#include #include "SLA/SLASupportTree.hpp" #include "SLA/SLABoilerPlate.hpp" #include "SLA/SLASpatIndex.hpp" // Workaround: IGL signed_distance.h will define PI in the igl namespace. #undef PI // HEAVY headers... takes eternity to compile // for concave hull merging decisions #include "SLABoostAdapter.hpp" #include "boost/geometry/index/rtree.hpp" #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable: 4244) #pragma warning(disable: 4267) #endif #include #include #include #include #ifdef _MSC_VER #pragma warning(pop) #endif #include #include "SLASpatIndex.hpp" #include "ClipperUtils.hpp" namespace Slic3r { namespace sla { // Bring back PI from the igl namespace using igl::PI; /* ************************************************************************** * PointIndex implementation * ************************************************************************** */ class PointIndex::Impl { public: using BoostIndex = boost::geometry::index::rtree< PointIndexEl, boost::geometry::index::rstar<16, 4> /* ? */ >; BoostIndex m_store; }; PointIndex::PointIndex(): m_impl(new Impl()) {} PointIndex::~PointIndex() {} PointIndex::PointIndex(const PointIndex &cpy): m_impl(new Impl(*cpy.m_impl)) {} PointIndex::PointIndex(PointIndex&& cpy): m_impl(std::move(cpy.m_impl)) {} PointIndex& PointIndex::operator=(const PointIndex &cpy) { m_impl.reset(new Impl(*cpy.m_impl)); return *this; } PointIndex& PointIndex::operator=(PointIndex &&cpy) { m_impl.swap(cpy.m_impl); return *this; } void PointIndex::insert(const PointIndexEl &el) { m_impl->m_store.insert(el); } bool PointIndex::remove(const PointIndexEl& el) { return m_impl->m_store.remove(el) == 1; } std::vector PointIndex::query(std::function fn) { namespace bgi = boost::geometry::index; std::vector ret; m_impl->m_store.query(bgi::satisfies(fn), std::back_inserter(ret)); return ret; } std::vector PointIndex::nearest(const Vec3d &el, unsigned k = 1) { namespace bgi = boost::geometry::index; std::vector ret; ret.reserve(k); m_impl->m_store.query(bgi::nearest(el, k), std::back_inserter(ret)); return ret; } size_t PointIndex::size() const { return m_impl->m_store.size(); } void PointIndex::foreach(std::function fn) { for(auto& el : m_impl->m_store) fn(el); } /* ************************************************************************** * BoxIndex implementation * ************************************************************************** */ class BoxIndex::Impl { public: using BoostIndex = boost::geometry::index:: rtree /* ? */>; BoostIndex m_store; }; BoxIndex::BoxIndex(): m_impl(new Impl()) {} BoxIndex::~BoxIndex() {} BoxIndex::BoxIndex(const BoxIndex &cpy): m_impl(new Impl(*cpy.m_impl)) {} BoxIndex::BoxIndex(BoxIndex&& cpy): m_impl(std::move(cpy.m_impl)) {} BoxIndex& BoxIndex::operator=(const BoxIndex &cpy) { m_impl.reset(new Impl(*cpy.m_impl)); return *this; } BoxIndex& BoxIndex::operator=(BoxIndex &&cpy) { m_impl.swap(cpy.m_impl); return *this; } void BoxIndex::insert(const BoxIndexEl &el) { m_impl->m_store.insert(el); } bool BoxIndex::remove(const BoxIndexEl& el) { return m_impl->m_store.remove(el) == 1; } std::vector BoxIndex::query(const BoundingBox &qrbb, BoxIndex::QueryType qt) { namespace bgi = boost::geometry::index; std::vector ret; ret.reserve(m_impl->m_store.size()); switch (qt) { case qtIntersects: m_impl->m_store.query(bgi::intersects(qrbb), std::back_inserter(ret)); break; case qtWithin: m_impl->m_store.query(bgi::within(qrbb), std::back_inserter(ret)); } return ret; } size_t BoxIndex::size() const { return m_impl->m_store.size(); } void