#include "SLAPrint.hpp" #include "SLA/SLASupportTree.hpp" #include "SLA/SLABasePool.hpp" #include "SLA/SLAAutoSupports.hpp" #include "ClipperUtils.hpp" #include "Geometry.hpp" #include "MTUtils.hpp" #include #include #include #include #include // For geometry algorithms with native Clipper types (no copies and conversions) #include //#include //#include "tbb/mutex.h" #include "I18N.hpp" //! macro used to mark string used at localization, //! return same string #define L(s) Slic3r::I18N::translate(s) namespace Slic3r { using SupportTreePtr = std::unique_ptr; class SLAPrintObject::SupportData { public: sla::EigenMesh3D emesh; // index-triangle representation std::vector support_points; // all the support points (manual/auto) SupportTreePtr support_tree_ptr; // the supports std::vector support_slices; // sliced supports inline SupportData(const TriangleMesh &trmesh) : emesh(trmesh) {} }; namespace { // should add up to 100 (%) const std::array OBJ_STEP_LEVELS = { 30, // slaposObjectSlice, 20, // slaposSupportPoints, 10, // slaposSupportTree, 10, // slaposBasePool, 30, // slaposSliceSupports, }; // Object step to status label. The labels are localized at the time of calling, thus supporting language switching. std::string OBJ_STEP_LABELS(size_t idx) { switch (idx) { case slaposObjectSlice: return L("Slicing model"); case slaposSupportPoints: return L("Generating support points"); case slaposSupportTree: return L("Generating support tree"); case slaposBasePool: return L("Generating pad"); case slaposSliceSupports: return L("Slicing supports"); default:; } assert(false); return "Out of bounds!"; }; // Should also add up to 100 (%) const std::array PRINT_STEP_LEVELS = { 10, // slapsMergeSlicesAndEval 90, // slapsRasterize }; // Print step to status label. The labels are localized at the time of calling, thus supporting language switching. std::string PRINT_STEP_LABELS(size_t idx) { switch (idx) { case slapsMergeSlicesAndEval: return L("Merging slices and calculating statistics"); case slapsRasterize: return L("Rasterizing layers"); default:; } assert(false); return "Out of bounds!"; }; } void SLAPrint::clear() { tbb::mutex::scoped_lock lock(this->state_mutex()); // The following call should stop background processing if it is running. this->invalidate_all_steps(); for (SLAPrintObject *object : m_objects) delete object; m_objects.clear(); m_model.clear_objects(); } // Transformation without rotation around Z and without a shift by X and Y. static Transform3d sla_trafo(const SLAPrint& p, const ModelObject &model_object) { Vec3d corr = p.relative_correction(); ModelInstance &model_instance = *model_object.instances.front(); Vec3d offset = model_instance.get_offset(); Vec3d rotation = model_instance.get_rotation(); offset(0) = 0.; offset(1) = 0.; rotation(2) = 0.; offset(Z) *= corr(Z); auto trafo = Transform3d::Identity(); trafo.translate(offset); trafo.scale(corr); trafo.rotate(Eigen::AngleAxisd(rotation(2), Vec3d::UnitZ())); trafo.rotate(Eigen::AngleAxisd(rotation(1), Vec3d::UnitY())); trafo.rotate(Eigen::AngleAxisd(rotation(0), Vec3d::UnitX())); trafo.scale(model_instance.get_scaling_factor()); trafo.scale(model_instance.get_mirror()); if (model_instance.is_left_handed()) trafo = Eigen::Scaling(Vec3d(-1., 1., 1.)) * trafo; return trafo; } // List of instances, where the ModelInstance transformation is a composite of sla_trafo and the transformation defined by SLAPrintObject::Instance. static std::vector sla_instances(const ModelObject &model_object) { std::vector instances; assert(! model_object.instances.empty()); if (! model_object.instances.empty()) { Vec3d rotation0 = model_object.instances.front()->get_rotation(); rotation0(2) = 0.; for (ModelInstance *model_instance : model_object.instances) if (model_instance->is_printable()) { instances.emplace_back( model_instance->id(), Point::new_scale(model_instance->get_offset(X), model_instance->get_offset(Y)), float(Geometry::rotation_diff_z(rotation0, model_instance->get_rotation()))); } } return instances; } SLAPrint::ApplyStatus SLAPrint::apply(const Model &model, DynamicPrintConfig config) { #ifdef _DEBUG check_model_ids_validity(model); #endif /* _DEBUG */ // Normalize the config. config.option("sla_print_settings_id", true); config.option("sla_material_settings_id", true); config.option("printer_settings_id", true); config.normalize(); // Collect changes to print config. t_config_option_keys print_diff = m_print_config.diff(config); t_config_option_keys printer_diff = m_printer_config.diff(config); t_config_option_keys material_diff = m_material_config.diff(config); t_config_option_keys object_diff = m_default_object_config.diff(config); t_config_option_keys placeholder_parser_diff = m_placeholder_parser.config_diff(config); // Do not use the ApplyStatus as we will use the max function when updating apply_status. unsigned int apply_status = APPLY_STATUS_UNCHANGED; auto update_apply_status = [&apply_status](bool invalidated) { apply_status = std::max(apply_status, invalidated ? APPLY_STATUS_INVALIDATED : APPLY_STATUS_CHANGED); }; if (! (print_diff.empty() && printer_diff.empty() && material_diff.empty() && object_diff.empty())) update_apply_status(false); // Grab the lock for the Print / PrintObject milestones. tbb::mutex::scoped_lock lock(this->state_mutex()); // The following call may stop the background processing. bool invalidate_all_model_objects = false; if (! print_diff.empty()) update_apply_status(this->invalidate_state_by_config_options(print_diff, invalidate_all_model_objects)); if (! printer_diff.empty()) update_apply_status(this->invalidate_state_by_config_options(printer_diff, invalidate_all_model_objects)); if (! material_diff.empty()) update_apply_status(this->invalidate_state_by_config_options(material_diff, invalidate_all_model_objects)); // Apply variables to placeholder parser. The placeholder parser is currently used // only to generate the output file name. if (! placeholder_parser_diff.empty()) { // update_apply_status(this->invalidate_step(slapsRasterize)); m_placeholder_parser.apply_config(config); // Set