#ifndef slic3r_3DScene_hpp_ #define slic3r_3DScene_hpp_ #include "../../libslic3r/libslic3r.h" #include "../../libslic3r/Point.hpp" #include "../../libslic3r/Line.hpp" #include "../../libslic3r/TriangleMesh.hpp" #include "../../libslic3r/Utils.hpp" namespace Slic3r { class Print; class PrintObject; class Model; class ModelObject; // A container for interleaved arrays of 3D vertices and normals, // possibly indexed by triangles and / or quads. class GLIndexedVertexArray { public: GLIndexedVertexArray() : vertices_and_normals_interleaved_VBO_id(0), triangle_indices_VBO_id(0), quad_indices_VBO_id(0) { this->setup_sizes(); } GLIndexedVertexArray(const GLIndexedVertexArray &rhs) : vertices_and_normals_interleaved(rhs.vertices_and_normals_interleaved), triangle_indices(rhs.triangle_indices), quad_indices(rhs.quad_indices), vertices_and_normals_interleaved_VBO_id(0), triangle_indices_VBO_id(0), quad_indices_VBO_id(0) { this->setup_sizes(); } GLIndexedVertexArray(GLIndexedVertexArray &&rhs) : vertices_and_normals_interleaved(std::move(rhs.vertices_and_normals_interleaved)), triangle_indices(std::move(rhs.triangle_indices)), quad_indices(std::move(rhs.quad_indices)), vertices_and_normals_interleaved_VBO_id(0), triangle_indices_VBO_id(0), quad_indices_VBO_id(0) { this->setup_sizes(); } GLIndexedVertexArray& operator=(const GLIndexedVertexArray &rhs) { assert(vertices_and_normals_interleaved_VBO_id == 0); assert(triangle_indices_VBO_id == 0); assert(triangle_indices_VBO_id == 0); this->vertices_and_normals_interleaved = rhs.vertices_and_normals_interleaved; this->triangle_indices = rhs.triangle_indices; this->quad_indices = rhs.quad_indices; this->setup_sizes(); return *this; } GLIndexedVertexArray& operator=(GLIndexedVertexArray &&rhs) { assert(vertices_and_normals_interleaved_VBO_id == 0); assert(triangle_indices_VBO_id == 0); assert(triangle_indices_VBO_id == 0); this->vertices_and_normals_interleaved = std::move(rhs.vertices_and_normals_interleaved); this->triangle_indices = std::move(rhs.triangle_indices); this->quad_indices = std::move(rhs.quad_indices); this->setup_sizes(); return *this; } // Vertices and their normals, interleaved to be used by void glInterleavedArrays(GL_N3F_V3F, 0, x) std::vector vertices_and_normals_interleaved; std::vector triangle_indices; std::vector quad_indices; // When the geometry data is loaded into the graphics card as Vertex Buffer Objects, // the above mentioned std::vectors are cleared and the following variables keep their original length. size_t vertices_and_normals_interleaved_size; size_t triangle_indices_size; size_t quad_indices_size; // IDs of the Vertex Array Objects, into which the geometry has been loaded. // Zero if the VBOs are not used. unsigned int vertices_and_normals_interleaved_VBO_id; unsigned int triangle_indices_VBO_id; unsigned int quad_indices_VBO_id; void load_mesh_flat_shading(const TriangleMesh &mesh); inline bool has_VBOs() const { return vertices_and_normals_interleaved_VBO_id != 0; } inline void reserve(size_t sz) { this->vertices_and_normals_interleaved.reserve(sz * 6); this->triangle_indices.reserve(sz * 3); this->quad_indices.reserve(sz * 4); } inline void push_geometry(float x, float y, float z, float nx, float ny, float nz) { if (this->vertices_and_normals_interleaved.size() + 6 > this->vertices_and_normals_interleaved.capacity()) this->vertices_and_normals_interleaved.reserve(next_highest_power_of_2(this->vertices_and_normals_interleaved.size() + 6)); this->vertices_and_normals_interleaved.push_back(nx); this->vertices_and_normals_interleaved.push_back(ny); this->vertices_and_normals_interleaved.push_back(nz); this->vertices_and_normals_interleaved.push_back(x); this->vertices_and_normals_interleaved.push_back(y); this->vertices_and_normals_interleaved.push_back(z); }; inline void push_geometry(double x, double y, double z, double nx, double ny, double nz) { push_geometry(float(x), float(y), float(z), float(nx), float(ny), float(nz)); } inline void push_triangle(int idx1, int idx2, int idx3) { if (this->triangle_indices.size() + 3 > this->vertices_and_normals_interleaved.capacity()) this->triangle_indices.reserve(next_highest_power_of_2(this->triangle_indices.size() + 