#include "GLCanvas3D.hpp" #include "../../slic3r/GUI/3DScene.hpp" #include "../../slic3r/GUI/GLShader.hpp" #include "../../libslic3r/ClipperUtils.hpp" #include "../../libslic3r/PrintConfig.hpp" #include #include #include static const bool TURNTABLE_MODE = true; static const float GIMBALL_LOCK_THETA_MAX = 180.0f; static const float GROUND_Z = -0.02f; // phi / theta angles to orient the camera. static const float VIEW_DEFAULT[2] = { 45.0f, 45.0f }; static const float VIEW_LEFT[2] = { 90.0f, 90.0f }; static const float VIEW_RIGHT[2] = { -90.0f, 90.0f }; static const float VIEW_TOP[2] = { 0.0f, 0.0f }; static const float VIEW_BOTTOM[2] = { 0.0f, 180.0f }; static const float VIEW_FRONT[2] = { 0.0f, 90.0f }; static const float VIEW_REAR[2] = { 180.0f, 90.0f }; namespace Slic3r { namespace GUI { bool GeometryBuffer::set_from_triangles(const Polygons& triangles, float z) { m_data.clear(); unsigned int size = 9 * (unsigned int)triangles.size(); if (size == 0) return false; m_data = std::vector(size, 0.0f); unsigned int coord = 0; for (const Polygon& t : triangles) { for (unsigned int v = 0; v < 3; ++v) { const Point& p = t.points[v]; m_data[coord++] = (float)unscale(p.x); m_data[coord++] = (float)unscale(p.y); m_data[coord++] = z; } } return true; } bool GeometryBuffer::set_from_lines(const Lines& lines, float z) { m_data.clear(); unsigned int size = 6 * (unsigned int)lines.size(); if (size == 0) return false; m_data = std::vector(size, 0.0f); unsigned int coord = 0; for (const Line& l : lines) { m_data[coord++] = (float)unscale(l.a.x); m_data[coord++] = (float)unscale(l.a.y); m_data[coord++] = z; m_data[coord++] = (float)unscale(l.b.x); m_data[coord++] = (float)unscale(l.b.y); m_data[coord++] = z; } return true; } const float* GeometryBuffer::get_data() const { return m_data.data(); } unsigned int GeometryBuffer::get_data_size() const { return (unsigned int)m_data.size(); } GLCanvas3D::Camera::Camera() : m_type(CT_Ortho) , m_zoom(1.0f) , m_phi(45.0f) , m_theta(45.0f) , m_distance(0.0f) , m_target(0.0, 0.0, 0.0) { } GLCanvas3D::Camera::EType GLCanvas3D::Camera::get_type() const { return m_type; } void GLCanvas3D::Camera::set_type(GLCanvas3D::Camera::EType type) { m_type = type; } std::string GLCanvas3D::Camera::get_type_as_string() const { switch (m_type) { default: case CT_Unknown: return "unknown"; case CT_Perspective: return "perspective"; case CT_Ortho: return "ortho"; }; } float GLCanvas3D::Camera::get_zoom() const { return m_zoom; } void GLCanvas3D::Camera::set_zoom(float zoom) { m_zoom = zoom; } float GLCanvas3D::Camera::get_phi() const { return m_phi; } void GLCanvas3D::Camera::set_phi(float phi) { m_phi = phi; } float GLCanvas3D::Camera::get_theta() const { return m_theta; } void GLCanvas3D::Camera::set_theta(float theta) { m_theta = theta; // clamp angle if (m_theta > GIMBALL_LOCK_THETA_MAX) m_theta = GIMBALL_LOCK_THETA_MAX; if (m_theta < 0.0f) m_theta = 0.0f; } float GLCanvas3D::Camera::get_distance() const { return m_distance; } void GLCanvas3D::Camera::set_distance(float distance) { m_distance = distance; } const Pointf3& GLCanvas3D::Camera::get_target() const { return m_target; } void GLCanvas3D::Camera::set_target(const Pointf3& target) { m_target = target; } const Pointfs& GLCanvas3D::Bed::get_shape() const { return m_shape; } void GLCanvas3D::Bed::set_shape(const Pointfs& shape) { m_shape = shape; _calc_bounding_box(); ExPolygon poly; for (const Pointf& p : m_shape) { poly.contour.append(Point(scale_(p.x), scale_(p.y))); } _calc_triangles(poly); const BoundingBox& bed_bbox = poly.contour.bounding_box(); _calc_gridlines(poly, bed_bbox); m_polygon = offset_ex(poly.contour, bed_bbox.radius() * 1.7, jtRound, scale_(0.5))[0].contour; } const BoundingBoxf3& GLCanvas3D::Bed::get_bounding_box() const { return m_bounding_box; } void GLCanvas3D::Bed::render() const { unsigned int triangles_vcount = m_triangles.get_data_size() / 3; if (triangles_vcount > 0) { ::glDisable(GL_LIGHTING); ::glDisable(GL_DEPTH_TEST); ::glEnable(GL_BLEND); ::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); ::glEnableClientState(GL_VERTEX_ARRAY); ::glColor4f(0.8f, 0.6f, 0.5f, 0.4f); ::glNormal3d(0.0f, 0.0f, 1.0f); ::glVertexPointer(3, GL_FLOAT, 0, (GLvoid*)m_triangles.get_data()); ::glDrawArrays(GL_TRIANGLES, 0, (GLsizei)triangles_vcount); // we need depth test for grid, otherwise it would disappear when looking // the object from below glEnable(GL_DEPTH_TEST); // draw grid unsigned int gridlines_vcount = m_gridlines.get_data_size() / 3; ::glLineWidth(3.0f); ::glColor4f(0.2f, 0.2f, 0.2f, 0.4f); ::glVertexPointer(3, GL_FLOAT, 0, (GLvoid*)m_gridlines.get_data()); ::glDrawArrays(GL_LINES, 0, (GLsizei)gridlines_vcount); ::glDisableClientState(GL_VERTEX_ARRAY); ::glDisable(GL_BLEND); } } void GLCanvas3D::Bed::_calc_bounding_box() { m_bounding_box = BoundingBoxf3(); for (const Pointf& p : m_shape) { m_bounding_box.merge(Pointf3(p.x, p.y, 0.0)); } } void GLCanvas3D::Bed::_calc_triangles(const ExPolygon& poly) { Polygons triangles; poly.triangulate(&triangles); if (!m_triangles.set_from_triangles(triangles, GROUND_Z)) printf("Unable to create bed triangles\n"); } void GLCanvas3D::Bed::_calc_gridlines(const ExPolygon& poly, const BoundingBox& bed_bbox) { Polylines axes_lines; for (coord_t x = bed_bbox.min.x; x <= bed_bbox.max.x; x += scale_(10.0)) { Polyline line; line.append(Point(x, bed_bbox.min.y)); line.append(Point(x, bed_bbox.max.y)); axes_lines.push_back(line); } for (coord_t y = bed_bbox.min.y; y <= bed_bbox.max.y; y += scale_(10.0)) { Polyline line; line.append(Point(bed_bbox.min.x, y)); line.append(Point(bed_bbox.max.x, y)); axes_lines.push_back(line); } // clip with a slightly grown expolygon because our lines lay on the contours and may get erroneously clipped Lines gridlines = to_lines(intersection_pl(axes_lines, offset(poly, SCALED_EPSILON))); // append bed contours Lines contour_lines = to_lines(poly); std::copy(contour_lines.begin(), contour_lines.end(), std::back_inserter(gridlines)); if (!m_gridlines.set_from_lines(gridlines, GROUND_Z)) printf("Unable to create bed grid lines\n"); } GLCanvas3D::Axes::Axes() : m_length(0.0f) { } const Pointf3& GLCanvas3D::Axes::get_origin() const { return m_origin; } void GLCanvas3D::Axes::set_origin(const Pointf3& origin) { m_origin = origin; } float GLCanvas3D::Axes::get_length() const { return m_length; } void GLCanvas3D::Axes::set_length(float length) { m_length = length; } void GLCanvas3D::Axes::render() const { ::glDisable(GL_LIGHTING); // disable depth testing so that axes are not covered by ground ::glDisable(GL_DEPTH_TEST); ::glLineWidth(2.0f); ::glBegin(GL_LINES); // draw line for x axis ::glColor3f(1.0f, 0.0f, 0.0f); ::glVertex3f((float)m_origin.x, (float)m_origin.y, (float)m_origin.z); ::glVertex3f((float)m_origin.x + m_length, (float)m_origin.y, (float)m_origin.z); // draw line for y axis ::glColor3f(0.0f, 1.0f, 0.0f); ::glVertex3f((float)m_origin.x, (float)m_origin.y, (float)m_origin.z); ::glVertex3f((float)m_origin.x, (float)m_origin.y + m_length, (float)m_origin.z); ::glEnd(); // draw line for Z axis // (re-enable depth test so that axis is correctly shown when objects are behind it) ::glEnable(GL_DEPTH_TEST); ::glBegin(GL_LINES); ::glColor3f(0.0f, 0.0f, 1.0f); ::glVertex3f((float)m_origin.x, (float)m_origin.y, (float)m_origin.z); ::glVertex3f((float)m_origin.x, (float)m_origin.y, (float)m_origin.z + m_length); ::glEnd(); } GLCanvas3D::CuttingPlane::CuttingPlane() : m_z(-1.0f) { } bool GLCanvas3D::CuttingPlane::set(float z, const ExPolygons& polygons) { m_z = z; // grow slices in order to display them better ExPolygons expolygons = offset_ex(polygons, scale_(0.1)); Lines lines = to_lines(expolygons); return m_lines.set_from_lines(lines, m_z); } void GLCanvas3D::CuttingPlane::render(const BoundingBoxf3& bb) const { ::glDisable(GL_LIGHTING); _render_plane(bb); _render_contour(); } void