the profile aliases for the PrintBase::output_filename() m_placeholder_parser.set("print_preset", config.option("sla_print_settings_id")->clone()); m_placeholder_parser.set("material_preset", config.option("sla_material_settings_id")->clone()); m_placeholder_parser.set("printer_preset", config.option("printer_settings_id")->clone()); } // It is also safe to change m_config now after this->invalidate_state_by_config_options() call. m_print_config.apply_only(config, print_diff, true); m_printer_config.apply_only(config, printer_diff, true); // Handle changes to material config. m_material_config.apply_only(config, material_diff, true); // Handle changes to object config defaults m_default_object_config.apply_only(config, object_diff, true); struct ModelObjectStatus { enum Status { Unknown, Old, New, Moved, Deleted, }; ModelObjectStatus(ObjectID id, Status status = Unknown) : id(id), status(status) {} ObjectID id; Status status; // Search by id. bool operator<(const ModelObjectStatus &rhs) const { return id < rhs.id; } }; std::set model_object_status; // 1) Synchronize model objects. if (model.id() != m_model.id() || invalidate_all_model_objects) { // Kill everything, initialize from scratch. // Stop background processing. this->call_cancel_callback(); update_apply_status(this->invalidate_all_steps()); for (SLAPrintObject *object : m_objects) { model_object_status.emplace(object->model_object()->id(), ModelObjectStatus::Deleted); update_apply_status(object->invalidate_all_steps()); delete object; } m_objects.clear(); m_model.assign_copy(model); for (const ModelObject *model_object : m_model.objects) model_object_status.emplace(model_object->id(), ModelObjectStatus::New); } else { if (model_object_list_equal(m_model, model)) { // The object list did not change. for (const ModelObject *model_object : m_model.objects) model_object_status.emplace(model_object->id(), ModelObjectStatus::Old); } else if (model_object_list_extended(m_model, model)) { // Add new objects. Their volumes and configs will be synchronized later. update_apply_status(this->invalidate_step(slapsMergeSlicesAndEval)); for (const ModelObject *model_object : m_model.objects) model_object_status.emplace(model_object->id(), ModelObjectStatus::Old); for (size_t i = m_model.objects.size(); i < model.objects.size(); ++ i) { model_object_status.emplace(model.objects[i]->id(), ModelObjectStatus::New); m_model.objects.emplace_back(ModelObject::new_copy(*model.objects[i])); m_model.objects.back()->set_model(&m_model); } } else { // Reorder the objects, add new objects. // First stop background processing before shuffling or deleting the PrintObjects in the object list. this->call_cancel_callback(); update_apply_status(this->invalidate_step(slapsMergeSlicesAndEval)); // Second create a new list of objects. std::vector model_objects_old(std::move(m_model.objects)); m_model.objects.clear(); m_model.objects.reserve(model.objects.size()); auto by_id_lower = [](const ModelObject *lhs, const ModelObject *rhs){ return lhs->id() < rhs->id(); }; std::sort(model_objects_old.begin(), model_objects_old.end(), by_id_lower); for (const ModelObject *mobj : model.objects) { auto it = std::lower_bound(model_objects_old.begin(), model_objects_old.end(), mobj, by_id_lower); if (it == model_objects_old.end() || (*it)->id() != mobj->id()) { // New ModelObject added. m_model.objects.emplace_back(ModelObject::new_copy(*mobj)); m_model.objects.back()->set_model(&m_model); model_object_status.emplace(mobj->id(), ModelObjectStatus::New); } else { // Existing ModelObject re-added (possibly moved in the list). m_model.objects.emplace_back(*it); model_object_status.emplace(mobj->id(), ModelObjectStatus::Moved); } } bool deleted_any = false; for (ModelObject *&model_object : model_objects_old) { if (model_object_status.find(ModelObjectStatus(model_object->id())) == model_object_status.end()) { model_object_status.emplace(model_object->id(), ModelObjectStatus::Deleted); deleted_any = true; } else // Do not delete this ModelObject instance. model_object = nullptr; } if (deleted_any) { // Delete PrintObjects of the deleted ModelObjects. std::vector print_objects_old = std::move(m_objects); m_objects.clear(); m_objects.reserve(print_objects_old.size()); for (SLAPrintObject *print_object : print_objects_old) { auto it_status = model_object_status.find(ModelObjectStatus(print_object->model_object()->id())); assert(it_status != model_object_status.end()); if (it_status->status == ModelObjectStatus::Deleted) { update_apply_status(print_object->invalidate_all_steps()); delete print_object; } else m_objects.emplace_back(print_object); } for (ModelObject *model_object : model_objects_old) delete model_object; } } } // 2) Map print objects including their transformation matrices. struct PrintObjectStatus { enum Status { Unknown, Deleted, Reused, New }; PrintObjectStatus(SLAPrintObject *print_object, Status status = Unknown) : id(print_object->model_object()->id()), print_object(print_object), trafo(print_object->trafo()), status(status) {} PrintObjectStatus(ObjectID id) : id(id), print_object(nullptr), trafo(Transform3d::Identity()), status(Unknown) {} // ID of the ModelObject & PrintObject ObjectID id; // Pointer to the old PrintObject SLAPrintObject *print_object; // Trafo generated with model_object->world_matrix(true) Transform3d trafo; Status status; // Search by id. bool operator<(const PrintObjectStatus &rhs) const { return id < rhs.id; } }; std::multiset print_object_status; for (SLAPrintObject *print_object : m_objects) print_object_status.emplace(PrintObjectStatus(print_object)); // 3) Synchronize ModelObjects & PrintObjects. std::vector print_objects_new; print_objects_new.reserve(std::max(m_objects.size(), m_model.objects.size())); bool new_objects = false; for (size_t idx_model_object = 0; idx_model_object < model.objects.size(); ++ idx_model_object) { ModelObject &model_object = *m_model.objects[idx_model_object]; auto it_status = model_object_status.find(ModelObjectStatus(model_object.id())); assert(it_status != model_object_status.end()); assert(it_status->status != ModelObjectStatus::Deleted); // PrintObject for this ModelObject, if it exists. auto it_print_object_status = print_object_status.end(); if (it_status->status != ModelObjectStatus::New) { // Update the ModelObject instance, possibly invalidate the linked PrintObjects. assert(it_status->status == ModelObjectStatus::Old || it_status->status == ModelObjectStatus::Moved); const ModelObject &model_object_new = *model.objects[idx_model_object]; it_print_object_status = print_object_status.lower_bound(PrintObjectStatus(model_object.id())); if (it_print_object_status != print_object_status.end() && it_print_object_status->id != model_object.id()) it_print_object_status = print_object_status.end(); // Check whether a model part volume was added or removed, their transformations or order changed. bool model_parts_differ = model_volume_list_changed(model_object, model_object_new, ModelVolumeType::MODEL_PART); bool sla_trafo_differs = model_object.instances.empty() != model_object_new.instances.empty() || (! model_object.instances.empty() && (! sla_trafo(*this, model_object).isApprox(sla_trafo(*this, model_object_new)) || model_object.instances.front()->is_left_handed() != model_object_new.instances.front()->is_left_handed())); if (model_parts_differ || sla_trafo_differs) { // The very first step (the slicing step) is invalidated. One may freely remove all associated PrintObjects. if (it_print_object_status != print_object_status.end()) { update_apply_status(it_print_object_status->print_object->invalidate_all_steps()); const_cast(*it_print_object_status).status = PrintObjectStatus::Deleted; } // Copy content of the ModelObject including its ID, do not change the parent. model_object.assign_copy(model_object_new); } else { // Synchronize Object's config. bool object_config_changed = model_object.config != model_object_new.config; if (object_config_changed) static_cast(model_object.config) = static_cast(model_object_new.config); if (! object_diff.empty() || object_config_changed) { SLAPrintObjectConfig new_config = m_default_object_config; normalize_and_apply_config(new_config, model_object.config); if (it_print_object_status != print_object_status.end()) { t_config_option_keys diff = it_print_object_status->print_object->config().diff(new_config); if (! diff.empty()) { update_apply_status(it_print_object_status->print_object->invalidate_state_by_config_options(diff)); it_print_object_status->print_object->config_apply_only(new_config, diff, true); } } } bool old_user_modified = model_object.sla_points_status == sla::PointsStatus::UserModified; bool new_user_modified = model_object_new.sla_points_status == sla::PointsStatus::UserModified; if ((old_user_modified && ! new_user_modified) || // switching to automatic supports from manual supports (! old_user_modified && new_user_modified) || // switching to manual supports from automatic supports (new_user_modified && model_object.sla_support_points != model_object_new.sla_support_points)) { if (it_print_object_status != print_object_status.end()) update_apply_status(it_print_object_status->print_object->invalidate_step(slaposSupportPoints)); model_object.sla_support_points = model_object_new.sla_support_points; } model_object.sla_points_status = model_object_new.sla_points_status; // Copy the ModelObject name, input_file and instances. The instances will compared against PrintObject instances in the next step. model_object.name = model_object_new.name; model_object.input_file = model_object_new.input_file; model_object.clear_instances(); model_object.instances.reserve(model_object_new.instances.size()); for (const ModelInstance *model_instance : model_object_new.instances) { model_object.instances.emplace_back(new ModelInstance(*model_instance)); model_object.instances.back()->set_model_object(&model_object); } } } std::vector new_instances = sla_instances(model_object); if (it_print_object_status != print_object_status.end() && it_print_object_status->status != PrintObjectStatus::Deleted) { // The SLAPrintObject is already there. if (new_instances.empty()) { const_cast(*it_print_object_status).status = PrintObjectStatus::Deleted; } else { if (new_instances != it_print_object_status->print_object->instances()) { // Instances changed. it_print_object_status->print_object->set_instances(new_instances); update_apply_status(this->invalidate_step(slapsMergeSlicesAndEval)); } print_objects_new.emplace_back(it_print_object_status->print_object); const_cast(*it_print_object_status).status = PrintObjectStatus::Reused; } } else if (! new_instances.empty()) { auto print_object = new SLAPrintObject(this, &model_object); // FIXME: this invalidates the transformed mesh in SLAPrintObject // which is expensive to calculate (especially the raw_mesh() call) print_object->set_trafo(sla_trafo(*this, model_object), model_object.instances.front()->is_left_handed()); print_object->set_instances(std::move(new_instances)); SLAPrintObjectConfig new_config = m_default_object_config; normalize_and_apply_config(new_config, model_object.config); print_object->config_apply(new_config, true); print_objects_new.emplace_back(print_object); new_objects = true; } } if (m_objects != print_objects_new) { this->call_cancel_callback(); update_apply_status(this->invalidate_all_steps()); m_objects = print_objects_new; // Delete the PrintObjects marked as Unknown or Deleted. for (auto &pos : print_object_status) if (pos.status == PrintObjectStatus::Unknown || pos.status == PrintObjectStatus::Deleted) { update_apply_status(pos.print_object->invalidate_all_steps()); delete pos.print_object; } if (new_objects) update_apply_status(false); } if(m_objects.empty()) { m_printer.release(); m_printer_input.clear(); m_print_statistics.clear(); } #ifdef _DEBUG check_model_ids_equal(m_model, model); #endif /* _DEBUG */ m_full_print_config = std::move(config); return static_cast(apply_status); } // After calling the apply() function, set_task() may be