/* ADMesh -- process triangulated solid meshes * Copyright (C) 1995, 1996 Anthony D. Martin * Copyright (C) 2013, 2014 several contributors, see AUTHORS * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Questions, comments, suggestions, etc to * https://github.com/admesh/admesh/issues */ #include #include #include #include #include #include "stl.h" void stl_stats_out(stl_file *stl, FILE *file, char *input_file) { // This is here for Slic3r, without our config.h it won't use this part of the code anyway. #ifndef VERSION #define VERSION "unknown" #endif fprintf(file, "\n================= Results produced by ADMesh version " VERSION " ================\n"); fprintf(file, "Input file : %s\n", input_file); if (stl->stats.type == binary) fprintf(file, "File type : Binary STL file\n"); else fprintf(file, "File type : ASCII STL file\n"); fprintf(file, "Header : %s\n", stl->stats.header); fprintf(file, "============== Size ==============\n"); fprintf(file, "Min X = % f, Max X = % f\n", stl->stats.min(0), stl->stats.max(0)); fprintf(file, "Min Y = % f, Max Y = % f\n", stl->stats.min(1), stl->stats.max(1)); fprintf(file, "Min Z = % f, Max Z = % f\n", stl->stats.min(2), stl->stats.max(2)); fprintf(file, "========= Facet Status ========== Original ============ Final ====\n"); fprintf(file, "Number of facets : %5d %5d\n", stl->stats.original_num_facets, stl->stats.number_of_facets); fprintf(file, "Facets with 1 disconnected edge : %5d %5d\n", stl->stats.facets_w_1_bad_edge, stl->stats.connected_facets_2_edge - stl->stats.connected_facets_3_edge); fprintf(file, "Facets with 2 disconnected edges : %5d %5d\n", stl->stats.facets_w_2_bad_edge, stl->stats.connected_facets_1_edge - stl->stats.connected_facets_2_edge); fprintf(file, "Facets with 3 disconnected edges : %5d %5d\n", stl->stats.facets_w_3_bad_edge, stl->stats.number_of_facets - stl->stats.connected_facets_1_edge); fprintf(file, "Total disconnected facets : %5d %5d\n", stl->stats.facets_w_1_bad_edge + stl->stats.facets_w_2_bad_edge + stl->stats.facets_w_3_bad_edge, stl->stats.number_of_facets - stl->stats.connected_facets_3_edge); fprintf(file, "=== Processing Statistics === ===== Other Statistics =====\n"); fprintf(file, "Number of parts : %5d Volume : %f\n", stl->stats.number_of_parts, stl->stats.volume); fprintf(file, "Degenerate facets : %5d\n", stl->stats.degenerate_facets); fprintf(file, "Edges fixed : %5d\n", stl->stats.edges_fixed); fprintf(file, "Facets removed : %5d\n", stl->stats.facets_removed); fprintf(file, "Facets added : %5d\n", stl->stats.facets_added); fprintf(file, "Facets reversed : %5d\n", stl->stats.facets_reversed); fprintf(file, "Backwards edges : %5d\n", stl->stats.backwards_edges); fprintf(file, "Normals fixed : %5d\n", stl->stats.normals_fixed); } bool stl_write_ascii(stl_file *stl, const char *file, const char *label) { FILE *fp = boost::nowide::fopen(file, "w"); if (fp == nullptr) { BOOST_LOG_TRIVIAL(error) << "stl_write_ascii: Couldn't open " << file << " for writing"; return false; } fprintf(fp, "solid %s\n", label); for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) { fprintf(fp, " facet normal % .8E % .8E % .8E\n", stl->facet_start[i].normal(0), stl->facet_start[i].normal(1), stl->facet_start[i].normal(2)); fprintf(fp, " outer loop\n"); fprintf(fp, " vertex % .8E % .8E % .8E\n", stl->facet_start[i].vertex[0](0), stl->facet_start[i].vertex[0](1), stl->facet_start[i].vertex[0](2)); fprintf(fp, " vertex % .8E % .8E % .8E\n", stl->facet_start[i].vertex[1](0), stl->facet_start[i].vertex[1](1), stl->facet_start[i].vertex[1](2)); fprintf(fp, " vertex % .8E % .8E % .8E\n", stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1), stl->facet_start[i].vertex[2](2)); fprintf(fp, " endloop\n"); fprintf(fp, " endfacet\n"); } fprintf(fp, "endsolid %s\n", label); fclose(fp); return true; } bool stl_print_neighbors(stl_file *stl, char *file) { FILE *fp = boost::nowide::fopen(file, "w"); if (fp == nullptr) { BOOST_LOG_TRIVIAL(error) << "stl_print_neighbors: Couldn't open " << file << " for writing"; return false; } for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) { fprintf(fp, "%d, %d,%d, %d,%d, %d,%d\n", i, stl->neighbors_start[i].neighbor[0], (int)stl->neighbors_start[i].which_vertex_not[0], stl->neighbors_start[i].neighbor[1], (int)stl->neighbors_start[i].which_vertex_not[1], stl->neighbors_start[i].neighbor[2], (int)stl->neighbors_start[i].which_vertex_not[2]); } fclose(fp); return true; } #if BOOST_ENDIAN_BIG_BYTE // Swap a buffer of 32bit data from little endian to big endian and vice versa. void stl_internal_reverse_quads(char *buf, size_t cnt) { for (size_t i = 0; i < cnt; i += 4) { std::swap(buf[i], buf[i+3]); std::swap(buf[i+1], buf[i+2]); } } #endif