#include #include #include #include #include #include "../libslic3r.h" #include "../Model.hpp" #include "../GCode.hpp" #include "../PrintConfig.hpp" #include "../Utils.hpp" #include "AMF.hpp" #include #include #include #include #if 0 // Enable debugging and assert in this file. #define DEBUG #define _DEBUG #undef NDEBUG #endif #include // VERSION NUMBERS // 0 : .amf, .amf.xml and .zip.amf files saved by older slic3r. No version definition in them. // 1 : Introduction of amf versioning. No other change in data saved into amf files. // 2 : Added z component of offset // Added x and y components of rotation // Added x, y and z components of scale #if ENABLE_MIRROR // Added x, y and z components of mirror #endif // ENABLE_MIRROR const unsigned int VERSION_AMF = 2; const char* SLIC3RPE_AMF_VERSION = "slic3rpe_amf_version"; const char* SLIC3R_CONFIG_TYPE = "slic3rpe_config"; namespace Slic3r { struct AMFParserContext { AMFParserContext(XML_Parser parser, DynamicPrintConfig *config, Model *model) : m_version(0), m_parser(parser), m_model(*model), m_object(nullptr), m_volume(nullptr), m_material(nullptr), m_instance(nullptr), m_config(config) { m_path.reserve(12); } void stop() { XML_StopParser(m_parser, 0); } void startElement(const char *name, const char **atts); void endElement(const char *name); void endDocument(); void characters(const XML_Char *s, int len); static void XMLCALL startElement(void *userData, const char *name, const char **atts) { AMFParserContext *ctx = (AMFParserContext*)userData; ctx->startElement(name, atts); } static void XMLCALL endElement(void *userData, const char *name) { AMFParserContext *ctx = (AMFParserContext*)userData; ctx->endElement(name); } /* s is not 0 terminated. */ static void XMLCALL characters(void *userData, const XML_Char *s, int len) { AMFParserContext *ctx = (AMFParserContext*)userData; ctx->characters(s, len); } static const char* get_attribute(const char **atts, const char *id) { if (atts == nullptr) return nullptr; while (*atts != nullptr) { if (strcmp(*(atts ++), id) == 0) return *atts; ++ atts; } return nullptr; } enum AMFNodeType { NODE_TYPE_INVALID = 0, NODE_TYPE_UNKNOWN, NODE_TYPE_AMF, // amf // amf/metadata NODE_TYPE_MATERIAL, // amf/material // amf/material/metadata NODE_TYPE_OBJECT, // amf/object // amf/object/metadata NODE_TYPE_MESH, // amf/object/mesh NODE_TYPE_VERTICES, // amf/object/mesh/vertices NODE_TYPE_VERTEX, // amf/object/mesh/vertices/vertex NODE_TYPE_COORDINATES, // amf/object/mesh/vertices/vertex/coordinates NODE_TYPE_COORDINATE_X, // amf/object/mesh/vertices/vertex/coordinates/x NODE_TYPE_COORDINATE_Y, // amf/object/mesh/vertices/vertex/coordinates/y NODE_TYPE_COORDINATE_Z, // amf/object/mesh/vertices/vertex/coordinates/z NODE_TYPE_VOLUME, // amf/object/mesh/volume // amf/object/mesh/volume/metadata NODE_TYPE_TRIANGLE, // amf/object/mesh/volume/triangle NODE_TYPE_VERTEX1, // amf/object/mesh/volume/triangle/v1 NODE_TYPE_VERTEX2, // amf/object/mesh/volume/triangle/v2 NODE_TYPE_VERTEX3, // amf/object/mesh/volume/triangle/v3 NODE_TYPE_CONSTELLATION, // amf/constellation NODE_TYPE_INSTANCE, // amf/constellation/instance NODE_TYPE_DELTAX, // amf/constellation/instance/deltax NODE_TYPE_DELTAY, // amf/constellation/instance/deltay NODE_TYPE_DELTAZ, // amf/constellation/instance/deltaz NODE_TYPE_RX, // amf/constellation/instance/rx NODE_TYPE_RY, // amf/constellation/instance/ry NODE_TYPE_RZ, // amf/constellation/instance/rz NODE_TYPE_SCALE, // amf/constellation/instance/scale NODE_TYPE_SCALEX, // amf/constellation/instance/scalex NODE_TYPE_SCALEY, // amf/constellation/instance/scaley NODE_TYPE_SCALEZ, // amf/constellation/instance/scalez #if ENABLE_MIRROR NODE_TYPE_MIRRORX, // amf/constellation/instance/mirrorx NODE_TYPE_MIRRORY, // amf/constellation/instance/mirrory NODE_TYPE_MIRRORZ, // amf/constellation/instance/mirrorz #endif // ENABLE_MIRROR NODE_TYPE_METADATA, // anywhere under amf/*/metadata }; struct Instance { #if ENABLE_MIRROR Instance() : deltax_set(false), deltay_set(false), deltaz_set(false) , rx_set(false), ry_set(false), rz_set(false) , scalex_set(false), scaley_set(false), scalez_set(false) , mirrorx_set(false), mirrory_set(false), mirrorz_set(false) {} #else Instance() : deltax_set(false), deltay_set(false), deltaz_set(false), rx_set(false), ry_set(false), rz_set(false), scalex_set(false), scaley_set(false), scalez_set(false) {} #endif // ENABLE_MIRROR // Shift in the X axis. float deltax; bool deltax_set; // Shift in the Y axis. float deltay; bool deltay_set; // Shift in the Z axis. float deltaz; bool deltaz_set; // Rotation around the X axis. float rx; bool rx_set; // Rotation around the Y axis. float ry; bool ry_set; // Rotation around the Z axis. float rz; bool rz_set; // Scaling factors float scalex; bool scalex_set; float scaley; bool scaley_set; float scalez; bool scalez_set; #if ENABLE_MIRROR // Mirroring factors float mirrorx; bool mirrorx_set; float mirrory; bool mirrory_set; float mirrorz; bool mirrorz_set; #endif // ENABLE_MIRROR }; struct Object { Object() : idx(-1) {} int idx; std::vector instances; }; // Version of the amf file unsigned int m_version; // Current Expat XML parser instance. XML_Parser m_parser; // Model to receive objects extracted from an AMF file. Model &m_model; // Current parsing path in the XML file. std::vector m_path; // Current object allocated for an amf/object XML subtree. ModelObject *m_object; // Map from obect name to object idx & instances. std::map m_object_instances_map; // Vertices parsed for the current m_object. std::vector m_object_vertices; // Current volume allocated for an amf/object/mesh/volume subtree. ModelVolume *m_volume; // Faces collected for the current m_volume. std::vector m_volume_facets; // Current material allocated for an amf/metadata subtree. ModelMaterial *m_material; // Current instance allocated for an amf/constellation/instance subtree. Instance *m_instance; // Generic string buffer for vertices, face indices, metadata etc. std::string m_value[3]; // Pointer to config to update if config data are stored inside the amf file DynamicPrintConfig *m_config; private: AMFParserContext& operator=(AMFParserContext&); }; void AMFParserContext::startElement(const char *name, const char **atts) { AMFNodeType node_type_new = NODE_TYPE_UNKNOWN; switch (m_path.size()) { case 0: // An AMF file must start with an tag. node_type_new = NODE_TYPE_AMF; if (strcmp(name, "amf") != 0) this->stop(); break; case 1: if (strcmp(name, "metadata") == 0) { const char *type = get_attribute(atts, "type"); if (type != nullptr) { m_value[0] = type; node_type_new = NODE_TYPE_METADATA; } } else if (strcmp(name, "material") == 0) { const char *material_id = get_attribute(atts, "id"); m_material = m_model.add_material((material_id == nullptr) ? "_" : material_id); node_type_new = NODE_TYPE_MATERIAL; } else if (strcmp(name, "object") == 0) { const char *object_id = get_attribute(atts, "id"); if (object_id == nullptr) this->stop(); else { assert(m_object_vertices.empty()); m_object = m_model.add_object(); m_object_instances_map[object_id].idx = int(m_model.objects.size())-1; node_type_new = NODE_TYPE_OBJECT; } } else if (strcmp(name, "constellation") == 0) { node_type_new = NODE_TYPE_CONSTELLATION; } break; case 2: if (strcmp(name, "metadata") == 0) { if (m_path[1] == NODE_TYPE_MATERIAL || m_path[1] == NODE_TYPE_OBJECT) { m_value[0] = get_attribute(atts, "type"); node_type_new = NODE_TYPE_METADATA; } } else if (strcmp(name, "mesh") == 0) { if (m_path[1] == NODE_TYPE_OBJECT) node_type_new = NODE_TYPE_MESH; } else if (strcmp(name, "instance") == 0) { if (m_path[1] == NODE_TYPE_CONSTELLATION) { const char *object_id = get_attribute(atts, "objectid"); if (object_id == nullptr) this->stop(); else { m_object_instances_map[object_id].instances.push_back(AMFParserContext::Instance()); m_instance = &m_object_instances_map[object_id].instances.back(); node_type_new = NODE_TYPE_INSTANCE; } } else this->stop(); } break; case 3: if (m_path[2] == NODE_TYPE_MESH) { assert(m_object); if (strcmp(name, "vertices") == 0) node_type_new = NODE_TYPE_VERTICES; else if (strcmp(name, "volume") == 0) { assert(! m_volume); m_volume = m_object->add_volume(TriangleMesh()); node_type_new = NODE_TYPE_VOLUME; } } else if (m_path[2] == NODE_TYPE_INSTANCE) { assert(m_instance); if (strcmp(name, "deltax") == 0) node_type_new = NODE_TYPE_DELTAX; else if (strcmp(name, "deltay") == 0) node_type_new = NODE_TYPE_DELTAY; else if (strcmp(name, "deltaz") == 0) node_type_new = NODE_TYPE_DELTAZ; else if (strcmp(name, "rx") == 0) node_type_new = NODE_TYPE_RX; else if (strcmp(name, "ry") == 0) node_type_new = NODE_TYPE_RY; else if (strcmp(name, "rz") == 0) node_type_new = NODE_TYPE_RZ; else if (strcmp(name, "scalex") == 0) node_type_new = NODE_TYPE_SCALEX; else if (strcmp(name, "scaley") == 0) node_type_new = NODE_TYPE_SCALEY; else if (strcmp(name, "scalez") == 0) node_type_new = NODE_TYPE_SCALEZ; else if (strcmp(name, "scale") == 0) node_type_new = NODE_TYPE_SCALE; #if ENABLE_MIRROR else if (strcmp(name, "mirrorx") == 0) node_type_new = NODE_TYPE_MIRRORX; else if (strcmp(name, "mirrory") == 0) node_type_new = NODE_TYPE_MIRRORY; else if (strcmp(name, "mirrorz") == 0) node_type_new = NODE_TYPE_MIRRORZ; #endif // ENABLE_MIRROR } break; case 4: if (m_path[3] == NODE_TYPE_VERTICES) { if (strcmp(name, "vertex") == 0) node_type_new = NODE_TYPE_VERTEX; } else if (m_path[3] == NODE_TYPE_VOLUME) { if (strcmp(name, "metadata") == 0) { const char *type = get_attribute(atts, "type"); if (type == nullptr) this->stop(); else { m_value[0] = type; node_type_new = NODE_TYPE_METADATA; } } else if (strcmp(name, "triangle") == 0) node_type_new = NODE_TYPE_TRIANGLE; } break; case 5: if (strcmp(name, "coordinates") == 0) { if (m_path[4] == NODE_TYPE_VERTEX) { node_type_new = NODE_TYPE_COORDINATES; } else this->stop(); } else if (name[0] == 'v' && name[1] >= '1' && name[1] <= '3' && name[2] == 0) { if (m_path[4] == NODE_TYPE_TRIANGLE) { node_type_new = AMFNodeType(NODE_TYPE_VERTEX1 + name[1] - '1'); } else this->stop(); } break; case 6: if ((name[0] == 'x' || name[0] == 'y' || name[0] == 'z') && name[1] == 0) { if (m_path[5] == NODE_TYPE_COORDINATES) node_type_new = AMFNodeType(NODE_TYPE_COORDINATE_X + name[0] - 'x'); else this->stop(); } break; default: break; } m_path.push_back(node_type_new); } void AMFParserContext::characters(const XML_Char *s, int len) { if (m_path.back() == NODE_TYPE_METADATA) { m_value[1].append(s, len); } else { switch (m_path.size()) { case 4: if (m_path.back() == NODE_TYPE_DELTAX || m_path.back() == NODE_TYPE_DELTAY || m_path.back() == NODE_TYPE_DELTAZ || m_path.back() == NODE_TYPE_RX || m_path.back() == NODE_TYPE_RY || m_path.back() == NODE_TYPE_RZ || m_path.back() == NODE_TYPE_SCALEX || m_path.back() == NODE_TYPE_SCALEY || m_path.back() == NODE_TYPE_SCALEZ || #if ENABLE_MIRROR m_path.back() == NODE_TYPE_SCALE || m_path.back() == NODE_TYPE_MIRRORX || m_path.back() == NODE_TYPE_MIRRORY || m_path.back() == NODE_TYPE_MIRRORZ) #else m_path.back() == NODE_TYPE_SCALE) #endif // ENABLE_MIRROR m_value[0].append(s, len); break; case 6: switch (m_path.back()) { case NODE_TYPE_VERTEX1: m_value[0].append(s, len); break; case NODE_TYPE_VERTEX2: m_value[1].append(s, len); break; case NODE_TYPE_VERTEX3: m_value[2].append(s, len); break; default: break; } case 7: switch (m_path.back()) { case NODE_TYPE_COORDINATE_X: m_value[0].append(s, len); break; case NODE_TYPE_COORDINATE_Y: m_value[1].append(s, len); break; case NODE_TYPE_COORDINATE_Z: m_value[2].append(s, len); break; default: break; } default: break; } } } void AMFParserContext::endElement(const char * /* name */) { switch (m_path.back()) { // Constellation transformation: case NODE_TYPE_DELTAX: assert(m_instance); m_instance->deltax = float(atof(m_value[0].c_str())); m_instance->deltax_set = true; m_value[0].clear(); break; case NODE_TYPE_DELTAY: assert(m_instance); m_instance->deltay = float(atof(m_value[0].c_str())); m_instance->deltay_set = true; m_value[0].clear(); break; case NODE_TYPE_DELTAZ: assert(m_instance); m_instance->deltaz = float(atof(m_value[0].c_str())); m_instance->deltaz_set = true; m_value[0].clear(); break; case NODE_TYPE_RX: assert(m_instance); m_instance->rx = float(atof(m_value[0].c_str())); m_instance->rx_set = true; m_value[0].clear(); break; case NODE_TYPE_RY: assert(m_instance); m_instance->ry = float(atof(m_value[0].c_str())); m_instance->ry_set = true; m_value[0].clear(); break; case NODE_TYPE_RZ: assert(m_instance); m_instance->rz = float(atof(m_value[0].c_str())); m_instance->rz_set = true; m_value[0].clear(); break; case NODE_TYPE_SCALE: assert(m_instance); m_instance->scalex = float(atof(m_value[0].c_str())); m_instance->scalex_set = true; m_instance->scaley = float(atof(m_value[0].c_str())); m_instance->scaley_set = true; m_instance->scalez = float(atof(m_value[0].c_str())); m_instance->scalez_set = true; m_value[0].clear(); break; case NODE_TYPE_SCALEX: assert(m_instance); m_instance->scalex = float(atof(m_value[0].c_str())); m_instance->scalex_set = true; m_value[0].clear(); break; case NODE_TYPE_SCALEY: assert(m_instance); m_instance->scaley = float(atof(m_value[0].c_str())); m_instance->scaley_set = true; m_value[0].clear(); break; case NODE_TYPE_SCALEZ: assert(m_instance); m_instance->scalez = float(atof(m_value[0].c_str())); m_instance->scalez_set = true; m_value[0].clear(); break; #if ENABLE_MIRROR case NODE_TYPE_MIRRORX: assert(m_instance); m_instance->mirrorx = float(atof(m_value[0].c_str())); m_instance->mirrorx_set = true; m_value[0].clear(); break; case NODE_TYPE_MIRRORY: assert(m_instance); m_instance->mirrory = float(atof(m_value[0].c_str())); m_instance->mirrory_set = true; m_value[0].clear(); break; case NODE_TYPE_MIRRORZ: assert(m_instance); m_instance->mirrorz = float(atof(m_value[0].c_str())); m_instance->mirrorz_set = true; m_value[0].clear(); break; #endif // ENABLE_MIRROR // Object vertices: case NODE_TYPE_VERTEX: assert(m_object); // Parse the vertex data m_object_vertices.emplace_back((float)atof(m_value[0].c_str())); m_object_vertices.emplace_back((float)atof(m_value[1].c_str())); m_object_vertices.emplace_back((float)atof(m_value[2].c_str())); m_value[0].clear(); m_value[1].clear(); m_value[2].clear(); break; // Faces of the current volume: case NODE_TYPE_TRIANGLE: assert(m_object && m_volume); m_volume_facets.push_back(atoi(m_value[0].c_str())); m_volume_facets.push_back(atoi(m_value[1].c_str())); m_volume_facets.push_back(atoi(m_value[2].c_str())); m_value[0].clear(); m_value[1].clear(); m_value[2].clear(); break; // Closing the current volume. Create an STL from m_volume_facets pointing to m_object_vertices. case NODE_TYPE_VOLUME: { assert(m_object && m_volume); stl_file &stl = m_volume->mesh.stl; stl.stats.type = inmemory; stl.stats.number_of_facets = int(m_volume_facets.size() / 3); stl.stats.original_num_facets = stl.stats.number_of_facets; stl_allocate(&stl); for (size_t i = 0; i < m_volume_facets.size();) { stl_facet &facet = stl.facet_start[i/3]; for (unsigned int v = 0; v < 3; ++ v) memcpy(facet.vertex[v].data(), &m_object_vertices[m_volume_facets[i ++] * 3], 3 * sizeof(float)); } stl_get_size(&stl); m_volume->mesh.repair(); m_volume->calculate_convex_hull(); m_volume_facets.clear(); m_volume = nullptr; break; } case NODE_TYPE_OBJECT: assert(m_object); m_object_vertices.clear(); m_object = nullptr; break; case NODE_TYPE_MATERIAL: assert(m_material); m_material = nullptr; break; case NODE_TYPE_INSTANCE: assert(m_instance); m_instance = nullptr; break; case NODE_TYPE_METADATA: if ((m_config != nullptr) && strncmp(m_value[0].c_str(), SLIC3R_CONFIG_TYPE, strlen(SLIC3R_CONFIG_TYPE)) == 0) m_config->load_from_gcode_string(m_value[1].c_str()); else if (strncmp(m_value[0].c_str(), "slic3r.", 7) == 0) { const char *opt_key = m_value[0].c_str() + 7; if (print_config_def.options.find(opt_key) != print_config_def.options.end()) { DynamicPrintConfig *config = nullptr; if (m_path.size() == 3) { if (m_path[1] == NODE_TYPE_MATERIAL && m_material) config = &m_material->config; else if (m_path[1] == NODE_TYPE_OBJECT && m_object) config = &m_object->config; } else if (m_path.size() == 5 && m_path[3] == NODE_TYPE_VOLUME && m_volume) config = &m_volume->config; if (config) config->set_deserialize(opt_key, m_value[1]); } else if (m_path.size() == 3 && m_path[1] == NODE_TYPE_OBJECT && m_object && strcmp(opt_key, "layer_height_profile") == 0) { // Parse object's layer height profile, a semicolon separated list of floats. char *p = const_cast(m_value[1].c_str()); for (;;) { char *end = strchr(p, ';'); if (end != nullptr) *end = 0; m_object->layer_height_profile.push_back(float(atof(p))); if (end == nullptr) break; p = end + 1; } m_object->layer_height_profile_valid = true; } else if (m_path.size() == 3 && m_path[1] == NODE_TYPE_OBJECT && m_object && strcmp(opt_key, "sla_support_points") == 0) { // Parse object's layer height profile, a semicolon separated list of floats. unsigned char coord_idx = 0; Vec3f point(Vec3f::Zero()); char *p = const_cast(m_value[1].c_str()); for (;;) { char *end = strchr(p, ';'); if (end != nullptr) *end = 0; point(coord_idx) = atof(p); if (++coord_idx == 3) { m_object->sla_support_points.push_back(point); coord_idx = 0; } if (end == nullptr) break; p = end + 1; } } else if (m_path.size() == 5 && m_path[3] == NODE_TYPE_VOLUME && m_volume) { if (strcmp(opt_key, "modifier") == 0) { // Is this volume a modifier volume? // "modifier" flag comes first in the XML file, so it may be later overwritten by the "type" flag. m_volume->set_type((atoi(m_value[1].c_str()) == 1) ? ModelVolume::PARAMETER_MODIFIER : ModelVolume::MODEL_PART); } else if (strcmp(opt_key, "volume_type") == 0) { m_volume->set_type(ModelVolume::type_from_string(m_value[1])); } } } else if (m_path.size() == 3) { if (m_path[1] == NODE_TYPE_MATERIAL) { if (m_material) m_material->attributes[m_value[0]] = m_value[1]; } else if (m_path[1] == NODE_TYPE_OBJECT) { if (m_object && m_value[0] == "name") m_object->name = std::move(m_value[1]); } } else if (m_path.size() == 5 && m_path[3] == NODE_TYPE_VOLUME) { if (m_volume && m_value[0] == "name") m_volume->name = std::move(m_value[1]); } else if (strncmp(m_value[0].c_str(), SLIC3RPE_AMF_VERSION, strlen(SLIC3RPE_AMF_VERSION)) == 0) { m_version = (unsigned int)atoi(m_value[1].c_str()); } m_value[0].clear(); m_value[1].clear(); break; default: break; } m_path.pop_back(); } void AMFParserContext::endDocument() { for (const auto &object : m_object_instances_map) { if (object.second.idx == -1) { printf("Undefined object %s referenced in constellation\n", object.first.c_str()); continue; } for (const Instance &instance : object.second.instances) if (instance.deltax_set && instance.deltay_set) { ModelInstance *mi = m_model.objects[object.second.idx]->add_instance(); mi->set_offset(Vec3d(instance.deltax_set ? (double)instance.deltax : 0.0, instance.deltay_set ? (double)instance.deltay : 0.0, instance.deltaz_set ? (double)instance.deltaz : 0.0)); mi->set_rotation(Vec3d(instance.rx_set ? (double)instance.rx : 0.0, instance.ry_set ? (double)instance.ry : 0.0, instance.rz_set ? (double)instance.rz : 0.0)); mi->set_scaling_factor(Vec3d(instance.scalex_set ? (double)instance.scalex : 1.0, instance.scaley_set ? (double)instance.scaley : 1.0, instance.scalez_set ? (double)instance.scalez : 1.0)); #if ENABLE_MIRROR mi->set_mirror(Vec3d(instance.mirrorx_set ? (double)instance.mirrorx : 1.0, instance.mirrory_set ? (double)instance.mirrory : 1.0, instance.mirrorz_set ? (double)instance.mirrorz : 1.0)); #endif // ENABLE_MIRROR } } } // Load an AMF file into a provided model. bool load_amf_file(const char *path, DynamicPrintConfig *config, Model *model) { if ((path == nullptr) || (model == nullptr)) return false; XML_Parser parser = XML_ParserCreate(nullptr); // encoding if (!parser) { printf("Couldn't allocate memory for parser\n"); return false; } FILE *pFile = boost::nowide::fopen(path, "rt"); if (pFile == nullptr) { printf("Cannot open file %s\n", path); return false; } AMFParserContext ctx(parser, config, model); XML_SetUserData(parser, (void*)&ctx); XML_SetElementHandler(parser, AMFParserContext::startElement, AMFParserContext::endElement); XML_SetCharacterDataHandler(parser, AMFParserContext::characters); char buff[8192]; bool result = false; for (;;) { int len = (int)fread(buff, 1, 8192, pFile); if (ferror(pFile)) { printf("AMF parser: Read error\n"); break; } int done = feof(pFile); if (XML_Parse(parser, buff, len, done) == XML_STATUS_ERROR) { printf("AMF parser: Parse error at line %ul:\n%s\n", XML_GetCurrentLineNumber(parser), XML_ErrorString(XML_GetErrorCode(parser))); break; } if (done) { result = true; break; } } XML_ParserFree(parser); ::fclose(pFile); if (result) ctx.endDocument(); return result; } bool extract_model_from_archive(mz_zip_archive& archive, const mz_zip_archive_file_stat& stat, DynamicPrintConfig* config, Model* model, unsigned int& version) { if (stat.m_uncomp_size == 0) { printf("Found invalid size\n"); mz_zip_reader_end(&archive); return false; } XML_Parser parser = XML_ParserCreate(nullptr); // encoding if (!parser) { printf("Couldn't allocate memory for parser\n"); mz_zip_reader_end(&archive); return false; } AMFParserContext ctx(parser, config, model); XML_SetUserData(parser, (void*)&ctx); XML_SetElementHandler(parser, AMFParserContext::startElement, AMFParserContext::endElement); XML_SetCharacterDataHandler(parser, AMFParserContext::characters); void* parser_buffer = XML_GetBuffer(parser, (int)stat.m_uncomp_size); if (parser_buffer == nullptr) { printf("Unable to create buffer\n"); mz_zip_reader_end(&archive); return false; } mz_bool res = mz_zip_reader_extract_file_to_mem(&archive, stat.m_filename, parser_buffer, (size_t)stat.m_uncomp_size, 0); if (res == 0) { printf("Error while reading model data to buffer\n"); mz_zip_reader_end(&archive); return false; } if (!XML_ParseBuffer(parser, (int)stat.m_uncomp_size, 1)) { printf("Error (%s) while parsing xml file at line %d\n", XML_ErrorString(XML_GetErrorCode(parser)), XML_GetCurrentLineNumber(parser)); mz_zip_reader_end(&archive); return false; } ctx.endDocument(); version = ctx.m_version; return true; } // Load an AMF archive into a provided model. bool load_amf_archive(const char *path, DynamicPrintConfig *config, Model *model) { if ((path == nullptr) || (model == nullptr)) return false; unsigned int version = 0; mz_zip_archive archive; mz_zip_zero_struct(&archive); mz_bool res = mz_zip_reader_init_file(&archive, path, 0); if (res == 0) { printf("Unable to init zip reader\n"); return false; } mz_uint num_entries = mz_zip_reader_get_num_files(&archive); mz_zip_archive_file_stat stat; // we first loop the entries to read from the archive the .amf file only, in order to extract the version from it for (mz_uint i = 0; i < num_entries; ++i) { if (mz_zip_reader_file_stat(&archive, i, &stat)) { if (boost::iends_with(stat.m_filename, ".amf")) { if (!extract_model_from_archive(archive, stat, config, model, version)) { mz_zip_reader_end(&archive); printf("Archive does not contain a valid model"); return false; } break; } } } #if 0 // forward compatibility // we then loop again the entries to read other files stored in the archive for (mz_uint i = 0; i < num_entries; ++i) { if (mz_zip_reader_file_stat(&archive, i, &stat)) { // add code to extract the file } } #endif // forward compatibility mz_zip_reader_end(&archive); return true; } // Load an AMF file into a provided model. // If config is not a null pointer, updates it if the amf file/archive contains config data bool load_amf(const char *path, DynamicPrintConfig *config, Model *model) { if (boost::iends_with(path, ".amf.xml")) // backward compatibility with older slic3r output return load_amf_file(path, config, model); else if (boost::iends_with(path, ".amf")) { boost::nowide::ifstream file(path, boost::nowide::ifstream::binary); if (!file.good()) return false; std::string zip_mask(2, '\0'); file.read(const_cast(zip_mask.data()), 2); file.close(); return (zip_mask == "PK") ? load_amf_archive(path, config, model) : load_amf_file(path, config, model); } else return false; } bool store_amf(const char *path, Model *model, Print* print, bool export_print_config) { if ((path == nullptr) || (model == nullptr) || (print == nullptr)) return false; // forces ".zip.amf" extension std::string export_path = path; if (!boost::iends_with(export_path, ".zip.amf")) export_path = boost::filesystem::path(export_path).replace_extension(".zip.amf").string(); mz_zip_archive archive; mz_zip_zero_struct(&archive); mz_bool res = mz_zip_writer_init_file(&archive, export_path.c_str(), 0); if (res == 0) return false; std::stringstream stream; stream << "\n"; stream << "\n"; stream << "Slic3r " << SLIC3R_VERSION << "\n"; stream << "" << VERSION_AMF << "\n"; if (export_print_config) { std::string config = "\n"; GCode::append_full_config(*print, config); stream << "" << xml_escape(config) << "\n"; } for (const auto &material : model->materials) { if (material.first.empty()) continue; // note that material-id must never be 0 since it's reserved by the AMF spec stream << " \n"; for (const auto &attr : material.second->attributes) stream << " " << attr.second << "\n"; for (const std::string &key : material.second->config.keys()) stream << " " << material.second->config.serialize(key) << "\n"; stream << " \n"; } std::string instances; for (size_t object_id = 0; object_id < model->objects.size(); ++ object_id) { ModelObject *object = model->objects[object_id]; stream << " \n"; for (const std::string &key : object->config.keys()) stream << " " << object->config.serialize(key) << "\n"; if (!object->name.empty()) stream << " " << xml_escape(object->name) << "\n"; std::vector layer_height_profile = object->layer_height_profile_valid ? object->layer_height_profile : std::vector(); if (layer_height_profile.size() >= 4 && (layer_height_profile.size() % 2) == 0) { // Store