#ifndef slic3r_Point_hpp_ #define slic3r_Point_hpp_ #include "libslic3r.h" #include #include #include #include #include #include #include namespace Slic3r { class BoundingBox; class Line; class MultiPoint; class Point; using Vector = Point; // Eigen types, to replace the Slic3r's own types in the future. // Vector types with a fixed point coordinate base type. using Vec2crd = Eigen::Matrix; using Vec3crd = Eigen::Matrix; using Vec2i = Eigen::Matrix; using Vec3i = Eigen::Matrix; using Vec2i32 = Eigen::Matrix; using Vec2i64 = Eigen::Matrix; using Vec3i32 = Eigen::Matrix; using Vec3i64 = Eigen::Matrix; // Vector types with a double coordinate base type. using Vec2f = Eigen::Matrix; using Vec3f = Eigen::Matrix; using Vec2d = Eigen::Matrix; using Vec3d = Eigen::Matrix; using Points = std::vector; using PointPtrs = std::vector; using PointConstPtrs = std::vector; using Points3 = std::vector; using Pointfs = std::vector; using Vec2ds = std::vector; using Pointf3s = std::vector; using Matrix2f = Eigen::Matrix; using Matrix2d = Eigen::Matrix; using Matrix3f = Eigen::Matrix; using Matrix3d = Eigen::Matrix; using Transform2f = Eigen::Transform; using Transform2d = Eigen::Transform; using Transform3f = Eigen::Transform; using Transform3d = Eigen::Transform; inline bool operator<(const Vec2d &lhs, const Vec2d &rhs) { return lhs(0) < rhs(0) || (lhs(0) == rhs(0) && lhs(1) < rhs(1)); } template int32_t cross2(const Eigen::MatrixBase> &v1, const Eigen::MatrixBase> &v2) = delete; template inline T cross2(const Eigen::MatrixBase> &v1, const Eigen::MatrixBase> &v2) { return v1(0) * v2(1) - v1(1) * v2(0); } template inline typename Derived::Scalar cross2(const Eigen::MatrixBase &v1, const Eigen::MatrixBase &v2) { static_assert(std::is_same::value, "cross2(): Scalar types of 1st and 2nd operand must be equal."); return v1(0) * v2(1) - v1(1) * v2(0); } template inline Eigen::Matrix perp(const Eigen::MatrixBase> &v) { return Eigen::Matrix(- v.y(), v.x()); } template Eigen::Matrix to_2d(const Eigen::MatrixBase> &ptN) { return { ptN(0), ptN(1) }; } template Eigen::Matrix to_3d(const Eigen::MatrixBase> & pt, const T z) { return { pt(0), pt(1), z }; } inline Vec2d unscale(coord_t x, coord_t y) { return Vec2d(unscale(x), unscale(y)); } inline Vec2d unscale(const Vec2crd &pt) { return Vec2d(unscale(pt(0)), unscale(pt(1))); } inline Vec2d unscale(const Vec2d &pt) { return Vec2d(unscale(pt(0)), unscale(pt(1))); } inline Vec3d unscale(coord_t x, coord_t y, coord_t z) { return Vec3d(unscale(x), unscale(y), unscale(z)); } inline Vec3d unscale(const Vec3crd &pt) { return Vec3d(unscale(pt(0)), unscale(pt(1)), unscale(pt(2))); } inline Vec3d unscale(const Vec3d &pt) { return Vec3d(unscale(pt(0)), unscale(pt(1)), unscale(pt(2))); } inline std::string to_string(const Vec2crd &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + "]"; } inline std::string to_string(const Vec2d &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + "]"; } inline std::string to_string(const Vec3crd &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + ", " + std::to_string(pt(2)) + "]"; } inline std::string to_string(const Vec3d &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + ", " + std::to_string(pt(2)) + "]"; } std::vector transform(const std::vector& points, const Transform3f& t); Pointf3s transform(const Pointf3s& points, const Transform3d& t); template using Vec = Eigen::Matrix; class Point : public Vec2crd { public: using coord_type = coord_t; Point() : Vec2crd(0, 0) {} Point(int32_t x, int32_t y) : Vec2crd(coord_t(x), coord_t(y)) {} Point(int64_t x, int64_t y) : Vec2crd(coord_t(x), coord_t(y)) {} Point(double x, double y) : Vec2crd(coord_t(lrint(x)), coord_t(lrint(y))) {} Point(const Point &rhs) { *this = rhs; } explicit Point(const Vec2d& rhs) : Vec2crd(coord_t(lrint(rhs.x())), coord_t(lrint(rhs.y()))) {} // This constructor allows you to construct Point from Eigen expressions template Point(const Eigen::MatrixBase &other) : Vec2crd(other) {} static Point new_scale(coordf_t x, coordf_t y) { return Point(coord_t(scale_(x)), coord_t(scale_(y))); } static Point new_scale(const Vec2d &v) { return Point(coord_t(scale_(v.x())), coord_t(scale_(v.y()))); } // This method allows you to assign Eigen expressions to MyVectorType template Point& operator=(const