called to limit the task to be processed by process(). void SLAPrint::set_task(const TaskParams ¶ms) { // Grab the lock for the Print / PrintObject milestones. tbb::mutex::scoped_lock lock(this->state_mutex()); int n_object_steps = int(params.to_object_step) + 1; if (n_object_steps == 0) n_object_steps = int(slaposCount); if (params.single_model_object.valid()) { // Find the print object to be processed with priority. SLAPrintObject *print_object = nullptr; size_t idx_print_object = 0; for (; idx_print_object < m_objects.size(); ++ idx_print_object) if (m_objects[idx_print_object]->model_object()->id() == params.single_model_object) { print_object = m_objects[idx_print_object]; break; } assert(print_object != nullptr); // Find out whether the priority print object is being currently processed. bool running = false; for (int istep = 0; istep < n_object_steps; ++ istep) { if (! print_object->m_stepmask[size_t(istep)]) // Step was skipped, cancel. break; if (print_object->is_step_started_unguarded(SLAPrintObjectStep(istep))) { // No step was skipped, and a wanted step is being processed. Don't cancel. running = true; break; } } if (! running) this->call_cancel_callback(); // Now the background process is either stopped, or it is inside one of the print object steps to be calculated anyway. if (params.single_model_instance_only) { // Suppress all the steps of other instances. for (SLAPrintObject *po : m_objects) for (size_t istep = 0; istep < slaposCount; ++ istep) po->m_stepmask[istep] = false; } else if (! running) { // Swap the print objects, so that the selected print_object is first in the row. // At this point the background processing must be stopped, so it is safe to shuffle print objects. if (idx_print_object != 0) std::swap(m_objects.front(), m_objects[idx_print_object]); } // and set the steps for the current object. for (int istep = 0; istep < n_object_steps; ++ istep) print_object->m_stepmask[size_t(istep)] = true; for (int istep = n_object_steps; istep < int(slaposCount); ++ istep) print_object->m_stepmask[size_t(istep)] = false; } else { // Slicing all objects. bool running = false; for (SLAPrintObject *print_object : m_objects) for (int istep = 0; istep < n_object_steps; ++ istep) { if (! print_object->m_stepmask[size_t(istep)]) { // Step may have been skipped. Restart. goto loop_end; } if (print_object->is_step_started_unguarded(SLAPrintObjectStep(istep))) { // This step is running, and the state cannot be changed due to the this->state_mutex() being locked. // It is safe to manipulate m_stepmask of other SLAPrintObjects and SLAPrint now. running = true; goto loop_end; } } loop_end: if (! running) this->call_cancel_callback(); for (SLAPrintObject *po : m_objects) { for (int istep = 0; istep < n_object_steps; ++ istep) po->m_stepmask[size_t(istep)] = true; for (auto istep = size_t(n_object_steps); istep < slaposCount; ++ istep) po->m_stepmask[istep] = false; } } if (params.to_object_step != -1 || params.to_print_step != -1) { // Limit the print steps. size_t istep = (params.to_object_step != -1) ? 0 : size_t(params.to_print_step) + 1; for (; istep < m_stepmask.size(); ++ istep) m_stepmask[istep] = false; } } // Clean up after process() finished, either with success, error or if canceled. // The adjustments on the SLAPrint / SLAPrintObject data due to set_task() are to be reverted here. void SLAPrint::finalize() { for (SLAPrintObject *po : m_objects) for (size_t istep = 0; istep < slaposCount; ++ istep) po->m_stepmask[istep] = true; for (size_t istep = 0; istep < slapsCount; ++ istep) m_stepmask[istep] = true; } // Generate a recommended output file name based on the format template, default extension, and template parameters // (timestamps, object placeholders derived from the model, current placeholder prameters and print statistics. // Use the final print statistics if available, or just keep the print statistics placeholders if not available yet (before the output is finalized). std::string SLAPrint::output_filename(const std::string &filename_base) const { DynamicConfig config = this->finished() ? this->print_statistics().config() : this->print_statistics().placeholders(); return this->PrintBase::output_filename(m_print_config.output_filename_format.value, ".sl1", filename_base, &config); } namespace { // Compile the argument for support creation from the static print config. sla::SupportConfig make_support_cfg(const SLAPrintObjectConfig& c) { sla::SupportConfig scfg; scfg.head_front_radius_mm = 0.5*c.support_head_front_diameter.getFloat(); scfg.head_back_radius_mm = 0.5*c.support_pillar_diameter.getFloat(); scfg.head_penetration_mm = c.support_head_penetration.getFloat(); scfg.head_width_mm = c.support_head_width.getFloat(); scfg.object_elevation_mm = c.support_object_elevation.getFloat(); scfg.bridge_slope = c.support_critical_angle.getFloat() * PI / 180.0 ; scfg.max_bridge_length_mm = c.support_max_bridge_length.getFloat(); scfg.max_pillar_link_distance_mm = c.support_max_pillar_link_distance.getFloat(); switch(c.support_pillar_connection_mode.getInt()) { case slapcmZigZag: scfg.pillar_connection_mode = sla::PillarConnectionMode::zigzag; break; case slapcmCross: scfg.pillar_connection_mode = sla::PillarConnectionMode::cross; break; case slapcmDynamic: scfg.pillar_connection_mode = sla::PillarConnectionMode::dynamic; break; } scfg.ground_facing_only = c.support_buildplate_only.getBool(); scfg.pillar_widening_factor = c.support_pillar_widening_factor.getFloat(); scfg.base_radius_mm = 0.5*c.support_base_diameter.getFloat(); scfg.base_height_mm = c.support_base_height.getFloat(); scfg.pillar_base_safety_distance_mm = c.support_base_safety_distance.getFloat() < EPSILON ? scfg.safety_distance_mm : c.support_base_safety_distance.getFloat(); return scfg; } sla::PoolConfig::EmbedObject builtin_pad_cfg(const SLAPrintObjectConfig& c) { sla::PoolConfig::EmbedObject ret; ret.enabled = c.support_object_elevation.getFloat() <= EPSILON && c.pad_enable.getBool() && c.supports_enable.getBool(); if(ret.enabled) { ret.object_gap_mm = c.pad_object_gap.getFloat(); ret.stick_width_mm = c.pad_object_connector_width.getFloat(); ret.stick_stride_mm = c.pad_object_connector_stride.getFloat(); ret.stick_penetration_mm = c.pad_object_connector_penetration .getFloat(); } return ret; } sla::PoolConfig make_pool_config(const SLAPrintObjectConfig& c) { sla::PoolConfig pcfg; pcfg.min_wall_thickness_mm = c.pad_wall_thickness.getFloat(); pcfg.wall_slope = c.pad_wall_slope.getFloat() * PI / 180.0; // We do not support radius for now pcfg.edge_radius_mm = 0.0; //c.pad_edge_radius.getFloat(); pcfg.max_merge_distance_mm = c.pad_max_merge_distance.getFloat(); pcfg.min_wall_height_mm = c.pad_wall_height.getFloat(); // set builtin pad implicitly ON pcfg.embed_object = builtin_pad_cfg(c); return pcfg; } } std::string SLAPrint::validate() const { for(SLAPrintObject * po : m_objects) { const ModelObject *mo = po->model_object(); bool supports_en = po->config().supports_enable.getBool(); if(supports_en && mo->sla_points_status == sla::PointsStatus::UserModified && mo->sla_support_points.empty()) return L("Cannot proceed without support points! " "Add support points or disable support generation."); sla::SupportConfig cfg = make_support_cfg(po->config()); double pinhead_width = 2 * cfg.head_front_radius_mm + cfg.head_width_mm + 2 * cfg.head_back_radius_mm - cfg.head_penetration_mm; double elv = cfg.object_elevation_mm; if(supports_en && elv > EPSILON && elv < pinhead_width ) return L("Elevation is too low for object."); sla::PoolConfig::EmbedObject builtinpad = builtin_pad_cfg(po->config()); if(supports_en && builtinpad.enabled && cfg.pillar_base_safety_distance_mm < builtinpad.object_gap_mm) { return L( "The endings of the support pillars will be deployed on the " "gap between the object and the pad. 'Support base safety " "distance' has to be greater than the 'Pad object gap' " "parameter to avoid this."); } } return ""; } bool SLAPrint::invalidate_step(SLAPrintStep step) { bool invalidated = Inherited::invalidate_step(step); // propagate to dependent steps if (step == slapsMergeSlicesAndEval) { invalidated |= this->invalidate_all_steps(); } return invalidated; } void SLAPrint::process() { using namespace sla; using ExPolygon = Slic3r::ExPolygon; if(m_objects.empty()) return; // Assumption: at this point the print objects should be populated only with // the model objects we have to process and the instances are also filtered // shortcut to initial layer height double ilhd = m_material_config.initial_layer_height.getFloat(); auto ilh = float(ilhd); coord_t ilhs = scaled(ilhd); const size_t objcount = m_objects.size(); static const unsigned min_objstatus = 0; // where the per object operations start static const unsigned max_objstatus = 50; // where the per object operations end // the coefficient that multiplies the per object status values which // are set up for <0, 100>. They need to be scaled into the whole process const double ostepd = (max_objstatus - min_objstatus) / (objcount * 100.0); // The slicing will be performed on an imaginary 1D grid which starts from // the bottom of the bounding box created around the supported model. So // the first layer which is usually thicker will be part of the supports // not the model geometry. Exception is when the model is not in the air // (elevation is zero) and no pad creation was requested. In this case the // model geometry starts on the ground level and the initial layer is part // of it. In any case, the model and the supports have to be sliced in the // same imaginary grid (the height vector argument to TriangleMeshSlicer). // Slicing the model object. This method is oversimplified and needs to // be compared with the fff slicing algorithm for verification auto slice_model = [this, ilhs, ilh](SLAPrintObject& po) { const TriangleMesh& mesh = po.transformed_mesh(); // We need to prepare the slice index... double lhd = m_objects.front()->m_config.layer_height.getFloat(); float lh = float(lhd); coord_t lhs = scaled(lhd); auto && bb3d = mesh.bounding_box(); double minZ = bb3d.min(Z) - po.get_elevation(); double maxZ = bb3d.max(Z); auto minZf = float(minZ); coord_t minZs = scaled(minZ); coord_t maxZs = scaled(maxZ); po.m_slice_index.clear(); size_t cap = size_t(1 + (maxZs - minZs - ilhs) / lhs); po.m_slice_index.reserve(cap); po.m_slice_index.emplace_back(minZs + ilhs, minZf + ilh / 2.f, ilh); for(coord_t h = minZs + ilhs + lhs; h <= maxZs; h += lhs) po.m_slice_index.emplace_back(h, unscaled(h) - lh / 2.f, lh); // Just get the first record that is form the model: auto slindex_it = po.closest_slice_record(po.m_slice_index, float(bb3d.min(Z))); if(slindex_it == po.m_slice_index.end()) //TRN To be shown at the status bar on SLA slicing error. throw std::runtime_error( L("Slicing had to be stopped due to an internal error: " "Inconsistent slice index.")); po.m_model_height_levels.clear(); po.m_model_height_levels.reserve(po.m_slice_index.size()); for(auto it = slindex_it; it != po.m_slice_index.end(); ++it) po.m_model_height_levels.emplace_back(it->slice_level()); TriangleMeshSlicer slicer(&mesh); po.m_model_slices.clear(); slicer.slice(po.m_model_height_levels, float(po.config().slice_closing_radius.value), &po.m_model_slices, [this](){ throw_if_canceled(); }); auto mit = slindex_it; double doffs = m_printer_config.absolute_correction.getFloat(); coord_t clpr_offs = scaled(doffs); for(size_t id = 0; id < po.m_model_slices.size() && mit != po.m_slice_index.end(); id++) { // We apply the printer correction offset here. if(clpr_offs != 0) po.m_model_slices[id] = offset_ex(po.m_model_slices[id], float(clpr_offs)); mit->set_model_slice_idx(po, id); ++mit; } if(po.m_config.supports_enable.getBool() || po.m_config.pad_enable.getBool()) { po.m_supportdata.reset( new SLAPrintObject::SupportData(po.transformed_mesh()) ); } }; // In this step we check the slices, identify island and cover them with // support points. Then we sprinkle the rest of the mesh. auto support_points = [this, ostepd](SLAPrintObject& po) { // If supports are disabled, we can skip