3)); this->triangle_indices.push_back(idx1); this->triangle_indices.push_back(idx2); this->triangle_indices.push_back(idx3); }; inline void push_quad(int idx1, int idx2, int idx3, int idx4) { if (this->quad_indices.size() + 4 > this->vertices_and_normals_interleaved.capacity()) this->quad_indices.reserve(next_highest_power_of_2(this->quad_indices.size() + 4)); this->quad_indices.push_back(idx1); this->quad_indices.push_back(idx2); this->quad_indices.push_back(idx3); this->quad_indices.push_back(idx4); }; // Finalize the initialization of the geometry & indices, // upload the geometry and indices to OpenGL VBO objects // and shrink the allocated data, possibly relasing it if it has been loaded into the VBOs. void finalize_geometry(bool use_VBOs); // Release the geometry data, release OpenGL VBOs. void release_geometry(); // Render either using an immediate mode, or the VBOs. void render() const; void render(const std::pair &tverts_range, const std::pair &qverts_range) const; // Is there any geometry data stored? bool empty() const { return vertices_and_normals_interleaved_size == 0; } // Is this object indexed, or is it just a set of triangles? bool indexed() const { return ! this->empty() && this->triangle_indices_size + this->quad_indices_size > 0; } void clear() { this->vertices_and_normals_interleaved.clear(); this->triangle_indices.clear(); this->quad_indices.clear(); this->setup_sizes(); } // Shrink the internal storage to tighly fit the data stored. void shrink_to_fit() { if (! this->has_VBOs()) this->setup_sizes(); this->vertices_and_normals_interleaved.shrink_to_fit(); this->triangle_indices.shrink_to_fit(); this->quad_indices.shrink_to_fit(); } BoundingBoxf3 bounding_box() const { BoundingBoxf3 bbox; if (! this->vertices_and_normals_interleaved.empty()) { bbox.min.x = bbox.max.x = this->vertices_and_normals_interleaved[3]; bbox.min.y = bbox.max.y = this->vertices_and_normals_interleaved[4]; bbox.min.z = bbox.max.z = this->vertices_and_normals_interleaved[5]; for (size_t i = 9; i < this->vertices_and_normals_interleaved.size(); i += 6) { const float *verts = this->vertices_and_normals_interleaved.data() + i; bbox.min.x = std::min(bbox.min.x, verts[0]); bbox.min.y = std::min(bbox.min.y, verts[1]); bbox.min.z = std::min(bbox.min.z, verts[2]); bbox.max.x = std::max(bbox.max.x, verts[0]); bbox.max.y = std::max(bbox.max.y, verts[1]); bbox.max.z = std::max(bbox.max.z, verts[2]); } } return bbox; } private: inline void setup_sizes() { vertices_and_normals_interleaved_size = this->vertices_and_normals_interleaved.size(); triangle_indices_size = this->triangle_indices.size(); quad_indices_size = this->quad_indices.size(); } }; class GLTexture { public: GLTexture() : width(0), height(0), levels(0), cells(0) {} // Texture data std::vector data; // Width of the texture, top level. size_t width; // Height of the texture, top level. size_t height; // For how many levels of detail is the data allocated? size_t levels; // Number of texture cells allocated for the height texture. size_t cells; }; class GLVolume { public: GLVolume(float r = 1.f, float g = 1.f, float b = 1.f, float a = 1.f) : composite_id(-1), select_group_id(-1), drag_group_id(-1), selected(false), hover(false), qverts_range(0, size_t(-1)), tverts_range(0, size_t(-1)) { color[0] = r; color[1] = g; color[2] = b; color[3] = a; } GLVolume(const float *rgba) : GLVolume(rgba[0], rgba[1], rgba[2], rgba[3]) {} std::vector load_object( const ModelObject *model_object, const std::vector &instance_idxs, const std::string &color_by, const std::string &select_by, const std::string &drag_by); // Bounding box of this volume, in unscaled coordinates. BoundingBoxf3 bounding_box; // Offset of the volume to be rendered. Pointf3 origin; // Color of the triangles / quads held by this volume. float color[4]; // An ID containing the object ID, volume ID and instance ID. int composite_id; // An ID for group selection. It may be the same for all meshes of all object instances, or for just a single object instance. int select_group_id; // An ID for group dragging. It may be the same for all meshes of all object instances, or for just a single object instance. int drag_group_id; // Is