Eigen::MatrixBase &other) { this->Vec2crd::operator=(other); return *this; } bool operator< (const Point& rhs) const { return (*this)(0) < rhs(0) || ((*this)(0) == rhs(0) && (*this)(1) < rhs(1)); } Point& operator+=(const Point& rhs) { (*this)(0) += rhs(0); (*this)(1) += rhs(1); return *this; } Point& operator-=(const Point& rhs) { (*this)(0) -= rhs(0); (*this)(1) -= rhs(1); return *this; } Point& operator*=(const double &rhs) { (*this)(0) = coord_t((*this)(0) * rhs); (*this)(1) = coord_t((*this)(1) * rhs); return *this; } Point operator*(const double &rhs) { return Point((*this)(0) * rhs, (*this)(1) * rhs); } void rotate(double angle) { this->rotate(std::cos(angle), std::sin(angle)); } void rotate(double cos_a, double sin_a) { double cur_x = (double)(*this)(0); double cur_y = (double)(*this)(1); (*this)(0) = (coord_t)round(cos_a * cur_x - sin_a * cur_y); (*this)(1) = (coord_t)round(cos_a * cur_y + sin_a * cur_x); } void rotate(double angle, const Point ¢er); Point rotated(double angle) const { Point res(*this); res.rotate(angle); return res; } Point rotated(double cos_a, double sin_a) const { Point res(*this); res.rotate(cos_a, sin_a); return res; } Point rotated(double angle, const Point ¢er) const { Point res(*this); res.rotate(angle, center); return res; } int nearest_point_index(const Points &points) const; int nearest_point_index(const PointConstPtrs &points) const; int nearest_point_index(const PointPtrs &points) const; bool nearest_point(const Points &points, Point* point) const; double ccw(const Point &p1, const Point &p2) const; double ccw(const Line &line) const; double ccw_angle(const Point &p1, const Point &p2) const; Point projection_onto(const MultiPoint &poly) const; Point projection_onto(const Line &line) const; }; inline bool is_approx(const Point &p1, const Point &p2, coord_t epsilon = coord_t(SCALED_EPSILON)) { Point d = (p2 - p1).cwiseAbs(); return d.x() < epsilon && d.y() < epsilon; } inline bool is_approx(const Vec2f &p1, const Vec2f &p2, float epsilon = float(EPSILON)) { Vec2f d = (p2 - p1).cwiseAbs(); return d.x() < epsilon && d.y() < epsilon; } inline bool is_approx(const Vec2d &p1, const Vec2d &p2, double epsilon = EPSILON) { Vec2d d = (p2 - p1).cwiseAbs(); return d.x() < epsilon && d.y() < epsilon; } inline bool is_approx(const Vec3f &p1, const Vec3f &p2, float epsilon = float(EPSILON)) { Vec3f d = (p2 - p1).cwiseAbs(); return d.x() < epsilon && d.y() < epsilon && d.z() < epsilon; } inline bool is_approx(const Vec3d &p1, const Vec3d &p2, double epsilon = EPSILON) { Vec3d d = (p2 - p1).cwiseAbs(); return d.x() < epsilon && d.y() < epsilon && d.z() < epsilon; } inline Point lerp(const Point &a, const Point &b, double t) { assert((t >= -EPSILON) && (t <= 1. + EPSILON)); return ((1. - t) * a.cast() + t * b.cast()).cast(); } extern BoundingBox get_extents(const Points &pts); extern BoundingBox get_extents(const std::vector &pts); namespace int128 { // Exact orientation predicate, // returns +1: CCW, 0: collinear, -1: CW. int orient(const Vec2crd &p1, const Vec2crd &p2, const Vec2crd &p3); // Exact orientation predicate, // returns +1: CCW, 0: collinear, -1: CW. int cross(const Vec2crd &v1, const Vec2crd &v2); } // To be used by std::unordered_map, std::unordered_multimap and friends. struct PointHash { size_t operator()(const Vec2crd &pt) const { return std::hash()(pt(0)) ^ std::hash()(pt(1)); } }; // A generic class to search for a closest Point in a given radius. // It uses std::unordered_multimap to implement an efficient 2D spatial hashing. // The PointAccessor has to return const Point*. // If a nullptr is returned, it is ignored by the query. template class ClosestPointInRadiusLookup { public: ClosestPointInRadiusLookup(coord_t search_radius, PointAccessor point_accessor = PointAccessor()) : m_search_radius(search_radius), m_point_accessor(point_accessor), m_grid_log2(0) { // Resolution of a grid, twice the search radius + some epsilon. coord_t gridres = 2 * m_search_radius + 4; m_grid_resolution = gridres; assert(m_grid_resolution > 0); assert(m_grid_resolution < (coord_t(1) << 30)); // Compute m_grid_log2 = log2(m_grid_resolution) if (m_grid_resolution > 32767) { m_grid_resolution >>= 16; m_grid_log2 += 16; } if (m_grid_resolution > 127) { m_grid_resolution >>= 8; m_grid_log2 += 8; } if (m_grid_resolution > 7) { m_grid_resolution >>= 4; m_grid_log2 += 4; } if (m_grid_resolution > 1) { m_grid_resolution >>= 2; m_grid_log2 += 2; } if (m_grid_resolution > 0) ++ m_grid_log2; m_grid_resolution = 1 << m_grid_log2; assert(m_grid_resolution >= gridres); assert(gridres > m_grid_resolution / 2); } void insert(const ValueType &value) { const Vec2crd *pt = m_point_accessor(value); if (pt != nullptr) m_map.emplace(std::make_pair(Vec2crd(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), value)); } void insert(ValueType &&value) { const Vec2crd *pt = m_point_accessor(value); if (pt != nullptr) m_map.emplace(std::make_pair(Vec2crd(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), std::move(value))); } // Erase a data point equal to value. (ValueType has to declare the operator==). // Returns true if the data point equal to value was found and removed. bool erase(const ValueType &value) { const Point *pt = m_point_accessor(value); if (pt != nullptr) { // Range of fragment starts around grid_corner, close to pt. auto range = m_map.equal_range(Point((*pt)(0)>>m_grid_log2, (*pt)(1)>>m_grid_log2)); // Remove the first item. for (auto it = range.first; it != range.second; ++ it) { if (it->second == value) { m_map.erase(it); return true; } } } return false; } // Return a pair of std::pair find(const Vec2crd &pt) { // Iterate over 4 closest grid cells around pt, // find the closest start point inside these cells to pt. const ValueType *value_min = nullptr; double dist_min = std::numeric_limits::max(); // Round pt to a closest grid_cell corner. Vec2crd grid_corner((pt(0)+(m_grid_resolution>>1))>>m_grid_log2, (pt(1)+(m_grid_resolution>>1))>>m_grid_log2); // For four neighbors of grid_corner: for (coord_t neighbor_y = -1; neighbor_y < 1; ++ neighbor_y) { for (coord_t neighbor_x = -1; neighbor_x < 1; ++ neighbor_x) { // Range of fragment starts around grid_corner, close to pt. auto range = m_map.equal_range(Vec2crd(grid_corner(0) + neighbor_x, grid_corner(1) + neighbor_y)); // Find the map entry closest to pt. for (auto it = range.first; it != range.second; ++it) { const ValueType &value = it->second; const Vec2crd *pt2 = m_point_accessor(value); if (pt2 != nullptr) { const double d2 = (pt - *pt2).cast().squaredNorm(); if (d2 < dist_min) { dist_min = d2; value_min = &value; } } } } } return (value_min != nullptr && dist_min < coordf_t(m_search_radius) * coordf_t(m_search_radius)) ? std::make_pair(value_min, dist_min) : std::make_pair(nullptr, std::numeric_limits::max()); } // Returns all pairs of values and squared distances. std::vector> find_all(const Vec2crd &pt) { // Iterate over 4 closest grid cells around pt, // Round pt to a closest grid_cell corner. Vec2crd grid_corner((pt(0)+(m_grid_resolution>>1))>>m_grid_log2, (pt(1)+(m_grid_resolution>>1))>>m_grid_log2); // For four neighbors of grid_corner: std::vector> out; const double r2 = double(m_search_radius) * m_search_radius; for (coord_t neighbor_y = -1; neighbor_y < 1; ++ neighbor_y) { for (coord_t neighbor_x = -1; neighbor_x < 1; ++ neighbor_x) { // Range of fragment starts around grid_corner, close to pt. auto range = m_map.equal_range(Vec2crd(grid_corner(0) + neighbor_x, grid_corner(1) + neighbor_y)); // Find the map entry closest to pt. for (auto it = range.first; it != range.second; ++it) { const ValueType &value = it->second; const Vec2crd *pt2 = m_point_accessor(value); if (pt2 != nullptr) { const double d2 = (pt - *pt2).cast().squaredNorm(); if (d2 <= r2) out.emplace_back(&value, d2); } } } } return out; } private: using map_type = typename std::unordered_multimap; PointAccessor m_point_accessor; map_type m_map; coord_t m_search_radius; coord_t m_grid_resolution; coord_t m_grid_log2; }; std::ostream& operator<<(std::ostream &stm, const Vec2d &pointf); // ///////////////////////////////////////////////////////////////////////////// // Type safe conversions to and from scaled and unscaled coordinates // ///////////////////////////////////////////////////////////////////////////// // Semantics are the following: // Upscaling (scaled()): only from floating point types (or Vec) to either // floating point or integer 'scaled coord' coordinates. // Downscaling (unscaled()): from arithmetic (or Vec) to floating