GLCanvas3D::CuttingPlane::_render_plane(const BoundingBoxf3& bb) const { if (m_z >= 0.0f) { ::glDisable(GL_CULL_FACE); ::glEnable(GL_BLEND); ::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); float margin = 20.0f; float min_x = bb.min.x - margin; float max_x = bb.max.x + margin; float min_y = bb.min.y - margin; float max_y = bb.max.y + margin; ::glBegin(GL_QUADS); ::glColor4f(0.8f, 0.8f, 0.8f, 0.5f); ::glVertex3f(min_x, min_y, m_z); ::glVertex3f(max_x, min_y, m_z); ::glVertex3f(max_x, max_y, m_z); ::glVertex3f(min_x, max_y, m_z); ::glEnd(); ::glEnable(GL_CULL_FACE); ::glDisable(GL_BLEND); } } void GLCanvas3D::CuttingPlane::_render_contour() const { ::glEnableClientState(GL_VERTEX_ARRAY); if (m_z >= 0.0f) { unsigned int lines_vcount = m_lines.get_data_size() / 3; ::glLineWidth(2.0f); ::glColor3f(0.0f, 0.0f, 0.0f); ::glVertexPointer(3, GL_FLOAT, 0, (GLvoid*)m_lines.get_data()); ::glDrawArrays(GL_LINES, 0, (GLsizei)lines_vcount); } ::glDisableClientState(GL_VERTEX_ARRAY); } GLCanvas3D::LayersEditing::LayersEditing() : m_enabled(false) { } bool GLCanvas3D::LayersEditing::is_enabled() const { return m_enabled; } GLCanvas3D::Shader::Shader() : m_enabled(false) , m_shader(nullptr) { } bool GLCanvas3D::Shader::init(const std::string& vertex_shader_filename, const std::string& fragment_shader_filename) { m_shader = new GLShader(); if (m_shader != nullptr) { if (!m_shader->load_from_file(fragment_shader_filename.c_str(), vertex_shader_filename.c_str())) { std::cout << "Compilaton of path shader failed:" << std::endl; std::cout << m_shader->last_error << std::endl; reset(); return false; } } return true; } void GLCanvas3D::Shader::reset() { if (m_shader != nullptr) { delete m_shader; m_shader = nullptr; } } bool GLCanvas3D::Shader::is_enabled() const { return m_enabled; } void GLCanvas3D::Shader::set_enabled(bool enabled) { m_enabled = enabled; } bool GLCanvas3D::Shader::start() const { if (m_enabled && (m_shader != nullptr)) { m_shader->enable(); return true; } else return false; } void GLCanvas3D::Shader::stop() const { if (m_shader != nullptr) m_shader->disable(); } GLCanvas3D::Mouse::Mouse() : m_dragging(false) { } bool GLCanvas3D::Mouse::is_dragging() const { return m_dragging; } void GLCanvas3D::Mouse::set_dragging(bool dragging) { m_dragging = dragging; } const Pointf& GLCanvas3D::Mouse::get_position() const { return m_position; } void GLCanvas3D::Mouse::set_position(const Pointf& position) { m_position = position; } GLCanvas3D::GLCanvas3D(wxGLCanvas* canvas, wxGLContext* context) : m_canvas(canvas) , m_context(context) , m_volumes(nullptr) , m_config(nullptr) , m_dirty(true) , m_apply_zoom_to_volumes_filter(false) , m_hover_volume_id(-1) , m_warning_texture_enabled(false) , m_legend_texture_enabled(false) , m_picking_enabled(false) , m_multisample_allowed(false) { } GLCanvas3D::~GLCanvas3D() { _deregister_callbacks(); m_shader.reset(); } bool GLCanvas3D::init(bool useVBOs) { ::glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // ::glColor3f(1.0f, 0.0f, 0.0f); ::glEnable(GL_DEPTH_TEST); ::glClearDepth(1.0f); ::glDepthFunc(GL_LEQUAL); ::glEnable(GL_CULL_FACE); ::glEnable(GL_BLEND); ::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Set antialiasing / multisampling ::glDisable(GL_LINE_SMOOTH); ::glDisable(GL_POLYGON_SMOOTH); // ambient lighting GLfloat ambient[4] = { 0.3f, 0.3f, 0.3f, 1.0f }; ::glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambient); // ::glEnable(GL_LIGHTING); ::glEnable(GL_LIGHT0); ::glEnable(GL_LIGHT1); // light from camera GLfloat position[4] = { 1.0f, 0.0f, 1.0f, 0.0f }; ::glLightfv(GL_LIGHT1, GL_POSITION, position); GLfloat specular[4] = { 0.3f, 0.3f, 0.3f, 1.0f }; ::glLightfv(GL_LIGHT1, GL_SPECULAR, specular); GLfloat diffuse[4] = { 0.2f, 0.2f, 0.2f, 1.0f }; ::glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuse); // Enables Smooth Color Shading; try GL_FLAT for (lack of) fun. ::glShadeModel(GL_SMOOTH); // A handy trick -- have surface material mirror the color. ::glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE); ::glEnable(GL_COLOR_MATERIAL); if (is_multisample_allowed()) ::glEnable(GL_MULTISAMPLE); if (useVBOs && !m_shader.init("gouraud.vs", "gouraud.fs")) return false; return true; } bool GLCanvas3D::set_current() { if ((m_canvas != nullptr) && (m_context != nullptr)) { m_canvas->SetCurrent(*m_context); return true; } return false; } bool GLCanvas3D::is_dirty() const { return m_dirty; } void GLCanvas3D::set_dirty(bool dirty) { m_dirty = dirty; } bool GLCanvas3D::is_shown_on_screen() const { return (m_canvas != nullptr) ? m_canvas->IsShownOnScreen() : false; } void GLCanvas3D::resize(unsigned int w, unsigned int h) { if (m_context == nullptr) return; set_current(); ::glViewport(0, 0, w, h); ::glMatrixMode(GL_PROJECTION); ::glLoadIdentity(); BoundingBoxf3 bbox = max_bounding_box(); switch (get_camera_type()) { case Camera::CT_Ortho: { float w2 = w; float h2 = h; float two_zoom = 2.0f * get_camera_zoom(); if (two_zoom != 0.0f) { float inv_two_zoom = 1.0f / two_zoom; w2 *= inv_two_zoom; h2 *= inv_two_zoom; } // FIXME: calculate a tighter value for depth will improve z-fighting float depth = 5.0f * (float)bbox.max_size(); ::glOrtho(-w2, w2, -h2, h2, -depth, depth); break; } case Camera::CT_Perspective: { float bbox_r = (float)bbox.radius(); float fov = PI * 45.0f / 180.0f; float fov_tan = tan(0.5f * fov); float cam_distance = 0.5f * bbox_r / fov_tan; set_camera_distance(cam_distance); float nr = cam_distance - bbox_r * 1.1f; float fr = cam_distance + bbox_r * 1.1f; if (nr < 1.0f) nr = 1.0f; if (fr < nr + 1.0f) fr = nr + 1.0f; float h2 = fov_tan * nr; float w2 = h2 * w / h; ::glFrustum(-w2, w2, -h2, h2, nr, fr); break; } default: { throw std::runtime_error("Invalid camera type."); break; } } ::glMatrixMode(GL_MODELVIEW); set_dirty(false); } GLVolumeCollection* GLCanvas3D::get_volumes() { return m_volumes; } void GLCanvas3D::set_volumes(GLVolumeCollection* volumes) { m_volumes = volumes; } void GLCanvas3D::reset_volumes() { if (set_current() && (m_volumes != nullptr)) { m_volumes->release_geometry(); m_volumes->clear(); set_dirty(true); } } DynamicPrintConfig* GLCanvas3D::get_config() { return m_config; } void GLCanvas3D::set_config(DynamicPrintConfig* config) { m_config = config; } void GLCanvas3D::set_bed_shape(const Pointfs& shape) { m_bed.set_shape(shape); // Set the origin and size for painting of the coordinate system axes. set_axes_origin(Pointf3(0.0, 0.0, (coordf_t)GROUND_Z)); set_axes_length(0.3f * (float)bed_bounding_box().max_size()); } void GLCanvas3D::set_auto_bed_shape() { // draw a default square bed around object center const BoundingBoxf3& bbox = volumes_bounding_box(); coordf_t max_size = bbox.max_size(); const Pointf3& center = bbox.center(); Pointfs bed_shape; bed_shape.reserve(4); bed_shape.emplace_back(center.x - max_size, center.y - max_size); bed_shape.emplace_back(center.x + max_size, center.y - max_size); bed_shape.emplace_back(center.x + max_size, center.y + max_size); bed_shape.emplace_back(center.x - max_size, center.y + max_size); set_bed_shape(bed_shape); // Set the origin for painting of the coordinate system axes. set_axes_origin(Pointf3(center.x, center.y, (coordf_t)GROUND_Z)); } const Pointf3& GLCanvas3D::get_axes_origin() const { return m_axes.get_origin(); } void GLCanvas3D::set_axes_origin(const Pointf3& origin) { m_axes.set_origin(origin); } float GLCanvas3D::get_axes_length() const { return m_axes.get_length(); } void GLCanvas3D::set_axes_length(float length) { return m_axes.set_length(length); } void GLCanvas3D::set_cutting_plane(float z, const ExPolygons& polygons) { m_cutting_plane.set(z, polygons); } GLCanvas3D::Camera::EType GLCanvas3D::get_camera_type() const { return m_camera.get_type(); } void GLCanvas3D::set_camera_type(GLCanvas3D::Camera::EType