the model scan. if(!po.m_config.supports_enable.getBool()) return; if (!po.m_supportdata) po.m_supportdata.reset( new SLAPrintObject::SupportData(po.transformed_mesh())); const ModelObject& mo = *po.m_model_object; BOOST_LOG_TRIVIAL(debug) << "Support point count " << mo.sla_support_points.size(); // Unless the user modified the points or we already did the calculation, we will do // the autoplacement. Otherwise we will just blindly copy the frontend data // into the backend cache. if (mo.sla_points_status != sla::PointsStatus::UserModified) { // Hypothetical use of the slice index: // auto bb = po.transformed_mesh().bounding_box(); // auto range = po.get_slice_records(bb.min(Z)); // std::vector heights; heights.reserve(range.size()); // for(auto& record : range) heights.emplace_back(record.slice_level()); // calculate heights of slices (slices are calculated already) const std::vector& heights = po.m_model_height_levels; this->throw_if_canceled(); SLAAutoSupports::Config config; const SLAPrintObjectConfig& cfg = po.config(); // the density config value is in percents: config.density_relative = float(cfg.support_points_density_relative / 100.f); config.minimal_distance = float(cfg.support_points_minimal_distance); config.head_diameter = float(cfg.support_head_front_diameter); // scaling for the sub operations double d = ostepd * OBJ_STEP_LEVELS[slaposSupportPoints] / 100.0; double init = m_report_status.status(); auto statuscb = [this, d, init](unsigned st) { double current = init + st * d; if(std::round(m_report_status.status()) < std::round(current)) m_report_status(*this, current, OBJ_STEP_LABELS(slaposSupportPoints)); }; // Construction of this object does the calculation. this->throw_if_canceled(); SLAAutoSupports auto_supports(po.transformed_mesh(), po.m_supportdata->emesh, po.get_model_slices(), heights, config, [this]() { throw_if_canceled(); }, statuscb); // Now let's extract the result. const std::vector& points = auto_supports.output(); this->throw_if_canceled(); po.m_supportdata->support_points = points; BOOST_LOG_TRIVIAL(debug) << "Automatic support points: " << po.m_supportdata->support_points.size(); // Using RELOAD_SLA_SUPPORT_POINTS to tell the Plater to pass // the update status to GLGizmoSlaSupports m_report_status(*this, -1, L("Generating support points"), SlicingStatus::RELOAD_SLA_SUPPORT_POINTS); } else { // There are either some points on the front-end, or the user // removed them on purpose. No calculation will be done. po.m_supportdata->support_points = po.transformed_support_points(); } // If the zero elevation mode is engaged, we have to filter out all the // points that are on the bottom of the object if (po.config().support_object_elevation.getFloat() <= EPSILON) { double gnd = po.m_supportdata->emesh.ground_level(); auto & pts = po.m_supportdata->support_points; double tolerance = po.config().pad_enable.getBool() ? po.m_config.pad_wall_thickness.getFloat() : po.m_config.support_base_height.getFloat(); // get iterator to the reorganized vector end auto endit = std::remove_if( pts.begin(), pts.end(), [tolerance, gnd](const sla::SupportPoint &sp) { double diff = std::abs(gnd - double(sp.pos(Z))); return diff <= tolerance; }); // erase all elements after the new end pts.erase(endit, pts.end()); } }; // In this step we create the supports auto support_tree = [this, ostepd](SLAPrintObject& po) { if(!po.m_supportdata) return; sla::PoolConfig pcfg = make_pool_config(po.m_config); if (pcfg.embed_object) po.m_supportdata->emesh.ground_level_offset( pcfg.min_wall_thickness_mm); if(!po.m_config.supports_enable.getBool()) { // Generate empty support tree. It can still host a pad po.m_supportdata->support_tree_ptr.reset( new SLASupportTree(po.m_supportdata->emesh.ground_level())); return; } sla::SupportConfig scfg = make_support_cfg(po.m_config); sla::Controller ctl; // scaling for the sub operations double d = ostepd * OBJ_STEP_LEVELS[slaposSupportTree] / 100.0; double init = m_report_status.status(); ctl.statuscb = [this, d, init](unsigned st, const std::string &logmsg) { double current = init + st * d; if(std::round(m_report_status.status()) < std::round(current)) m_report_status(*this, current, OBJ_STEP_LABELS(slaposSupportTree), SlicingStatus::DEFAULT, logmsg); }; ctl.stopcondition = [this](){ return canceled(); }; ctl.cancelfn = [this]() { throw_if_canceled(); }; po.m_supportdata->support_tree_ptr.reset( new SLASupportTree(po.m_supportdata->support_points, po.m_supportdata->emesh, scfg, ctl)); throw_if_canceled(); // Create the unified mesh auto rc = SlicingStatus::RELOAD_SCENE; // This is to prevent "Done." being displayed during merged_mesh() m_report_status(*this, -1, L("Visualizing supports")); po.m_supportdata->support_tree_ptr->merged_mesh(); BOOST_LOG_TRIVIAL(debug) << "Processed support point count " << po.m_supportdata->support_points.size(); // Check the mesh for later troubleshooting. if(po.support_mesh().empty()) BOOST_LOG_TRIVIAL(warning) << "Support mesh is empty"; m_report_status(*this, -1, L("Visualizing supports"), rc); }; // This step generates the sla base pad auto base_pool = [this](SLAPrintObject& po) { // this step can only go after the support tree has been created // and before the supports had been sliced. (or the slicing has to be // repeated) if(po.m_config.pad_enable.getBool()) { // Get the distilled pad configuration from the config sla::PoolConfig pcfg = make_pool_config(po.m_config); ExPolygons bp; // This will store the base plate of the pad. double pad_h = sla::get_pad_fullheight(pcfg); const TriangleMesh &trmesh = po.transformed_mesh(); // This call can get pretty time consuming auto thrfn = [this](){ throw_if_canceled(); }; if (!po.m_config.supports_enable.getBool() || pcfg.embed_object) { // No support (thus no elevation) or zero elevation mode // we sometimes call it "builtin pad" is enabled so we will // get a sample from the bottom of the mesh and use it for pad // creation. sla::base_plate(trmesh, bp, float(pad_h), float(po.m_config.layer_height.getFloat()), thrfn); } pcfg.throw_on_cancel = thrfn; po.m_supportdata->support_tree_ptr->add_pad(bp, pcfg); } else if(po.m_supportdata && po.m_supportdata->support_tree_ptr) { po.m_supportdata->support_tree_ptr->remove_pad(); } po.throw_if_canceled(); auto rc = SlicingStatus::RELOAD_SCENE; m_report_status(*this, -1, L("Visualizing supports"), rc); }; // Slicing the support geometries similarly to the model slicing procedure. // If the pad had been added previously (see step "base_pool" than it will // be part of the slices) auto slice_supports = [this](SLAPrintObject& po) { auto& sd = po.m_supportdata; if(sd) sd->support_slices.clear(); // Don't bother if no supports and no pad is present. if (!po.m_config.supports_enable.getBool() && !po.m_config.pad_enable.getBool()) return; if(sd && sd->support_tree_ptr) { std::vector heights; heights.reserve(po.m_slice_index.size()); for(auto& rec : po.m_slice_index) { heights.emplace_back(rec.slice_level()); } sd->support_slices = sd->support_tree_ptr->slice( heights, float(po.config().slice_closing_radius.value)); } double doffs = m_printer_config.absolute_correction.getFloat(); coord_t clpr_offs = scaled(doffs); for(size_t i = 0; i < sd->support_slices.size() && i < po.m_slice_index.size(); ++i) { // We apply the printer correction offset here. if(clpr_offs != 0) sd->support_slices[i] = offset_ex(sd->support_slices[i], float(clpr_offs)); po.m_slice_index[i].set_support_slice_idx(po, i); } // Using RELOAD_SLA_PREVIEW to tell the Plater to pass the update // status to the 3D preview to load the SLA slices. m_report_status(*this, -2, "", SlicingStatus::RELOAD_SLA_PREVIEW); }; // Merging the slices from all the print objects into one slice grid and // calculating print statistics from the merge result. auto merge_slices_and_eval_stats = [this, ilhs]() { // clear the rasterizer input m_printer_input.clear(); size_t mx = 0; for(SLAPrintObject * o : m_objects) { if(auto m = o->get_slice_index().size() > mx) mx = m; } m_printer_input.reserve(mx); auto eps = coord_t(SCALED_EPSILON); for(SLAPrintObject * o : m_objects) { coord_t gndlvl = o->get_slice_index().front().print_level() - ilhs; for(const SliceRecord& slicerecord : o->get_slice_index()) { coord_t lvlid = slicerecord.print_level() - gndlvl; // Neat trick to round the layer levels to the grid. lvlid = eps * (lvlid / eps); auto it = std::lower_bound(m_printer_input.begin(), m_printer_input.end(), PrintLayer(lvlid)); if(it == m_printer_input.end() || it->level() != lvlid) it = m_printer_input.insert(it, PrintLayer(lvlid)); it->add(slicerecord); } } m_print_statistics.clear(); using ClipperPoint = ClipperLib::IntPoint; using ClipperPolygon = ClipperLib::Polygon; // see clipper_polygon.hpp in libnest2d using ClipperPolygons = std::vector; namespace sl = libnest2d::shapelike; // For algorithms // Set up custom union and diff functions for clipper polygons auto polyunion = [] (const ClipperPolygons& subjects) { ClipperLib::Clipper clipper; bool closed = true; for(auto& path : subjects) { clipper.AddPath(path.Contour, ClipperLib::ptSubject, closed); clipper.AddPaths(path.Holes, ClipperLib::ptSubject, closed); } auto mode = ClipperLib::pftPositive; return libnest2d::clipper_execute(clipper, ClipperLib::ctUnion, mode, mode); }; auto polydiff = [](const ClipperPolygons& subjects, const ClipperPolygons& clips) { ClipperLib::Clipper clipper; bool closed = true; for(auto& path : subjects) { clipper.AddPath(path.Contour, ClipperLib::ptSubject, closed); clipper.AddPaths(path.Holes, ClipperLib::ptSubject, closed); } for(auto& path : clips) { clipper.AddPath(path.Contour, ClipperLib::ptClip, closed); clipper.AddPaths(path.Holes, ClipperLib::ptClip, closed); } auto mode = ClipperLib::pftPositive; return libnest2d::clipper_execute(clipper, ClipperLib::ctDifference, mode, mode); }; // libnest calculates positive area for clockwise polygons, Slic3r is in counter-clockwise auto areafn = [](const ClipperPolygon& poly) { return - sl::area(poly); }; const double area_fill = m_printer_config.area_fill.getFloat()*0.01;// 0.5 (50%); const double fast_tilt = m_printer_config.fast_tilt_time.getFloat();// 5.0; const double slow_tilt = m_printer_config.slow_tilt_time.getFloat();// 8.0; const double init_exp_time = m_material_config.initial_exposure_time.getFloat(); const double exp_time = m_material_config.exposure_time.getFloat(); const int fade_layers_cnt = m_default_object_config.faded_layers.getInt();// 10 // [3;20] const auto width = scaled(m_printer_config.display_width.getFloat()); const auto height = scaled(m_printer_config.display_height.getFloat()); const double display_area = width*height; // get polygons for all instances in the object auto get_all_polygons = [](const ExPolygons& input_polygons, const std::vector& instances, bool is_lefthanded) { ClipperPolygons polygons; polygons.reserve(input_polygons.size() * instances.size()); for (const ExPolygon& polygon : input_polygons) { if(polygon.contour.empty()) continue; for (size_t i = 0; i < instances.size(); ++i) { ClipperPolygon poly; // We need to reverse if flpXY OR is_lefthanded is true but // not if both are true which is a logical inequality (XOR) bool needreverse = /*flpXY !