop my @positions = map Slic3r::Polygon->new(@$_)->split_at_first_point->regular_points($circle_distance), @external_loops; @loops0 = @{diff( [ @external_loops ], [ map { my $c = $circle->clone; $c->translate(@$_); $c } @positions ], )}; } # make more loops my @loops = @loops0; for my $i (2..$contact_loops) { my $d = ($i-1) * $flow->scaled_spacing; push @loops, @{offset2(\@loops0, -$d -0.5*$flow->scaled_spacing, +0.5*$flow->scaled_spacing)}; } # clip such loops to the side oriented towards the object @loops = map Slic3r::Polyline->new(@$_), @{ Boost::Geometry::Utils::multi_polygon_multi_linestring_intersection( [ map $_->pp, @{offset_ex($overhang, +scale MARGIN)} ], [ map $_->split_at_first_point->pp, @loops ], ) }; # add the contact infill area to the interface area # note that growing loops by $circle_radius ensures no tiny # extrusions are left inside the circles; however it creates # a very large gap between loops and contact_infill, so maybe another # solution should be found to achieve both goals $contact_infill = diff( $contact, [ map $_->grow($circle_radius*1.1), @loops ], ); # transform loops into ExtrusionPath objects @loops = map Slic3r::ExtrusionPath->new( polyline => $_, role => EXTR_ROLE_SUPPORTMATERIAL, flow_spacing => $flow->spacing, ), @loops; $layer->support_interface_fills->append(@loops); } # interface and contact infill if (@$interface || @$contact_infill) { $fillers{interface}->angle($interface_angle); # join regions by offsetting them to ensure they're merged $interface = offset([ @$interface, @$contact_infill ], scaled_epsilon); # turn base support into interface when it's contained in our holes # (this way we get wider interface anchoring) { my @p = @$interface; @$interface = (); foreach my $p (@p) { if ($p->is_clockwise) { my $p2 = $p->clone; $p2->make_counter_clockwise; next if !@{diff([$p2], $base, 1)}; } push @$interface, $p; } } $base = diff($base, $interface); my @paths = (); foreach my $expolygon (@{union_ex($interface)}) { my ($params, @p) = $fillers{interface}->fill_surface( Slic3r::Surface->new(expolygon => $expolygon, surface_type => S_TYPE_INTERNAL), density => $interface_density, flow_spacing => $flow->spacing, complete => 1, ); push @paths, map Slic3r::ExtrusionPath->new( polyline => Slic3r::Polyline->new(@$_), role => EXTR_ROLE_SUPPORTMATERIAL, height => undef, flow_spacing => $params->{flow_spacing}, ), @p; } $layer->support_interface_fills->append(@paths); } # support or flange if (@$base) { my $filler = $fillers{support}; $filler->angle($angles[ ($layer_id) % @angles ]); my $density = $support_density; my $flow_spacing = $flow->spacing; # TODO: use offset2_ex() my $to_infill = union_ex($base, 1); my @paths = (); # base flange if ($layer_id == 0) { $filler = $fillers{interface}; $filler->angle($self->config->support_material_angle + 90); $density = 0.5; $flow_spacing = $object->print->first_layer_support_material_flow->spacing; } else { # draw a perimeter all around support infill # TODO: use brim ordering algorithm push @paths, map Slic3r::ExtrusionPath->new( polyline => $_->split_at_first_point, role => EXTR_ROLE_SUPPORTMATERIAL, height => undef, flow_spacing => $flow->spacing, ), map @$_, @$to_infill; # TODO: use offset2_ex() $to_infill = offset_ex([ map @$_, @$to_infill ], -$flow->scaled_spacing); } foreach my $expolygon (@$to_infill) { my ($params, @p) = $filler->fill_surface( Slic3r::Surface->new(expolygon => $expolygon, surface_type => S_TYPE_INTERNAL), density => $density, flow_spacing => $flow_spacing, complete => 1, ); push @paths, map Slic3r::ExtrusionPath->new( polyline => Slic3r::Polyline->new(@$_), role => EXTR_ROLE_SUPPORTMATERIAL, height => undef, flow_spacing => $params->{flow_spacing}, ), @p; } $layer->support_fills->append(@paths); } if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output("islands_" . $z . ".svg", red_expolygons => union_ex($contact), green_expolygons => union_ex($interface), green_polylines => [ map $_->unpack->polyline, @{$layer->support_contact_fills} ], polylines => [ map $_->unpack->polyline, @{$layer->support_fills} ], ); } }; Slic3r::parallelize( items => [ 0 .. $#{$object->support_layers} ], thread_cb => sub { my $q = shift; while (defined (my $layer_id = $q->dequeue)) { $process_layer->($layer_id); } }, no_threads_cb => sub { $process_layer->($_) for 0 .. $#{$object->support_layers}; }, ); } # this method returns the indices of the layers overlapping with the given one sub overlapping_layers { my ($self, $i, $support_z) = @_; my $zmax = $support_z->[$i]; my $zmin = ($i == 0) ? 0 : $support_z->[$i-1]; return grep { my $zmax2 = $support_z->[$_]; my $zmin2 = ($_ == 0) ? 0 : $support_z->[$_-1]; $zmax > $zmin2 && $zmin < $zmax2; } 0..$#$support_z; } 1;