type) { m_camera.set_type(type); } std::string GLCanvas3D::get_camera_type_as_string() const { return m_camera.get_type_as_string(); } float GLCanvas3D::get_camera_zoom() const { return m_camera.get_zoom(); } void GLCanvas3D::set_camera_zoom(float zoom) { m_camera.set_zoom(zoom); } float GLCanvas3D::get_camera_phi() const { return m_camera.get_phi(); } void GLCanvas3D::set_camera_phi(float phi) { m_camera.set_phi(phi); } float GLCanvas3D::get_camera_theta() const { return m_camera.get_theta(); } void GLCanvas3D::set_camera_theta(float theta) { m_camera.set_theta(theta); } float GLCanvas3D::get_camera_distance() const { return m_camera.get_distance(); } void GLCanvas3D::set_camera_distance(float distance) { m_camera.set_distance(distance); } const Pointf3& GLCanvas3D::get_camera_target() const { return m_camera.get_target(); } void GLCanvas3D::set_camera_target(const Pointf3& target) { m_camera.set_target(target); } BoundingBoxf3 GLCanvas3D::bed_bounding_box() const { return m_bed.get_bounding_box(); } BoundingBoxf3 GLCanvas3D::volumes_bounding_box() const { BoundingBoxf3 bb; if (m_volumes != nullptr) { for (const GLVolume* volume : m_volumes->volumes) { if (!m_apply_zoom_to_volumes_filter || ((volume != nullptr) && volume->zoom_to_volumes)) bb.merge(volume->transformed_bounding_box()); } } return bb; } BoundingBoxf3 GLCanvas3D::max_bounding_box() const { BoundingBoxf3 bb = bed_bounding_box(); bb.merge(volumes_bounding_box()); return bb; } bool GLCanvas3D::is_layers_editing_enabled() const { return m_layers_editing.is_enabled(); } bool GLCanvas3D::is_picking_enabled() const { return m_picking_enabled; } bool GLCanvas3D::is_shader_enabled() const { return m_shader.is_enabled(); } bool GLCanvas3D::is_multisample_allowed() const { return m_multisample_allowed; } void GLCanvas3D::enable_warning_texture(bool enable) { m_warning_texture_enabled = enable; } void GLCanvas3D::enable_legend_texture(bool enable) { m_legend_texture_enabled = enable; } void GLCanvas3D::enable_picking(bool enable) { m_picking_enabled = enable; } void GLCanvas3D::enable_shader(bool enable) { m_shader.set_enabled(enable); } void GLCanvas3D::allow_multisample(bool allow) { m_multisample_allowed = allow; } bool GLCanvas3D::is_mouse_dragging() const { return m_mouse.is_dragging(); } void GLCanvas3D::set_mouse_dragging(bool dragging) { m_mouse.set_dragging(dragging); } const Pointf& GLCanvas3D::get_mouse_position() const { return m_mouse.get_position(); } void GLCanvas3D::set_mouse_position(const Pointf& position) { m_mouse.set_position(position); } int GLCanvas3D::get_hover_volume_id() const { return m_hover_volume_id; } void GLCanvas3D::set_hover_volume_id(int id) { m_hover_volume_id = id; } void GLCanvas3D::zoom_to_bed() { _zoom_to_bounding_box(bed_bounding_box()); } void GLCanvas3D::zoom_to_volumes() { m_apply_zoom_to_volumes_filter = true; _zoom_to_bounding_box(volumes_bounding_box()); m_apply_zoom_to_volumes_filter = false; } void GLCanvas3D::select_view(const std::string& direction) { const float* dir_vec = nullptr; if (direction == "iso") dir_vec = VIEW_DEFAULT; else if (direction == "left") dir_vec = VIEW_LEFT; else if (direction == "right") dir_vec = VIEW_RIGHT; else if (direction == "top") dir_vec = VIEW_TOP; else if (direction == "bottom") dir_vec = VIEW_BOTTOM; else if (direction == "front") dir_vec = VIEW_FRONT; else if (direction == "rear") dir_vec = VIEW_REAR; if ((dir_vec != nullptr) && !empty(volumes_bounding_box())) { m_camera.set_phi(dir_vec[0]); m_camera.set_theta(dir_vec[1]); m_on_viewport_changed_callback.call(); if (m_canvas != nullptr) m_canvas->Refresh(); } } bool GLCanvas3D::start_using_shader() const { return m_shader.start(); } void GLCanvas3D::stop_using_shader() const { m_shader.stop(); } void GLCanvas3D::picking_pass() { if (is_picking_enabled() && !is_mouse_dragging() && (m_volumes != nullptr)) { const Pointf& pos = get_mouse_position(); // if (pos) { // Render