BoxIndex::foreach(std::function fn) { for(auto& el : m_impl->m_store) fn(el); } /* **************************************************************************** * EigenMesh3D implementation * ****************************************************************************/ class EigenMesh3D::AABBImpl: public igl::AABB { public: #ifdef SLIC3R_SLA_NEEDS_WINDTREE igl::WindingNumberAABB windtree; #endif /* SLIC3R_SLA_NEEDS_WINDTREE */ }; EigenMesh3D::EigenMesh3D(const TriangleMesh& tmesh): m_aabb(new AABBImpl()) { static const double dEPS = 1e-6; const stl_file& stl = tmesh.stl; auto&& bb = tmesh.bounding_box(); m_ground_level += bb.min(Z); Eigen::MatrixXd V; Eigen::MatrixXi F; V.resize(3*stl.stats.number_of_facets, 3); F.resize(stl.stats.number_of_facets, 3); for (unsigned int i = 0; i < stl.stats.number_of_facets; ++i) { const stl_facet &facet = stl.facet_start[i]; V.block<1, 3>(3 * i + 0, 0) = facet.vertex[0].cast(); V.block<1, 3>(3 * i + 1, 0) = facet.vertex[1].cast(); V.block<1, 3>(3 * i + 2, 0) = facet.vertex[2].cast(); F(i, 0) = int(3*i+0); F(i, 1) = int(3*i+1); F(i, 2) = int(3*i+2); } // We will convert this to a proper 3d mesh with no duplicate points. Eigen::VectorXi SVI, SVJ; igl::remove_duplicate_vertices(V, F, dEPS, m_V, SVI, SVJ, m_F); // Build the AABB accelaration tree m_aabb->init(m_V, m_F); #ifdef SLIC3R_SLA_NEEDS_WINDTREE m_aabb->windtree.set_mesh(m_V, m_F); #endif /* SLIC3R_SLA_NEEDS_WINDTREE */ } EigenMesh3D::~EigenMesh3D() {} EigenMesh3D::EigenMesh3D(const EigenMesh3D &other): m_V(other.m_V), m_F(other.m_F), m_ground_level(other.m_ground_level), m_aabb( new AABBImpl(*other.m_aabb) ) {} EigenMesh3D &EigenMesh3D::operator=(const EigenMesh3D &other) { m_V = other.m_V; m_F = other.m_F; m_ground_level = other.m_ground_level; m_aabb.reset(new AABBImpl(*other.m_aabb)); return *this; } EigenMesh3D::hit_result EigenMesh3D::query_ray_hit(const Vec3d &s, const Vec3d &dir) const { igl::Hit hit; hit.t = std::numeric_limits::infinity(); m_aabb->intersect_ray(m_V, m_F, s, dir, hit); hit_result ret(*this); ret.m_t = double(hit.t); ret.m_dir = dir; ret.m_source = s; if(!std::isinf(hit.t) && !std::isnan(hit.t)) ret.m_face_id = hit.id; return ret; } #ifdef SLIC3R_SLA_NEEDS_WINDTREE EigenMesh3D::si_result EigenMesh3D::signed_distance(const Vec3d &p) const { double sign = 0; double sqdst = 0; int i = 0; Vec3d c; igl::signed_distance_winding_number(*m_aabb, m_V, m_F, m_aabb->windtree, p, sign, sqdst, i, c); return si_result(sign * std::sqrt(sqdst), i, c); } bool EigenMesh3D::inside(const Vec3d &p) const { return m_aabb->windtree.inside(p); } #endif /* SLIC3R_SLA_NEEDS_WINDTREE */ double EigenMesh3D::squared_distance(const Vec3d &p, int& i, Vec3d& c) const { double sqdst = 0; Eigen::Matrix pp = p; Eigen::Matrix cc; sqdst = m_aabb->squared_distance(m_V, m_F, pp, i, cc); c = cc; return sqdst; } /* **************************************************************************** * Misc functions * ****************************************************************************/ bool point_on_edge(const Vec3d& p, const Vec3d& e1, const Vec3d& e2, double eps = 0.05) { using Line3D = Eigen::ParametrizedLine; auto line = Line3D::Through(e1, e2); double d = line.distance(p); return std::abs(d) < eps; } template double distance(const Vec& pp1, const Vec& pp2) { auto p = pp2 - pp1; return std::sqrt(p.transpose() * p); } PointSet normals(const PointSet& points, const EigenMesh3D& mesh, double eps, std::function thr, // throw on cancel const std::vector& pt_indices = {}) { if(points.rows() == 0 || mesh.V().rows() == 