point only // Conversion definition from unscaled to floating point scaled template> inline constexpr FloatingOnly scaled(const Tin &v) noexcept { return Tout(v / Tin(SCALING_FACTOR)); } // Conversion definition from unscaled to integer 'scaled coord'. // TODO: is the rounding necessary? Here it is commented out to show that // it can be different for integers but it does not have to be. Using // std::round means loosing noexcept and constexpr modifiers template> inline constexpr ScaledCoordOnly scaled(const Tin &v) noexcept { //return static_cast(std::round(v / SCALING_FACTOR)); return Tout(v / Tin(SCALING_FACTOR)); } // Conversion for Eigen vectors (N dimensional points) template, int...EigenArgs> inline Eigen::Matrix, N, EigenArgs...> scaled(const Eigen::Matrix &v) { return (v / SCALING_FACTOR).template cast(); } // Conversion from arithmetic scaled type to floating point unscaled template, class = FloatingOnly> inline constexpr Tout unscaled(const Tin &v) noexcept { return Tout(v * Tout(SCALING_FACTOR)); } // Unscaling for Eigen vectors. Input base type can be arithmetic, output base // type can only be floating point. template, class = FloatingOnly, int...EigenArgs> inline constexpr Eigen::Matrix unscaled(const Eigen::Matrix &v) noexcept { return v.template cast() * SCALING_FACTOR; } // Align a coordinate to a grid. The coordinate may be negative, // the aligned value will never be bigger than the original one. inline coord_t align_to_grid(const coord_t coord, const coord_t spacing) { // Current C++ standard defines the result of integer division to be rounded to zero, // for both positive and negative numbers. Here we want to round down for negative // numbers as well. coord_t aligned = (coord < 0) ? ((coord - spacing + 1) / spacing) * spacing : (coord / spacing) * spacing; assert(aligned <= coord); return aligned; } inline Point align_to_grid(Point coord, Point spacing) { return Point(align_to_grid(coord.x(), spacing.x()), align_to_grid(coord.y(), spacing.y())); } inline coord_t align_to_grid(coord_t coord, coord_t spacing, coord_t base) { return base + align_to_grid(coord - base, spacing); } inline Point align_to_grid(Point coord, Point spacing, Point base) { return Point(align_to_grid(coord.x(), spacing.x(), base.x()), align_to_grid(coord.y(), spacing.y(), base.y())); } } // namespace Slic3r // start Boost #include #include namespace boost { namespace polygon { template <> struct geometry_concept { using type = point_concept; }; template <> struct point_traits { using coordinate_type = coord_t; static inline coordinate_type get(const Slic3r::Point& point, orientation_2d orient) { return static_cast(point((orient == HORIZONTAL) ? 0 : 1)); } }; template <> struct point_mutable_traits { using coordinate_type = coord_t; static inline void set(Slic3r::Point& point, orientation_2d orient, coord_t value) { point((orient == HORIZONTAL) ? 0 : 1) = value; } static inline Slic3r::Point construct(coord_t x_value, coord_t y_value) { return Slic3r::Point(x_value, y_value); } }; } } // end Boost // Serialization through the Cereal library namespace cereal { // template void serialize(Archive& archive, Slic3r::Vec2crd &v) { archive(v.x(), v.y()); } // template void serialize(Archive& archive, Slic3r::Vec3crd &v) { archive(v.x(), v.y(), v.z()); } template void serialize(Archive& archive, Slic3r::Vec2i &v) { archive(v.x(), v.y()); } template void serialize(Archive& archive, Slic3r::Vec3i &v) { archive(v.x(), v.y(), v.z()); } // template void serialize(Archive& archive, Slic3r::Vec2i64 &v) { archive(v.x(), v.y()); } // template void serialize(Archive& archive, Slic3r::Vec3i64 &v) { archive(v.x(), v.y(), v.z()); } template void serialize(Archive& archive, Slic3r::Vec2f &v) { archive(v.x(), v.y()); } template void serialize(Archive& archive, Slic3r::Vec3f &v) { archive(v.x(), v.y(), v.z()); } template void serialize(Archive& archive, Slic3r::Vec2d &v) { archive(v.x(), v.y()); } template void serialize(Archive& archive, Slic3r::Vec3d &v) { archive(v.x(), v.y(), v.z()); } template void load(Archive& archive, Slic3r::Matrix2f &m) { archive.loadBinary((char*)m.data(), sizeof(float) * 4); } template void save(Archive& archive, Slic3r::Matrix2f &m) { archive.saveBinary((char*)m.data(), sizeof(float) * 4); } } #endif