#include #include #include "libslic3r/libslic3r.h" #include "libslic3r/Format/OBJ.hpp" #include "libslic3r/SLAPrint.hpp" #include "libslic3r/TriangleMesh.hpp" #include "libslic3r/SLA/SLAPad.hpp" #include "libslic3r/SLA/SLASupportTreeBuilder.hpp" #include "libslic3r/SLA/SLASupportTreeAlgorithm.hpp" #include "libslic3r/SLA/SLAAutoSupports.hpp" #include "libslic3r/MTUtils.hpp" #include "libslic3r/SVG.hpp" #if defined(WIN32) || defined(_WIN32) #define PATH_SEPARATOR "\\" #else #define PATH_SEPARATOR "/" #endif namespace { using namespace Slic3r; TriangleMesh load_model(const std::string &obj_filename) { TriangleMesh mesh; auto fpath = std::string(TEST_DATA_DIR PATH_SEPARATOR) + obj_filename; load_obj(fpath.c_str(), &mesh); return mesh; } enum e_validity { ASSUME_NO_EMPTY = 1, ASSUME_MANIFOLD = 2, ASSUME_NO_REPAIR = 4 }; void check_validity(const TriangleMesh &input_mesh, int flags = ASSUME_NO_EMPTY | ASSUME_MANIFOLD | ASSUME_NO_REPAIR) { TriangleMesh mesh{input_mesh}; if (flags & ASSUME_NO_EMPTY) { ASSERT_FALSE(mesh.empty()); } else if (mesh.empty()) return; // If it can be empty and it is, there is nothing left to do. ASSERT_TRUE(stl_validate(&mesh.stl)); bool do_update_shared_vertices = false; mesh.repair(do_update_shared_vertices); if (flags & ASSUME_NO_REPAIR) { ASSERT_FALSE(mesh.needed_repair()); } if (flags & ASSUME_MANIFOLD) { mesh.require_shared_vertices(); if (!mesh.is_manifold()) mesh.WriteOBJFile("non_manifold.obj"); ASSERT_TRUE(mesh.is_manifold()); } } struct PadByproducts { ExPolygons model_contours; ExPolygons support_contours; TriangleMesh mesh; }; void test_pad(const std::string & obj_filename, const sla::PadConfig &padcfg, PadByproducts & out) { ASSERT_TRUE(padcfg.validate().empty()); TriangleMesh mesh = load_model(obj_filename); ASSERT_FALSE(mesh.empty()); // Create pad skeleton only from the model Slic3r::sla::pad_blueprint(mesh, out.model_contours); ASSERT_FALSE(out.model_contours.empty()); // Create the pad geometry the model contours only Slic3r::sla::create_pad({}, out.model_contours, out.mesh, padcfg); check_validity(out.mesh); auto bb = out.mesh.bounding_box(); ASSERT_DOUBLE_EQ(bb.max.z() - bb.min.z(), padcfg.full_height()); } void test_pad(const std::string & obj_filename, const sla::PadConfig &padcfg = {}) { PadByproducts byproducts; test_pad(obj_filename, padcfg, byproducts); } struct SupportByproducts { std::vector slicegrid; std::vector model_slices; sla::SupportTreeBuilder supporttree; }; const constexpr float CLOSING_RADIUS = 0.005f; void check_support_tree_integrity(const sla::SupportTreeBuilder &stree, const sla::SupportConfig &cfg) { double gnd = stree.ground_level; double H1 = cfg.max_solo_pillar_height_mm; double H2 = cfg.max_dual_pillar_height_mm; for (const sla::Pillar &pillar : stree.pillars()) { if (std::abs(pillar.endpoint().z() - gnd) < EPSILON) { double h = pillar.height; if (h > H1) ASSERT_GE(pillar.links, 1); else if(h > H2) { ASSERT_GE(pillar.links, 2); } } ASSERT_LE(pillar.links, cfg.pillar_cascade_neighbors); ASSERT_LE(pillar.bridges, cfg.max_bridges_on_pillar); } double max_bridgelen = 0.; auto chck_bridge = [&cfg](const sla::Bridge &bridge, double &max_brlen) { Vec3d n = bridge.endp - bridge.startp; double d = sla::distance(n); max_brlen = std::max(d, max_brlen); double z = n.z(); double polar = std::acos(z / d); double slope = -polar + PI / 2.; ASSERT_TRUE(slope >= cfg.bridge_slope || slope <= -cfg.bridge_slope); }; for (auto &bridge : stree.bridges()) chck_bridge(bridge, max_bridgelen); ASSERT_LE(max_bridgelen, cfg.max_bridge_length_mm); max_bridgelen = 0; for (auto &bridge : stree.crossbridges()) chck_bridge(bridge, max_bridgelen); double md = cfg.max_pillar_link_distance_mm / std::cos(-cfg.bridge_slope); ASSERT_LE(max_bridgelen, md); } void test_supports(const std::string & obj_filename, const sla::SupportConfig &supportcfg, SupportByproducts & out) { using namespace Slic3r; TriangleMesh mesh = load_model(obj_filename); ASSERT_FALSE(mesh.empty()); TriangleMeshSlicer slicer{&mesh}; auto bb = mesh.bounding_box(); double zmin = bb.min.z(); double zmax = bb.max.z(); double gnd = zmin - supportcfg.object_elevation_mm; auto layer_h = 0.05f; out.slicegrid = grid(float(gnd), float(zmax), layer_h); slicer.slice(out.slicegrid , CLOSING_RADIUS, &out.model_slices, []{}); // Create the special index-triangle mesh with spatial indexing which // is the input of the support point and support mesh generators sla::EigenMesh3D emesh{mesh}; // Create the support point generator sla::SLAAutoSupports::Config autogencfg; autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm); sla::SLAAutoSupports point_gen{emesh, out.model_slices, out.slicegrid, autogencfg, [] {}, [](int) {}}; // Get the calculated support points. std::vector support_points = point_gen.output(); int validityflags = ASSUME_NO_REPAIR; // If there is no elevation, support points shall be removed from the // bottom of the object. if (supportcfg.object_elevation_mm < EPSILON) { sla::remove_bottom_points(support_points, zmin, supportcfg.base_height_mm); } else { // Should be support points at least on the bottom of the model ASSERT_FALSE(support_points.empty()); // Also the support mesh should not be empty. validityflags |= ASSUME_NO_EMPTY; } // Generate the actual support tree sla::SupportTreeBuilder treebuilder; treebuilder.build(sla::SupportableMesh{emesh, support_points, supportcfg}); check_support_tree_integrity(treebuilder, supportcfg); const TriangleMesh &output_mesh = treebuilder.retrieve_mesh(); check_validity(output_mesh, validityflags); // Quick check if the dimensions and placement of supports are correct auto obb = output_mesh.bounding_box(); ASSERT_DOUBLE_EQ(obb.min.z(), zmin - supportcfg.object_elevation_mm); ASSERT_LE(obb.max.z(), zmax); // Move out the support tree into the byproducts, we can examine it further // in various tests. out.supporttree = std::move(treebuilder); } void test_supports(const std::string & obj_filename, const sla::SupportConfig &supportcfg = {}) { SupportByproducts byproducts; test_supports(obj_filename, supportcfg, byproducts); } void test_support_model_collision( const std::string & obj_filename, const sla::SupportConfig &input_supportcfg = {}) { SupportByproducts byproducts; sla::SupportConfig supportcfg = input_supportcfg; // Set head penetration to a small negative value which should ensure that // the supports will not touch the model body. supportcfg.head_penetration_mm = -0.1; test_supports(obj_filename, supportcfg, byproducts); // Slice