#include "Point.hpp" #include "Line.hpp" #include "MultiPoint.hpp" #include #include namespace Slic3r { Point::Point(double x, double y) { this->x = lrint(x); this->y = lrint(y); } bool Point::operator==(const Point& rhs) const { return this->coincides_with(rhs); } std::string Point::wkt() const { std::ostringstream ss; ss << "POINT(" << this->x << " " << this->y << ")"; return ss.str(); } void Point::scale(double factor) { this->x *= factor; this->y *= factor; } void Point::translate(double x, double y) { this->x += x; this->y += y; } void Point::rotate(double angle, const Point ¢er) { double cur_x = (double)this->x; double cur_y = (double)this->y; this->x = (coord_t)round( (double)center.x + cos(angle) * (cur_x - (double)center.x) - sin(angle) * (cur_y - (double)center.y) ); this->y = (coord_t)round( (double)center.y + cos(angle) * (cur_y - (double)center.y) + sin(angle) * (cur_x - (double)center.x) ); } bool Point::coincides_with(const Point &point) const { return this->x == point.x && this->y == point.y; } bool Point::coincides_with_epsilon(const Point &point) const { return std::abs(this->x - point.x) < SCALED_EPSILON && std::abs(this->y - point.y) < SCALED_EPSILON; } int Point::nearest_point_index(const Points &points) const { PointConstPtrs p; p.reserve(points.size()); for (Points::const_iterator it = points.begin(); it != points.end(); ++it) p.push_back(&*it); return this->nearest_point_index(p); } int Point::nearest_point_index(const PointConstPtrs &points) const { int idx = -1; double distance = -1; // double because long is limited to 2147483647 on some platforms and it's not enough for (PointConstPtrs::const_iterator it = points.begin(); it != points.end(); ++it) { /* If the X distance of the candidate is > than the total distance of the best previous candidate, we know we don't want it */ double d = pow(this->x - (*it)->x, 2); if (distance != -1 && d > distance) continue; /* If the Y distance of the candidate is > than the total distance of the best previous candidate, we know we don't want it */ d += pow(this->y - (*it)->y, 2); if (distance != -1 && d > distance) continue; idx = it - points.begin(); distance = d; if (distance < EPSILON) break; } return idx; } int Point::nearest_point_index(const PointPtrs &points) const { PointConstPtrs p; p.reserve(points.size()); for (PointPtrs::const_iterator it = points.begin(); it != points.end(); ++it) p.push_back(*it); return this->nearest_point_index(p); } void Point::nearest_point(const Points &points, Point* point) const { *point = points.at(this->nearest_point_index(points)); } double Point::distance_to(const Point &point) const { double dx = ((double)point.x - this->x); double dy = ((double)point.y - this->y); return sqrt(dx*dx + dy*dy); } double Point::distance_to(const Line &line) const { if (line.a.coincides_with(line.b)) return this->distance_to(line.a); double n = (double)(line.b.x - line.a.x) * (double)(line.a.y - this->y) - (double)(line.a.x - this->x) * (double)(line.b.y - line.a.y); return std::abs(n) / line.length(); } /* Three points are a counter-clockwise turn if ccw > 0, clockwise if * ccw < 0, and collinear if ccw = 0 because ccw is a determinant that * gives the signed area of the triangle formed by p1, p2 and this point. * In other words it is the 2D cross product of p1-p2 and p1-this, i.e. * z-component of their 3D cross product. * We return double because it must be big enough to hold 2*max(|coordinate|)^2 */ double Point::ccw(const Point &p1, const Point &p2) const { return (double)(p2.x - p1.x)*(double)(this->y - p1.y) - (double)(p2.y - p1.y)*(double)(this->x - p1.x); } double Point::ccw(const Line &line) const { return this->ccw(line.a, line.b); } Point Point::projection_onto(const MultiPoint &poly) const { Point running_projection = poly.first_point(); double running_min = this->distance_to(running_projection); Lines lines = poly.lines(); for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line) { Point point_temp = this->projection_onto(*line); if (this->distance_to(point_temp) < running_min) { running_projection = point_temp; running_min = this->distance_to(running_projection); } } return running_projection; } Point Point::projection_onto(const Line &line) const { if (line.a.coincides_with(line.b)) return line.a; /* (Ported from VisiLibity by Karl J. Obermeyer) The projection of point_temp onto the line determined by line_segment_temp can be represented as an affine combination expressed in the form projection of Point = theta*line_segment_temp.first + (1.0-theta)*line_segment_temp.second. If theta is outside the interval [0,1], then one of the Line_Segment's endpoints must be closest to calling Point. */ double theta = ( (double)(line.b.x - this->x)*(double)(line.b.x - line.a.x) + (double)(line.b.y- this->y)*(double)(line.b.y - line.a.y) ) / ( (double)pow(line.b.x - line.a.x, 2) + (double)pow(line.b.y - line.a.y, 2) ); if (0.0 <= theta && theta <= 1.0) return theta * line.a + (1.0-theta) * line.b; // Else pick closest endpoint. if (this->distance_to(line.a) < this->distance_to(line.b)) { return line.a; } else { return line.b; } } Point Point::negative() const { return Point(-this->x, -this->y); } Point operator+(const Point& point1, const Point& point2) { return Point(point1.x + point2.x, point1.y + point2.y); } Point operator*(double scalar, const Point& point2) { return Point(scalar * point2.x, scalar * point2.y); } #ifdef SLIC3RXS REGISTER_CLASS(Point, "Point"); SV* Point::to_SV_pureperl() const { AV* av = newAV(); av_fill(av, 1); av_store(av, 0, newSViv(this->x)); av_store(av, 1, newSViv(this->y)); return newRV_noinc((SV*)av); } void Point::from_SV(SV* point_sv) { AV* point_av = (AV*)SvRV(point_sv); // get a double from Perl and round it, otherwise // it would get truncated this->x = lrint(SvNV(*av_fetch(point_av, 0, 0))); this->y = lrint(SvNV(*av_fetch(point_av, 1, 0))); } void Point::from_SV_check(SV* point_sv) { if (sv_isobject(point_sv) && (SvTYPE(SvRV(point_sv)) == SVt_PVMG)) { if (!sv_isa(point_sv, perl_class_name(this)) && !sv_isa(point_sv, perl_class_name_ref(this))) CONFESS("Not a valid %s object (got %s)", perl_class_name(this), HvNAME(SvSTASH(SvRV(point_sv)))); *this = *(Point*)SvIV((SV*)SvRV( point_sv )); } else { this->from_SV(point_sv); } } REGISTER_CLASS(Point3, "Point3"); #endif void Pointf::scale(double factor) { this->x *= factor; this->y *= factor; } void Pointf::translate(double x, double y) { this->x += x; this->y += y; } #ifdef SLIC3RXS REGISTER_CLASS(Pointf, "Pointf"); SV* Pointf::to_SV_pureperl() const { AV* av = newAV(); av_fill(av, 1); av_store(av, 0, newSVnv(this->x)); av_store(av, 1, newSVnv(this->y)); return newRV_noinc((SV*)av); } bool Pointf::from_SV(SV* point_sv) { AV* point_av = (AV*)SvRV(point_sv); SV* sv_x = *av_fetch(point_av, 0, 0); SV* sv_y = *av_fetch(point_av, 1, 0); if (!looks_like_number(sv_x) || !looks_like_number(sv_y)) return false; this->x = SvNV(sv_x); this->y = SvNV(sv_y); return true; } #endif void Pointf3::scale(double factor) { Pointf::scale(factor); this->z *= factor; } void Pointf3::translate(double x, double y, double z) { Pointf::translate(x, y); this->z += z; } #ifdef SLIC3RXS REGISTER_CLASS(Pointf3, "Pointf3"); #endif }