0 || mesh.F().rows() == 0) return {}; std::vector range = pt_indices; if(range.empty()) { range.resize(size_t(points.rows()), 0); std::iota(range.begin(), range.end(), 0); } PointSet ret(range.size(), 3); tbb::parallel_for(size_t(0), range.size(), [&ret, &range, &mesh, &points, thr, eps](size_t ridx) { thr(); auto eidx = Eigen::Index(range[ridx]); int faceid = 0; Vec3d p; mesh.squared_distance(points.row(eidx), faceid, p); auto trindex = mesh.F().row(faceid); const Vec3d& p1 = mesh.V().row(trindex(0)); const Vec3d& p2 = mesh.V().row(trindex(1)); const Vec3d& p3 = mesh.V().row(trindex(2)); // We should check if the point lies on an edge of the hosting triangle. // If it does then all the other triangles using the same two points // have to be searched and the final normal should be some kind of // aggregation of the participating triangle normals. We should also // consider the cases where the support point lies right on a vertex // of its triangle. The procedure is the same, get the neighbor // triangles and calculate an average normal. // mark the vertex indices of the edge. ia and ib marks and edge ic // will mark a single vertex. int ia = -1, ib = -1, ic = -1; if(std::abs(distance(p, p1)) < eps) { ic = trindex(0); } else if(std::abs(distance(p, p2)) < eps) { ic = trindex(1); } else if(std::abs(distance(p, p3)) < eps) { ic = trindex(2); } else if(point_on_edge(p, p1, p2, eps)) { ia = trindex(0); ib = trindex(1); } else if(point_on_edge(p, p2, p3, eps)) { ia = trindex(1); ib = trindex(2); } else if(point_on_edge(p, p1, p3, eps)) { ia = trindex(0); ib = trindex(2); } // vector for the neigboring triangles including the detected one. std::vector neigh; if(ic >= 0) { // The point is right on a vertex of the triangle for(int n = 0; n < mesh.F().rows(); ++n) { thr(); Vec3i ni = mesh.F().row(n); if((ni(X) == ic || ni(Y) == ic || ni(Z) == ic)) neigh.emplace_back(ni); } } else if(ia >= 0 && ib >= 0) { // the point is on and edge // now get all the neigboring triangles for(int n = 0; n < mesh.F().rows(); ++n) { thr(); Vec3i ni = mesh.F().row(n); if((ni(X) == ia || ni(Y) == ia || ni(Z) == ia) && (ni(X) == ib || ni(Y) == ib || ni(Z) == ib)) neigh.emplace_back(ni); } } // Calculate the normals for the neighboring triangles std::vector neighnorms; neighnorms.reserve(neigh.size()); for(const Vec3i& tri : neigh) { const Vec3d& pt1 = mesh.V().row(tri(0)); const Vec3d& pt2 = mesh.V().row(tri(1)); const Vec3d& pt3 = mesh.V().row(tri(2)); Eigen::Vector3d U = pt2 - pt1; Eigen::Vector3d V = pt3 - pt1; neighnorms.emplace_back(U.cross(V).normalized()); } // Throw out duplicates. They would cause trouble with summing. We will // use std::unique which works on sorted ranges. We will sort by the // coefficient-wise sum of the normals. It should force the same // elements to be consecutive. std::sort(neighnorms.begin(), neighnorms.end(), [](const Vec3d& v1, const Vec3d& v2){ return v1.sum() < v2.sum(); }); auto lend = std::unique(neighnorms.begin(), neighnorms.end(), [](const Vec3d& n1, const Vec3d& n2) { // Compare normals for equivalence. This is controvers stuff. auto deq = [](double a, double b) { return std::abs(a-b) < 1e-3; }; return deq(n1(X), n2(X)) && deq(n1(Y), n2(Y)) && deq(n1(Z), n2(Z)); }); if(!neighnorms.empty()) { // there were neighbors to count with // sum up the normals and then normalize the result again. // This unification seems to be enough. Vec3d sumnorm(0, 0, 0); sumnorm = std::accumulate(neighnorms.begin(), lend, sumnorm); sumnorm.normalize(); ret.row(long(ridx)) = sumnorm; } else { // point lies safely within its triangle Eigen::Vector3d U = p2 - p1; Eigen::Vector3d V = p3 - p1; ret.row(long(ridx)) = U.cross(V).normalized(); } }); return ret; } namespace bgi = boost::geometry::index; using Index3D = bgi::rtree< PointIndexEl, bgi::rstar<16, 4> /* ? */ >; ClusteredPoints cluster(Index3D &sindex, unsigned max_points, std::function( const Index3D &, const PointIndexEl &)> qfn) { using Elems = std::vector; // Recursive function for visiting all the points in a given distance to // each other std::function group = [&sindex, &group, max_points, qfn](Elems& pts, Elems& cluster) { for(auto& p : pts) { std::vector tmp = qfn(sindex, p); auto cmp = [](const PointIndexEl& e1, const PointIndexEl& e2){ return e1.second < e2.second; }; std::sort(tmp.begin(), tmp.end(), cmp); Elems newpts; std::set_difference(tmp.begin(), tmp.end(), cluster.begin(), cluster.end(), std::back_inserter(newpts), cmp); int c = max_points && newpts.size() + cluster.size() > max_points? int(max_points - cluster.size()) : int(newpts.size()); cluster.insert(cluster.end(), newpts.begin(), newpts.begin() + c); std::sort(cluster.begin(), cluster.end(), cmp); if(!newpts.empty() && (!max_points || cluster.size() < max_points)) group(newpts, cluster); } }; std::vector clusters; for(auto it = sindex.begin(); it != sindex.end();) { Elems cluster = {}; Elems pts = {*it}; group(pts, cluster); for(auto& c : cluster) sindex.remove(c); it = sindex.begin(); clusters.emplace_back(cluster); } ClusteredPoints result; for(auto& cluster : clusters) { result.emplace_back(); for(auto c : cluster) result.back().emplace_back(c.second); } return result; } namespace { std::vector distance_queryfn(const Index3D& sindex, const PointIndexEl& p, double dist, unsigned max_points) { std::vector tmp; tmp.reserve(max_points); sindex.query( bgi::nearest(p.first, max_points), std::back_inserter(tmp) ); for(auto it = tmp.begin(); it < tmp.end(); ++it) if(distance(p.first, it->first) > dist) it = tmp.erase(it); return tmp; } } // Clustering a set of points by the given criteria ClusteredPoints cluster( const std::vector& indices, std::function pointfn, double dist, unsigned max_points) { // A spatial index for querying the nearest points Index3D sindex; // Build the index for(auto idx : indices) sindex.insert( std::make_pair(pointfn(idx), idx)); return cluster(sindex, max_points, [dist, max_points](const Index3D& sidx, const PointIndexEl& p) { return distance_queryfn(sidx, p, dist, max_points); }); } // Clustering a set of points by the given criteria ClusteredPoints cluster( const std::vector& indices, std::function pointfn, std::function predicate, unsigned max_points) { // A spatial index for querying the nearest points Index3D sindex; // Build the index for(auto idx : indices) sindex.insert( std::make_pair(pointfn(idx), idx)); return cluster(sindex, max_points, [max_points, predicate](const Index3D& sidx, const PointIndexEl& p) { std::vector tmp; tmp.reserve(max_points); sidx.query(bgi::satisfies([p, predicate](const PointIndexEl& e){ return predicate(p, e); }), std::back_inserter(tmp)); return tmp; }); } ClusteredPoints cluster(const PointSet& pts, double dist, unsigned max_points) { // A spatial index for querying the nearest points Index3D sindex; // Build the index for(Eigen::Index i = 0; i < pts.rows(); i++) sindex.insert(std::make_pair(Vec3d(pts.row(i)), unsigned(i))); return cluster(sindex, max_points, [dist, max_points](const Index3D& sidx, const PointIndexEl& p) { return distance_queryfn(sidx, p, dist, max_points); }); } } }