// version 120 is needed for gl_PointCoord #version 120 #define INTENSITY_CORRECTION 0.6 // normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31) const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) #define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) #define LIGHT_TOP_SHININESS 20.0 // normalized values for (1./1.43, 0.2/1.43, 1./1.43) const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); #define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) #define INTENSITY_AMBIENT 0.3 uniform vec3 uniform_color; uniform ivec4 viewport; uniform float point_size; uniform mat4 inv_proj_matrix; varying vec3 eye_center; // x = tainted, y = specular; vec2 intensity; float radius = 0.5 * point_size; vec3 eye_position_from_fragment() { // Convert screen coordinates to normalized device coordinates (NDC) vec4 ndc = vec4((gl_FragCoord.x / viewport.z - 0.5) * 2.0, (gl_FragCoord.y / viewport.w - 0.5) * 2.0, (gl_FragCoord.z - 0.5) * 2.0, gl_FragCoord.w); // Convert NDC throuch inverse clip coordinates to view coordinates vec4 clip = inv_proj_matrix * ndc; return clip.xyz; } vec3 eye_position_on_sphere(vec3 eye_fragment_position) { vec3 eye_dir = normalize(eye_fragment_position); float a = dot(eye_dir, eye_dir); float b = 2.0 * dot(-eye_center, eye_dir); float c = dot(eye_center, eye_center) - radius * radius; float discriminant = b * b - 4 * a * c; float t = -(b + sqrt(discriminant)) / (2.0 * a); return t * eye_dir; } vec4 on_sphere_color(vec3 eye_on_sphere_position) { vec3 eye_normal = normalize(eye_on_sphere_position - eye_center); // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0); intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_on_sphere_position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS); // Perform the same lighting calculation for the 2nd light source (no specular applied). NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0); intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; return vec4(intensity + uniform_color.rgb * intensity.x, 1.0); // return vec4(vec3(intensity.y) + uniform_color.rgb * intensity.x, 1.0); } float fragment_depth(vec3 eye_pos) { vec4 clip_pos = gl_ProjectionMatrix * vec4(eye_pos, 1.0); float ndc_depth = clip_pos.z / clip_pos.w; return ((gl_DepthRange.far - gl_DepthRange.near) * ndc_depth + gl_DepthRange.near + gl_DepthRange.far) / 2.0; } void main() { vec2 pos = (gl_PointCoord - 0.5) * 2.0; float radius = length(pos); if (radius > 1.0) discard; vec3 eye_on_sphere_position = eye_position_on_sphere(eye_position_from_fragment()); gl_FragDepth = fragment_depth(eye_on_sphere_position); gl_FragColor = on_sphere_color(eye_on_sphere_position); }