the support mesh given the slice grid of the model. std::vector support_slices = byproducts.supporttree.slice(byproducts.slicegrid, CLOSING_RADIUS); // The slices originate from the same slice grid so the numbers must match ASSERT_EQ(support_slices.size(), byproducts.model_slices.size()); bool notouch = true; for (size_t n = 0; notouch && n < support_slices.size(); ++n) { const ExPolygons &sup_slice = support_slices[n]; const ExPolygons &mod_slice = byproducts.model_slices[n]; Polygons intersections = intersection(sup_slice, mod_slice); notouch = notouch && intersections.empty(); } ASSERT_TRUE(notouch); } const char * const BELOW_PAD_TEST_OBJECTS[] = { "20mm_cube.obj", "V.obj", }; const char * const AROUND_PAD_TEST_OBJECTS[] = { "20mm_cube.obj", "V.obj", "frog_legs.obj", "cube_with_concave_hole_enlarged.obj", }; const char *const SUPPORT_TEST_MODELS[] = { "cube_with_concave_hole_enlarged_standing.obj", }; } // namespace template void test_pairhash() { std::map > ints; for (I i = 0; i < 1000; ++i) for (I j = 0; j < 1000; ++j) { if (j != i) { II hash_ij = sla::pairhash(i, j); II hash_ji = sla::pairhash(j, i); ASSERT_EQ(hash_ij, hash_ji); auto it = ints.find(hash_ij); if (it != ints.end()) { ASSERT_TRUE( (it->second.first == i && it->second.second == j) || (it->second.first == j && it->second.second == i)); } else ints[hash_ij] = std::make_pair(i, j); } } } TEST(SLASupportGeneration, PillarPairHashShouldBeUnique) { test_pairhash(); test_pairhash(); test_pairhash(); } TEST(SLASupportGeneration, FlatPadGeometryIsValid) { sla::PadConfig padcfg; // Disable wings padcfg.wall_height_mm = .0; for (auto &fname : BELOW_PAD_TEST_OBJECTS) test_pad(fname, padcfg); } TEST(SLASupportGeneration, WingedPadGeometryIsValid) { sla::PadConfig padcfg; // Add some wings to the pad to test the cavity padcfg.wall_height_mm = 1.; for (auto &fname : BELOW_PAD_TEST_OBJECTS) test_pad(fname, padcfg); } TEST(SLASupportGeneration, FlatPadAroundObjectIsValid) { sla::PadConfig padcfg; // Add some wings to the pad to test the cavity padcfg.wall_height_mm = 0.; // padcfg.embed_object.stick_stride_mm = 0.; padcfg.embed_object.enabled = true; padcfg.embed_object.everywhere = true; for (auto &fname : AROUND_PAD_TEST_OBJECTS) test_pad(fname, padcfg); } TEST(SLASupportGeneration, WingedPadAroundObjectIsValid) { sla::PadConfig padcfg; // Add some wings to the pad to test the cavity padcfg.wall_height_mm = 1.; padcfg.embed_object.enabled = true; padcfg.embed_object.everywhere = true; for (auto &fname : AROUND_PAD_TEST_OBJECTS) test_pad(fname, padcfg); } TEST(SLASupportGeneration, ElevatedSupportGeometryIsValid) { sla::SupportConfig supportcfg; supportcfg.object_elevation_mm = 5.; for (auto fname : SUPPORT_TEST_MODELS) test_supports(fname); } TEST(SLASupportGeneration, FloorSupportGeometryIsValid) { sla::SupportConfig supportcfg; supportcfg.object_elevation_mm = 0; for (auto &fname: SUPPORT_TEST_MODELS) test_supports(fname, supportcfg); } TEST(SLASupportGeneration, SupportsDoNotPierceModel) { sla::SupportConfig supportcfg; for (auto fname : SUPPORT_TEST_MODELS) test_support_model_collision(fname, supportcfg); } int main(int argc, char **argv) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }