#include #include #include #include #include #include #include #include #include #include #include #include //! macro used to mark string used at localization, //! return same string #define L(s) Slic3r::I18N::translate(s) namespace Slic3r { namespace sla { template> inline void _scale(S s, TriangleMesh &m) { m.scale(float(s)); } template> inline void _scale(S s, Contour3D &m) { for (auto &p : m.points) p *= s; } static TriangleMesh _generate_interior(const TriangleMesh &mesh, const JobController &ctl, double min_thickness, double voxel_scale, double closing_dist) { TriangleMesh imesh{mesh}; _scale(voxel_scale, imesh); double offset = voxel_scale * min_thickness; double D = voxel_scale * closing_dist; float out_range = 0.1f * float(offset); float in_range = 1.1f * float(offset + D); if (ctl.stopcondition()) return {}; else ctl.statuscb(0, L("Hollowing")); auto gridptr = mesh_to_grid(imesh, {}, out_range, in_range); assert(gridptr); if (!gridptr) { BOOST_LOG_TRIVIAL(error) << "Returned OpenVDB grid is NULL"; return {}; } if (ctl.stopcondition()) return {}; else ctl.statuscb(30, L("Hollowing")); if (closing_dist > .0) { gridptr = redistance_grid(*gridptr, -(offset + D), double(in_range)); } else { D = -offset; } if (ctl.stopcondition()) return {}; else ctl.statuscb(70, L("Hollowing")); double iso_surface = D; double adaptivity = 0.; auto omesh = grid_to_mesh(*gridptr, iso_surface, adaptivity); _scale(1. / voxel_scale, omesh); if (ctl.stopcondition()) return {}; else ctl.statuscb(100, L("Hollowing")); return omesh; } std::unique_ptr generate_interior(const TriangleMesh & mesh, const HollowingConfig &hc, const JobController & ctl) { static const double MIN_OVERSAMPL = 3.; static const double MAX_OVERSAMPL = 8.; // I can't figure out how to increase the grid resolution through openvdb // API so the model will be scaled up before conversion and the result // scaled down. Voxels have a unit size. If I set voxelSize smaller, it // scales the whole geometry down, and doesn't increase the number of // voxels. // // max 8x upscale, min is native voxel size auto voxel_scale = MIN_OVERSAMPL + (MAX_OVERSAMPL - MIN_OVERSAMPL) * hc.quality; auto meshptr = std::make_unique( _generate_interior(mesh, ctl, hc.min_thickness, voxel_scale, hc.closing_distance)); if (meshptr) { // This flips the normals to be outward facing... meshptr->require_shared_vertices(); indexed_triangle_set its = std::move(meshptr->its); Slic3r::simplify_mesh(its); // flip normals back... for (stl_triangle_vertex_indices &ind : its.indices) std::swap(ind(0), ind(2)); *meshptr = Slic3r::TriangleMesh{its}; } return meshptr; } Contour3D DrainHole::to_mesh() const { auto r = double(radius); auto h = double(height); sla::Contour3D hole = sla::cylinder(r, h, steps); Eigen::Quaterniond q; q.setFromTwoVectors(Vec3d{0., 0., 1.}, normal.cast()); for(auto& p : hole.points) p = q * p + pos.cast(); return hole; } bool DrainHole::operator==(const DrainHole &sp) const { return (pos == sp.pos) && (normal == sp.normal) && is_approx(radius, sp.radius) && is_approx(height, sp.height); } bool DrainHole::is_inside(const Vec3f& pt) const { Eigen::Hyperplane plane(normal, pos); float dist = plane.signedDistance(pt); if (dist < float(EPSILON) || dist > height) return false; Eigen::ParametrizedLine axis(pos, normal); if ( axis.squaredDistance(pt) < pow(radius, 2.f)) return true; return false; } // Given a line s+dir*t, find parameter t of intersections with the hole // and the normal (points inside the hole). Outputs through out reference, // returns true if two intersections were found. bool DrainHole::get_intersections(const Vec3f& s, const Vec3f& dir, std::array, 2>& out) const { assert(is_approx(normal.norm(), 1.f)); const Eigen::ParametrizedLine ray(s, dir.normalized()); for (size_t i=0; i<2; ++i) out[i] = std::make_pair(sla::EigenMesh3D::hit_result::infty(), Vec3d::Zero()); const float sqr_radius = pow(radius, 2.f); // first check a bounding sphere of the hole: Vec3f center = pos+normal*height/2.f; float sqr_dist_limit = pow(height/2.f, 2.f) + sqr_radius ; if (ray.squaredDistance(center) > sqr_dist_limit) return false; // The line intersects the bounding sphere, look for intersections with // bases of the cylinder. size_t found = 0; // counts how many intersections were found Eigen::Hyperplane base; if (! is_approx(ray.direction().dot(normal), 0.f)) { for (size_t i=1; i<=1; --i) { Vec3f cylinder_center = pos+i*height*normal; if (i == 0) { // The hole base can be identical to mesh surface if it is flat // let's better move the base outward a bit cylinder_center -= EPSILON*normal; } base = Eigen::Hyperplane(normal, cylinder_center); Vec3f intersection = ray.intersectionPoint(base); // Only accept the point if it is inside the cylinder base. if ((cylinder_center-intersection).squaredNorm() < sqr_radius) { out[found].first = ray.intersectionParameter(base); out[found].second = (i==0 ? 1. : -1.) * normal.cast(); ++found; } } } else { // In case the line was perpendicular to the cylinder axis, previous // block was skipped, but base will later be assumed to be valid. base = Eigen::Hyperplane(normal, pos-EPSILON*normal); } // In case there is still an intersection to be found, check the wall if (found != 2 && ! is_approx(std::abs(ray.direction().dot(normal)), 1.f)) { // Project the ray onto the base plane Vec3f proj_origin = base.projection(ray.origin()); Vec3f proj_dir = base.projection(ray.origin()+ray.direction())-proj_origin; // save how the parameter scales and normalize the projected direction float par_scale = proj_dir.norm(); proj_dir = proj_dir/par_scale; Eigen::ParametrizedLine projected_ray(proj_origin, proj_dir); // Calculate point on the secant that's closest to the center // and its distance to the circle along the projected line Vec3f closest = projected_ray.projection(pos); float dist = sqrt((sqr_radius - (closest-pos).squaredNorm())); // Unproject both intersections on the original line and check // they are on the cylinder and not past it: for (int i=-1; i<=1 && found !=2; i+=2) { Vec3f isect = closest + i*dist * projected_ray.direction(); Vec3f to_isect = isect-proj_origin; float par = to_isect.norm() / par_scale; if (to_isect.normalized().dot(proj_dir.normalized()) < 0.f) par *= -1.f; Vec3d hit_normal = (pos-isect).normalized().cast(); isect = ray.pointAt(par); // check that the intersection is between the base planes: float vert_dist = base.signedDistance(isect); if (vert_dist > 0.f && vert_dist < height) { out[found].first = par; out[found].second = hit_normal; ++found; } } } // If only one intersection was found, it is some corner case, // no intersection will be returned: if (found != 2) return false; // Sort the intersections: if (out[0].first > out[1].first) std::swap(out[0], out[1]); return true; } void cut_drainholes(std::vector & obj_slices, const std::vector &slicegrid, float closing_radius, const sla::DrainHoles & holes, std::function thr) { TriangleMesh mesh; for (const sla::DrainHole &holept : holes) mesh.merge(sla::to_triangle_mesh(holept.to_mesh())); if (mesh.empty()) return; mesh.require_shared_vertices(); TriangleMeshSlicer slicer(&mesh); std::vector hole_slices; slicer.slice(slicegrid, closing_radius, &hole_slices, thr); if (obj_slices.size() != hole_slices.size()) BOOST_LOG_TRIVIAL(warning) << "Sliced object and drain-holes layer count does not match!"; size_t until = std::min(obj_slices.size(), hole_slices.size()); for (size_t i = 0; i < until; ++i) obj_slices[i] = diff_ex(obj_slices[i], hole_slices[i]); } }} // namespace Slic3r::sla