this object selected? bool selected; // Boolean: Is mouse over this object? bool hover; // Interleaved triangles & normals with indexed triangles & quads. GLIndexedVertexArray indexed_vertex_array; // Ranges of triangle and quad indices to be rendered. std::pair tverts_range; std::pair qverts_range; // If the qverts or tverts contain thick extrusions, then offsets keeps pointers of the starts // of the extrusions per layer. std::vector print_zs; // Offset into qverts & tverts, or offsets into indices stored into an OpenGL name_index_buffer. std::vector offsets; int object_idx() const { return this->composite_id / 1000000; } int volume_idx() const { return (this->composite_id / 1000) % 1000; } int instance_idx() const { return this->composite_id % 1000; } BoundingBoxf3 transformed_bounding_box() const { BoundingBoxf3 bb = this->bounding_box; bb.translate(this->origin); return bb; } bool empty() const { return this->indexed_vertex_array.empty(); } bool indexed() const { return this->indexed_vertex_array.indexed(); } void set_range(coordf_t low, coordf_t high); void render() const; void finalize_geometry(bool use_VBOs) { this->indexed_vertex_array.finalize_geometry(use_VBOs); } void release_geometry() { this->indexed_vertex_array.release_geometry(); } /************************************************ Layer height texture ****************************************************/ std::shared_ptr layer_height_texture; bool has_layer_height_texture() const { return this->layer_height_texture.get() != nullptr; } size_t layer_height_texture_width() const { return (this->layer_height_texture.get() == nullptr) ? 0 : this->layer_height_texture->width; } size_t layer_height_texture_height() const { return (this->layer_height_texture.get() == nullptr) ? 0 : this->layer_height_texture->height; } size_t layer_height_texture_cells() const { return (this->layer_height_texture.get() == nullptr) ? 0 : this->layer_height_texture->cells; } void* layer_height_texture_data_ptr_level0() { return (layer_height_texture.get() == nullptr) ? 0 : (void*)layer_height_texture->data.data(); } void* layer_height_texture_data_ptr_level1() { return (layer_height_texture.get() == nullptr) ? 0 : (void*)(layer_height_texture->data.data() + layer_height_texture->width * layer_height_texture->height * 4); } double layer_height_texture_z_to_row_id() const { return (this->layer_height_texture.get() == nullptr) ? 0. : double(this->layer_height_texture->cells - 1) / (double(this->layer_height_texture->width) * bounding_box.max.z); } void generate_layer_height_texture(PrintObject *print_object, bool force); }; class GLVolumeCollection { public: std::vector volumes; GLVolumeCollection() {}; ~GLVolumeCollection() { clear(); }; std::vector load_object( const ModelObject *model_object, int obj_idx, const std::vector &instance_idxs, const std::string &color_by, const std::string &select_by, const std::string &drag_by, bool use_VBOs); // Render the volumes by OpenGL. void render_VBOs() const; void render_legacy() const; // Finalize the initialization of the geometry & indices, // upload the geometry and indices to OpenGL VBO objects // and shrink the allocated data, possibly relasing it if it has been loaded into the VBOs. void finalize_geometry(bool use_VBOs) { for (auto *v : volumes) v->finalize_geometry(use_VBOs); } // Release the geometry data assigned to the volumes. // If OpenGL VBOs were allocated, an OpenGL context has to be active to release them. void release_geometry() { for (auto *v : volumes) v->release_geometry(); } // Clear the geometry void clear() { for (auto *v : volumes) delete v; volumes.clear(); } bool empty() const { return volumes.empty(); } void set_range(double low, double high) { for (GLVolume *vol : this->volumes) vol->set_range(low, high); } private: GLVolumeCollection(const GLVolumeCollection &other); GLVolumeCollection& operator=(const GLVolumeCollection &); }; class _3DScene { public: static void _glew_init(); static void _load_print_toolpaths( const Print *print, GLVolumeCollection *volumes, bool use_VBOs); static void _load_print_object_toolpaths( const PrintObject *print_object, GLVolumeCollection *volumes, bool use_VBOs); }; } #endif