the object for picking. // FIXME This cannot possibly work in a multi - sampled context as the color gets mangled by the anti - aliasing. // Better to use software ray - casting on a bounding - box hierarchy. if (is_multisample_allowed()) ::glDisable(GL_MULTISAMPLE); ::glDisable(GL_LIGHTING); ::glDisable(GL_BLEND); ::glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); ::glPushAttrib(GL_ENABLE_BIT); render_volumes(true); ::glPopAttrib(); if (is_multisample_allowed()) ::glEnable(GL_MULTISAMPLE); // ::glFlush(); const std::pair& cnv_size = _get_canvas_size(); GLubyte color[4]; ::glReadPixels(pos.x, cnv_size.second - pos.y, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, (void*)color); int volume_id = color[0] + color[1] * 256 + color[2] * 256 * 256; set_hover_volume_id(-1); for (GLVolume* vol : m_volumes->volumes) { vol->hover = false; } if (volume_id < m_volumes->volumes.size()) { set_hover_volume_id(volume_id); m_volumes->volumes[volume_id]->hover = true; int group_id = m_volumes->volumes[volume_id]->select_group_id; if (group_id != -1) { for (GLVolume* vol : m_volumes->volumes) { if (vol->select_group_id == group_id) vol->hover = true; } } } } // } } void GLCanvas3D::render_background() const { static const float COLOR[3] = { 10.0f / 255.0f, 98.0f / 255.0f, 144.0f / 255.0f }; ::glDisable(GL_LIGHTING); ::glPushMatrix(); ::glLoadIdentity(); ::glMatrixMode(GL_PROJECTION); ::glPushMatrix(); ::glLoadIdentity(); // Draws a bluish bottom to top gradient over the complete screen. ::glDisable(GL_DEPTH_TEST); ::glBegin(GL_QUADS); ::glColor3f(0.0f, 0.0f, 0.0f); ::glVertex3f(-1.0f, -1.0f, 1.0f); ::glVertex3f(1.0f, -1.0f, 1.0f); ::glColor3f(COLOR[0], COLOR[1], COLOR[2]); ::glVertex3f(1.0f, 1.0f, 1.0f); ::glVertex3f(-1.0f, 1.0f, 1.0f); ::glEnd(); ::glEnable(GL_DEPTH_TEST); ::glPopMatrix(); ::glMatrixMode(GL_MODELVIEW); ::glPopMatrix(); } void GLCanvas3D::render_bed() const { m_bed.render(); } void GLCanvas3D::render_axes() const { m_axes.render(); } void GLCanvas3D::render_volumes(bool fake_colors) const { static const float INV_255 = 1.0f / 255.0f; if (m_volumes == nullptr) return; if (fake_colors) ::glDisable(GL_LIGHTING); else ::glEnable(GL_LIGHTING); // do not cull backfaces to show broken geometry, if any ::glDisable(GL_CULL_FACE); ::glEnable(GL_BLEND); ::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); ::glEnableClientState(GL_VERTEX_ARRAY); ::glEnableClientState(GL_NORMAL_ARRAY); unsigned int volume_id = 0; for (GLVolume* vol : m_volumes->volumes) { if (fake_colors) { // Object picking mode. Render the object with a color encoding the object index. unsigned int r = (volume_id & 0x000000FF) >> 0; unsigned int g = (volume_id & 0x0000FF00) >> 8; unsigned int b = (volume_id & 0x00FF0000) >> 16; ::glColor4f((float)r * INV_255, (float)g * INV_255, (float)b * INV_255, 1.0f); } else { vol->set_render_color(); ::glColor4f(vol->render_color[0], vol->render_color[1], vol->render_color[2], vol->render_color[3]); } vol->render(); ++volume_id; } ::glDisableClientState(GL_NORMAL_ARRAY); ::glDisableClientState(GL_VERTEX_ARRAY); ::glDisable(GL_BLEND); ::glEnable(GL_CULL_FACE); } void GLCanvas3D::render_objects(bool useVBOs) { if (m_volumes == nullptr) return; ::glEnable(GL_LIGHTING); if (!is_shader_enabled()) render_volumes(false); else if (useVBOs) { if (is_picking_enabled()) { m_on_mark_volumes_for_layer_height_callback.call(); if (m_config != nullptr) { const BoundingBoxf3& bed_bb = bed_bounding_box(); m_volumes->set_print_box((float)bed_bb.min.x, (float)bed_bb.min.y, 0.0f, (float)bed_bb.max.x, (float)bed_bb.max.y, (float)m_config->opt_float("max_print_height")); m_volumes->check_outside_state(m_config); } // do not cull backfaces to show broken geometry, if any ::glDisable(GL_CULL_FACE); } start_using_shader(); m_volumes->render_VBOs(); stop_using_shader(); if (is_picking_enabled()) ::glEnable(GL_CULL_FACE); } else { // do not cull backfaces