package Slic3r::Geometry; use strict; use warnings; use XXX; use constant A => 0; use constant B => 1; use constant X => 0; use constant Y => 1; use constant epsilon => 1E-8; use constant epsilon2 => epsilon**2; sub slope { my ($line) = @_; return undef if abs($line->[B][X] - $line->[A][X]) < epsilon; # line is vertical return ($line->[B][Y] - $line->[A][Y]) / ($line->[B][X] - $line->[A][X]); } sub lines_parallel { my ($line1, $line2) = @_; my @slopes = map slope($_), $line1, $line2; return 1 if !defined $slopes[0] && !defined $slopes[1]; return 0 if grep !defined, @slopes; return 1 if abs($slopes[0] - $slopes[1]) < epsilon; return 0; } # this subroutine checks whether a given point may belong to a given # segment given the hypothesis that it belongs to the line containing # the segment sub line_point_belongs_to_segment { my ($point, $segment) = @_; #printf " checking whether %f,%f may belong to segment %f,%f - %f,%f\n", # @$point, map @$_, @$segment; my @segment_extents = ( [ sort { $a <=> $b } map $_->[X], @$segment ], [ sort { $a <=> $b } map $_->[Y], @$segment ], ); return 0 if $point->[X] < ($segment_extents[X][0] - epsilon) || $point->[X] > ($segment_extents[X][1] + epsilon); return 0 if $point->[Y] < ($segment_extents[Y][0] - epsilon) || $point->[Y] > ($segment_extents[Y][1] + epsilon); return 1; } sub points_coincide { my ($p1, $p2) = @_; return 1 if abs($p2->[X] - $p1->[X]) < epsilon && abs($p2->[Y] - $p1->[Y]) < epsilon; return 0; } sub distance_between_points { my ($p1, $p2) = @_; return sqrt(($p1->[X] - $p2->[X])**2 + ($p1->[Y] - $p2->[Y])**2); } sub point_in_polygon { my ($point, $polygon) = @_; my ($x, $y) = @$point; my @xy = map @$_, @$polygon; # Derived from the comp.graphics.algorithms FAQ, # courtesy of Wm. Randolph Franklin my $n = @xy / 2; # Number of points in polygon my @i = map { 2*$_ } 0..(@xy/2); # The even indices of @xy my @x = map { $xy[$_] } @i; # Even indices: x-coordinates my @y = map { $xy[$_ + 1] } @i; # Odd indices: y-coordinates my ($i, $j); my $side = 0; # 0 = outside; 1 = inside for ($i = 0, $j = $n - 1; $i < $n; $j = $i++) { if ( # If the y is between the (y-) borders... ($y[$i] <= $y && $y < $y[$j]) || ($y[$j] <= $y && $y < $y[$i]) and # ...the (x,y) to infinity line crosses the edge # from the ith point to the jth point... ($x < ($x[$j] - $x[$i]) * ($y - $y[$i]) / ($y[$j] - $y[$i]) + $x[$i]) ) { $side = not $side; # Jump the fence } } # if point is not in polygon, let's check whether it belongs to the contour if (!$side && 0) { foreach my $line (polygon_lines($polygon)) { # calculate the Y in line at X of the point if ($line->[A][X] == $line->[B][X]) { return 1 if abs($x - $line->[A][X]) < epsilon; next; } my $y3 = $line->[A][Y] + ($line->[B][Y] - $line->[A][Y]) * ($x - $line->[A][X]) / ($line->[B][X] - $line->[A][X]); return 1 if abs($y3 - $y) < epsilon2; } } return $side; } sub polygon_lines { my ($polygon) = @_; my @lines = (); my $last_point = $polygon->[-1]; foreach my $point (@$polygon) { push @lines, [ $last_point, $point ]; $last_point = $point; } return @lines; } sub nearest_point { my ($point, $points) = @_; my ($nearest_point, $distance); foreach my $p (@$points) { my $d = distance_between_points($point, $p); if (!defined $distance || $d < $distance) { $nearest_point = $p; $distance = $d; return $p if $distance < epsilon; } } return $nearest_point; } sub point_along_segment { my ($p1, $p2, $distance) = @_; my $point = [ @$p1 ]; my $line_length = sqrt( (($p2->[X] - $p1->[X])**2) + (($p2->[Y] - $p1->[Y])**2) ); for (X, Y) { if ($p1->[$_] != $p2->[$_]) { $point->[$_] = $p1->[$_] + ($p2->[$_] - $p1->[$_]) * $distance / $line_length; } } return $point; } 1;