bool stl_write_binary(stl_file *stl, const char *file, const char *label) { FILE *fp = boost::nowide::fopen(file, "wb"); if (fp == nullptr) { BOOST_LOG_TRIVIAL(error) << "stl_write_binary: Couldn't open " << file << " for writing"; return false; } fprintf(fp, "%s", label); for (size_t i = strlen(label); i < LABEL_SIZE; ++ i) putc(0, fp); #if !defined(SEEK_SET) #define SEEK_SET 0 #endif fseek(fp, LABEL_SIZE, SEEK_SET); #if BOOST_ENDIAN_LITTLE_BYTE fwrite(&stl->stats.number_of_facets, 4, 1, fp); for (const stl_facet &facet : stl->facet_start) fwrite(&facet, SIZEOF_STL_FACET, 1, fp); #else /* BOOST_ENDIAN_LITTLE_BYTE */ char buffer[50]; // Convert the number of facets to little endian. memcpy(buffer, &stl->stats.number_of_facets, 4); stl_internal_reverse_quads(buffer, 4); fwrite(buffer, 4, 1, fp); for (i = 0; i < stl->stats.number_of_facets; ++ i) { memcpy(buffer, stl->facet_start + i, 50); // Convert to little endian. stl_internal_reverse_quads(buffer, 48); fwrite(buffer, SIZEOF_STL_FACET, 1, fp); } #endif /* BOOST_ENDIAN_LITTLE_BYTE */ fclose(fp); return true; } void stl_write_vertex(stl_file *stl, int facet, int vertex) { printf(" vertex %d/%d % .8E % .8E % .8E\n", vertex, facet, stl->facet_start[facet].vertex[vertex](0), stl->facet_start[facet].vertex[vertex](1), stl->facet_start[facet].vertex[vertex](2)); } void stl_write_facet(stl_file *stl, char *label, int facet) { printf("facet (%d)/ %s\n", facet, label); stl_write_vertex(stl, facet, 0); stl_write_vertex(stl, facet, 1); stl_write_vertex(stl, facet, 2); } void stl_write_neighbor(stl_file *stl, int facet) { printf("Neighbors %d: %d, %d, %d ; %d, %d, %d\n", facet, stl->neighbors_start[facet].neighbor[0], stl->neighbors_start[facet].neighbor[1], stl->neighbors_start[facet].neighbor[2], stl->neighbors_start[facet].which_vertex_not[0], stl->neighbors_start[facet].which_vertex_not[1], stl->neighbors_start[facet].which_vertex_not[2]); } bool stl_write_quad_object(stl_file *stl, char *file) { stl_vertex connect_color = stl_vertex::Zero(); stl_vertex uncon_1_color = stl_vertex::Zero(); stl_vertex uncon_2_color = stl_vertex::Zero(); stl_vertex uncon_3_color = stl_vertex::Zero(); stl_vertex color; FILE *fp = boost::nowide::fopen(file, "w"); if (fp == nullptr) { BOOST_LOG_TRIVIAL(error) << "stl_write_quad_object: Couldn't open " << file << " for writing"; return false; } fprintf(fp, "CQUAD\n"); for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) { switch (stl->neighbors_start[i].num_neighbors_missing()) { case 0: color = connect_color; break; case 1: color = uncon_1_color; break; case 2: color = uncon_2_color; break; default: color = uncon_3_color; } fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n", stl->facet_start[i].vertex[0](0), stl->facet_start[i].vertex[0](1), stl->facet_start[i].vertex[0](2), color(0), color(1), color(2)); fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n", stl->facet_start[i].vertex[1](0), stl->facet_start[i].vertex[1](1), stl->facet_start[i].vertex[1](2), color(0), color(1), color(2)); fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n", stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1), stl->facet_start[i].vertex[2](2), color(0), color(1), color(2)); fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n", stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1), stl->facet_start[i].vertex[2](2), color(0), color(1), color(2)); } fclose(fp); return true; } bool stl_write_dxf(stl_file *stl, const char *file, char *label) { FILE *fp = boost::nowide::fopen(file, "w"); if (fp == nullptr) { BOOST_LOG_TRIVIAL(error) << "stl_write_quad_object: Couldn't open " << file << " for writing"; return false; } fprintf(fp, "999\n%s\n", label); fprintf(fp, "0\nSECTION\n2\nHEADER\n0\nENDSEC\n"); fprintf(fp, "0\nSECTION\n2\nTABLES\n0\nTABLE\n2\nLAYER\n70\n1\n\ 0\nLAYER\n2\n0\n70\n0\n62\n7\n6\nCONTINUOUS\n0\nENDTAB\n0\nENDSEC\n"); fprintf(fp, "0\nSECTION\n2\nBLOCKS\n0\nENDSEC\n"); fprintf(fp, "0\nSECTION\n2\nENTITIES\n"); for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) { fprintf(fp, "0\n3DFACE\n8\n0\n"); fprintf(fp, "10\n%f\n20\n%f\n30\n%f\n", stl->facet_start[i].vertex[0](0), stl->facet_start[i].vertex[0](1), stl->facet_start[i].vertex[0](2)); fprintf(fp, "11\n%f\n21\n%f\n31\n%f\n", stl->facet_start[i].vertex[1](0), stl->facet_start[i].vertex[1](1), stl->facet_start[i].vertex[1](2)); fprintf(fp, "12\n%f\n22\n%f\n32\n%f\n", stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1), stl->facet_start[i].vertex[2](2)); fprintf(fp, "13\n%f\n23\n%f\n33\n%f\n", stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1), stl->facet_start[i].vertex[2](2)); } fprintf(fp, "0\nENDSEC\n0\nEOF\n"); fclose(fp); return true; }