to show broken geometry, if any if (is_picking_enabled()) ::glDisable(GL_CULL_FACE); m_volumes->render_legacy(); if (is_picking_enabled()) ::glEnable(GL_CULL_FACE); } } void GLCanvas3D::render_cutting_plane() const { m_cutting_plane.render(volumes_bounding_box()); } void GLCanvas3D::render_warning_texture() const { if (!m_warning_texture_enabled) return; // If the warning texture has not been loaded into the GPU, do it now. unsigned int tex_id = _3DScene::finalize_warning_texture(); if (tex_id > 0) { unsigned int w = _3DScene::get_warning_texture_width(); unsigned int h = _3DScene::get_warning_texture_height(); if ((w > 0) && (h > 0)) { ::glDisable(GL_DEPTH_TEST); ::glPushMatrix(); ::glLoadIdentity(); const std::pair& cnv_size = _get_canvas_size(); float zoom = get_camera_zoom(); float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f; float l = (-0.5f * (float)w) * inv_zoom; float t = (-0.5f * (float)cnv_size.second + (float)h) * inv_zoom; float r = l + (float)w * inv_zoom; float b = t - (float)h * inv_zoom; render_texture(tex_id, l, r, b, t); ::glPopMatrix(); ::glEnable(GL_DEPTH_TEST); } } } void GLCanvas3D::render_legend_texture() const { if (!m_legend_texture_enabled) return; // If the legend texture has not been loaded into the GPU, do it now. unsigned int tex_id = _3DScene::finalize_legend_texture(); if (tex_id > 0) { unsigned int w = _3DScene::get_legend_texture_width(); unsigned int h = _3DScene::get_legend_texture_height(); if ((w > 0) && (h > 0)) { ::glDisable(GL_DEPTH_TEST); ::glPushMatrix(); ::glLoadIdentity(); const std::pair& cnv_size = _get_canvas_size(); float zoom = get_camera_zoom(); float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f; float l = (-0.5f * (float)cnv_size.first) * inv_zoom; float t = (0.5f * (float)cnv_size.second) * inv_zoom; float r = l + (float)w * inv_zoom; float b = t - (float)h * inv_zoom; render_texture(tex_id, l, r, b, t); ::glPopMatrix(); ::glEnable(GL_DEPTH_TEST); } } } void GLCanvas3D::render_texture(unsigned int tex_id, float left, float right, float bottom, float top) const { ::glColor4f(1.0f, 1.0f, 1.0f, 1.0f); ::glDisable(GL_LIGHTING); ::glEnable(GL_BLEND); ::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); ::glEnable(GL_TEXTURE_2D); ::glBindTexture(GL_TEXTURE_2D, (GLuint)tex_id); ::glBegin(GL_QUADS); ::glTexCoord2d(0.0f, 1.0f); glVertex3f(left, bottom, 0.0f); ::glTexCoord2d(1.0f, 1.0f); glVertex3f(right, bottom, 0.0f); ::glTexCoord2d(1.0f, 0.0f); glVertex3f(right, top, 0.0f); ::glTexCoord2d(0.0f, 0.0f); glVertex3f(left, top, 0.0f); ::glEnd(); ::glBindTexture(GL_TEXTURE_2D, 0); ::glDisable(GL_TEXTURE_2D); ::glDisable(GL_BLEND); ::glEnable(GL_LIGHTING); } void GLCanvas3D::register_on_viewport_changed_callback(void* callback) { if (callback != nullptr) m_on_viewport_changed_callback.register_callback(callback); } void GLCanvas3D::register_on_mark_volumes_for_layer_height_callback(void* callback) { if (callback != nullptr) m_on_mark_volumes_for_layer_height_callback.register_callback(callback); } void GLCanvas3D::on_size(wxSizeEvent& evt) { set_dirty(true); } void GLCanvas3D::on_idle(wxIdleEvent& evt) { if (!is_dirty() || !is_shown_on_screen()) return; if (m_canvas != nullptr) { const std::pair& cnv_size = _get_canvas_size(); resize((unsigned int)cnv_size.first, (unsigned int)cnv_size.second); m_canvas->Refresh(); } } void GLCanvas3D::on_char(wxKeyEvent& evt) { if (evt.HasModifiers()) evt.Skip(); else { int keyCode = evt.GetKeyCode(); switch (keyCode - 48) { // numerical input case 0: { select_view("iso"); break; } case 1: { select_view("top"); break; } case 2: { select_view("bottom"); break; } case 3: { select_view("front"); break; } case 4: { select_view("rear"); break; } case 5: { select_view("left"); break; } case 6: { select_view("right"); break; } default: { // text input switch (keyCode) { // key B/b case 66: case 98: { zoom_to_bed(); break; } // key Z/z case 90: case 122: { zoom_to_volumes(); break; } default: { evt.Skip(); break; } } } } } } void GLCanvas3D::_zoom_to_bounding_box(const BoundingBoxf3& bbox) { // Calculate the zoom factor needed to adjust viewport to bounding box. float zoom = _get_zoom_to_bounding_box_factor(bbox); if (zoom > 0.0f) { set_camera_zoom(zoom); // center view around bounding box center set_camera_target(bbox.center()); m_on_viewport_changed_callback.call(); if (is_shown_on_screen()) { const std::pair& cnv_size = _get_canvas_size(); resize((unsigned int)cnv_size.first, (unsigned int)cnv_size.second); if (m_canvas != nullptr) m_canvas->Refresh(); } } } std::pair GLCanvas3D::_get_canvas_size() const { std::pair ret(0, 0); if (m_canvas != nullptr) m_canvas->GetSize(&ret.first, &ret.second); return ret; } float GLCanvas3D::_get_zoom_to_bounding_box_factor(const BoundingBoxf3& bbox) const { float max_bb_size = bbox.max_size(); if (max_bb_size == 0.0f) return -1.0f; // project the bbox vertices on a plane perpendicular to the camera forward axis // then calculates the vertices coordinate on this plane along the camera xy axes // we need the view matrix, we let opengl calculate it(same as done in render sub) ::glMatrixMode(GL_MODELVIEW); ::glLoadIdentity(); if (TURNTABLE_MODE) { // Turntable mode is enabled by default. ::glRotatef(-get_camera_theta(), 1.0f, 0.0f, 0.0f); // pitch ::glRotatef(get_camera_phi(), 0.0f, 0.0f, 1.0f); // yaw } else { // Shift the perspective camera. Pointf3 camera_pos(0.0, 0.0, -(coordf_t)get_camera_distance()); ::glTranslatef((float)camera_pos.x, (float)camera_pos.y, (float)camera_pos.z); // my @rotmat = quat_to_rotmatrix($self->quat); <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< TEMPORARY COMMENTED OUT // glMultMatrixd_p(@rotmat[0..15]); <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< TEMPORARY COMMENTED OUT } const Pointf3& target = get_camera_target(); ::glTranslatef(-(float)target.x, -(float)target.y, -(float)target.z); // get the view matrix back from opengl GLfloat matrix[16]; ::glGetFloatv(GL_MODELVIEW_MATRIX, matrix); // camera axes Pointf3 right((coordf_t)matrix[0], (coordf_t)matrix[4], (coordf_t)matrix[8]); Pointf3 up((coordf_t)matrix[1], (coordf_t)matrix[5], (coordf_t)matrix[9]); Pointf3 forward((coordf_t)matrix[2], (coordf_t)matrix[6], (coordf_t)matrix[10]); Pointf3 bb_min = bbox.min; Pointf3 bb_max = bbox.max; Pointf3 bb_center = bbox.center(); // bbox vertices in world space std::vector vertices; vertices.reserve(8); vertices.push_back(bb_min); vertices.emplace_back(bb_max.x, bb_min.y, bb_min.z); vertices.emplace_back(bb_max.x, bb_max.y, bb_min.z); vertices.emplace_back(bb_min.x, bb_max.y, bb_min.z); vertices.emplace_back(bb_min.x, bb_min.y, bb_max.z); vertices.emplace_back(bb_max.x, bb_min.y, bb_max.z); vertices.push_back(bb_max); vertices.emplace_back(bb_min.x, bb_max.y, bb_max.z); coordf_t max_x = 0.0; coordf_t max_y = 0.0; // margin factor to give some empty space around the bbox coordf_t margin_factor = 1.25; for (const Pointf3 v : vertices) { // project vertex on the plane perpendicular to camera forward axis Pointf3 pos(v.x - bb_center.x, v.y - bb_center.y, v.z - bb_center.z); Pointf3 proj_on_plane = pos - dot(pos, forward) * forward; // calculates vertex coordinate along camera xy axes coordf_t x_on_plane = dot(proj_on_plane, right); coordf_t y_on_plane = dot(proj_on_plane, up); max_x = std::max(max_x, margin_factor * std::abs(x_on_plane)); max_y = std::max(max_y, margin_factor * std::abs(y_on_plane)); } if ((max_x == 0.0) || (max_y == 0.0)) return -1.0f; max_x *= 2.0; max_y *= 2.0; const std::pair& cnv_size = _get_canvas_size(); return (float)std::min((coordf_t)cnv_size.first / max_x, (coordf_t)cnv_size.second / max_y); } void GLCanvas3D::_deregister_callbacks() { m_on_viewport_changed_callback.deregister_callback(); m_on_mark_volumes_for_layer_height_callback.deregister_callback(); } } // namespace GUI } // namespace Slic3r