the layer height profile as a single semicolon separated list. stream << " "; stream << layer_height_profile.front(); for (size_t i = 1; i < layer_height_profile.size(); ++i) stream << ";" << layer_height_profile[i]; stream << "\n \n"; } //FIXME Store the layer height ranges (ModelObject::layer_height_ranges) const std::vector& sla_support_points = object->sla_support_points; if (!sla_support_points.empty()) { // Store the SLA supports as a single semicolon separated list. stream << " "; for (size_t i = 0; i < sla_support_points.size(); ++i) { if (i != 0) stream << ";"; stream << sla_support_points[i](0) << ";" << sla_support_points[i](1) << ";" << sla_support_points[i](2); } stream << "\n \n"; } stream << " \n"; stream << " \n"; std::vector vertices_offsets; int num_vertices = 0; for (ModelVolume *volume : object->volumes) { vertices_offsets.push_back(num_vertices); if (! volume->mesh.repaired) throw std::runtime_error("store_amf() requires repair()"); auto &stl = volume->mesh.stl; if (stl.v_shared == nullptr) stl_generate_shared_vertices(&stl); for (size_t i = 0; i < stl.stats.shared_vertices; ++ i) { stream << " \n"; stream << " \n"; stream << " " << stl.v_shared[i](0) << "\n"; stream << " " << stl.v_shared[i](1) << "\n"; stream << " " << stl.v_shared[i](2) << "\n"; stream << " \n"; stream << " \n"; } num_vertices += stl.stats.shared_vertices; } stream << " \n"; for (size_t i_volume = 0; i_volume < object->volumes.size(); ++i_volume) { ModelVolume *volume = object->volumes[i_volume]; int vertices_offset = vertices_offsets[i_volume]; if (volume->material_id().empty()) stream << " \n"; else stream << " material_id() << "\">\n"; for (const std::string &key : volume->config.keys()) stream << " " << volume->config.serialize(key) << "\n"; if (!volume->name.empty()) stream << " " << xml_escape(volume->name) << "\n"; if (volume->is_modifier()) stream << " 1\n"; stream << " " << ModelVolume::type_to_string(volume->type()) << "\n"; for (int i = 0; i < (int)volume->mesh.stl.stats.number_of_facets; ++i) { stream << " \n"; for (int j = 0; j < 3; ++j) stream << " " << volume->mesh.stl.v_indices[i].vertex[j] + vertices_offset << "\n"; stream << " \n"; } stream << " \n"; } stream << " \n"; stream << " \n"; if (!object->instances.empty()) { for (ModelInstance *instance : object->instances) { char buf[512]; sprintf(buf, " \n" " %lf\n" " %lf\n" " %lf\n" " %lf\n" " %lf\n" " %lf\n" " %lf\n" " %lf\n" " %lf\n" #if ENABLE_MIRROR " %lf\n" " %lf\n" " %lf\n" #endif // ENABLE_MIRROR " \n", object_id, instance->get_offset(X), instance->get_offset(Y), instance->get_offset(Z), instance->get_rotation(X), instance->get_rotation(Y), instance->get_rotation(Z), instance->get_scaling_factor(X), instance->get_scaling_factor(Y), #if ENABLE_MIRROR instance->get_scaling_factor(Z), instance->get_mirror(X), instance->get_mirror(Y), instance->get_mirror(Z)); #else instance->get_scaling_factor(Z)); #endif // ENABLE_MIRROR //FIXME missing instance->scaling_factor instances.append(buf); } } } if (! instances.empty()) { stream << " \n"; stream << instances; stream << " \n"; } stream << "\n"; std::string internal_amf_filename = boost::ireplace_last_copy(boost::filesystem::path(export_path).filename().string(), ".zip.amf", ".amf"); std::string out = stream.str(); if (!mz_zip_writer_add_mem(&archive, internal_amf_filename.c_str(), (const void*)out.data(), out.length(), MZ_DEFAULT_COMPRESSION)) { mz_zip_writer_end(&archive); boost::filesystem::remove(export_path); return false; } if (!mz_zip_writer_finalize_archive(&archive)) { mz_zip_writer_end(&archive); boost::filesystem::remove(export_path); return false; } mz_zip_writer_end(&archive); return true; } }; // namespace Slic3r