=*/ is_lefthanded; // should be a move poly.Contour.reserve(polygon.contour.size() + 1); auto& cntr = polygon.contour.points; if(needreverse) for(auto it = cntr.rbegin(); it != cntr.rend(); ++it) poly.Contour.emplace_back(it->x(), it->y()); else for(auto& p : cntr) poly.Contour.emplace_back(p.x(), p.y()); for(auto& h : polygon.holes) { poly.Holes.emplace_back(); auto& hole = poly.Holes.back(); hole.reserve(h.points.size() + 1); if(needreverse) for(auto it = h.points.rbegin(); it != h.points.rend(); ++it) hole.emplace_back(it->x(), it->y()); else for(auto& p : h.points) hole.emplace_back(p.x(), p.y()); } if(is_lefthanded) { for(auto& p : poly.Contour) p.X = -p.X; for(auto& h : poly.Holes) for(auto& p : h) p.X = -p.X; } sl::rotate(poly, double(instances[i].rotation)); sl::translate(poly, ClipperPoint{instances[i].shift(X), instances[i].shift(Y)}); polygons.emplace_back(std::move(poly)); } } return polygons; }; double supports_volume(0.0); double models_volume(0.0); double estim_time(0.0); size_t slow_layers = 0; size_t fast_layers = 0; const double delta_fade_time = (init_exp_time - exp_time) / (fade_layers_cnt + 1); double fade_layer_time = init_exp_time; SpinMutex mutex; using Lock = std::lock_guard; // Going to parallel: auto printlayerfn = [this, // functions and read only vars get_all_polygons, polyunion, polydiff, areafn, area_fill, display_area, exp_time, init_exp_time, fast_tilt, slow_tilt, delta_fade_time, // write vars &mutex, &models_volume, &supports_volume, &estim_time, &slow_layers, &fast_layers, &fade_layer_time](size_t sliced_layer_cnt) { PrintLayer& layer = m_printer_input[sliced_layer_cnt]; // vector of slice record references auto& slicerecord_references = layer.slices(); if(slicerecord_references.empty()) return; // Layer height should match for all object slices for a given level. const auto l_height = double(slicerecord_references.front().get().layer_height()); // Calculation of the consumed material ClipperPolygons model_polygons; ClipperPolygons supports_polygons; size_t c = std::accumulate(layer.slices().begin(), layer.slices().end(), size_t(0), [](size_t a, const SliceRecord &sr) { return a + sr.get_slice(soModel) .size(); }); model_polygons.reserve(c); c = std::accumulate(layer.slices().begin(), layer.slices().end(), size_t(0), [](size_t a, const SliceRecord &sr) { return a + sr.get_slice(soModel).size(); }); supports_polygons.reserve(c); for(const SliceRecord& record : layer.slices()) { const SLAPrintObject *po = record.print_obj(); const ExPolygons &modelslices = record.get_slice(soModel); bool is_lefth = record.print_obj()->is_left_handed(); if (!modelslices.empty()) { ClipperPolygons v = get_all_polygons(modelslices, po->instances(), is_lefth); for(ClipperPolygon& p_tmp : v) model_polygons.emplace_back(std::move(p_tmp)); } const ExPolygons &supportslices = record.get_slice(soSupport); if (!supportslices.empty()) { ClipperPolygons v = get_all_polygons(supportslices, po->instances(), is_lefth); for(ClipperPolygon& p_tmp : v) supports_polygons.emplace_back(std::move(p_tmp)); } } model_polygons = polyunion(model_polygons); double layer_model_area = 0; for (const ClipperPolygon& polygon : model_polygons) layer_model_area += areafn(polygon); if (layer_model_area < 0 || layer_model_area > 0) { Lock lck(mutex); models_volume += layer_model_area * l_height; } if(!supports_polygons.empty()) { if(model_polygons.empty()) supports_polygons = polyunion(supports_polygons); else supports_polygons = polydiff(supports_polygons, model_polygons); // allegedly, union of subject is done withing the diff according to the pftPositive polyFillType } double layer_support_area = 0; for (const ClipperPolygon& polygon : supports_polygons) layer_support_area += areafn(polygon); if (layer_support_area < 0 || layer_support_area > 0) { Lock lck(mutex); supports_volume += layer_support_area * l_height; } // Here we can save the expensively calculated polygons for printing ClipperPolygons trslices; trslices.reserve(model_polygons.size() + supports_polygons.size()); for(ClipperPolygon& poly : model_polygons) trslices.emplace_back(std::move(poly)); for(ClipperPolygon& poly : supports_polygons) trslices.emplace_back(std::move(poly)); layer.transformed_slices(polyunion(trslices)); // Calculation of the slow and fast layers to the future controlling those values on FW const bool is_fast_layer = (layer_model_area + layer_support_area) <= display_area*area_fill; const double tilt_time = is_fast_layer ? fast_tilt : slow_tilt; { Lock lck(mutex); if (is_fast_layer) fast_layers++; else slow_layers++; // Calculation of the printing time if (sliced_layer_cnt < 3) estim_time += init_exp_time; else if (fade_layer_time > exp_time) { fade_layer_time -= delta_fade_time; estim_time += fade_layer_time; } else estim_time += exp_time; estim_time += tilt_time; } }; // sequential version for debugging: // for(size_t i = 0; i < m_printer_input.size(); ++i) printlayerfn(i); tbb::parallel_for(0, m_printer_input.size(), printlayerfn); auto SCALING2 = SCALING_FACTOR * SCALING_FACTOR; m_print_statistics.support_used_material = supports_volume * SCALING2; m_print_statistics.objects_used_material = models_volume * SCALING2; // Estimated printing time // A layers count o the highest object if (m_printer_input.size() == 0) m_print_statistics.estimated_print_time = "N/A"; else m_print_statistics.estimated_print_time = get_time_dhms(float(estim_time)); m_print_statistics.fast_layers_count = fast_layers; m_print_statistics.slow_layers_count = slow_layers; m_report_status(*this, -2, "", SlicingStatus::RELOAD_SLA_PREVIEW); }; // Rasterizing the model objects, and their supports auto rasterize = [this]() { if(canceled()) return; { // create a raster printer for the current print parameters double layerh = m_default_object_config.layer_height.getFloat(); m_printer.reset(new SLAPrinter(m_printer_config, m_material_config, layerh)); } // Allocate space for all the layers SLAPrinter& printer = *m_printer; auto lvlcnt = unsigned(m_printer_input.size()); printer.layers(lvlcnt); // coefficient to map the rasterization state (0-99) to the allocated // portion (slot) of the process state double sd = (100 - max_objstatus) / 100.0; // slot is the portion of 100% that is realted to rasterization unsigned slot = PRINT_STEP_LEVELS[slapsRasterize]; // pst: previous state double pst = m_report_status.status(); double increment = (slot * sd) / m_printer_input.size(); double dstatus = m_report_status.status(); SpinMutex slck; // procedure to process one height level. This will run in parallel auto lvlfn = [this, &slck, &printer, increment, &dstatus, &pst] (unsigned level_id) { if(canceled()) return; PrintLayer& printlayer = m_printer_input[level_id]; // Switch to the appropriate layer in the printer printer.begin_layer(level_id); for(const ClipperLib::Polygon& poly : printlayer.transformed_slices()) printer.draw_polygon(poly, level_id); // Finish the layer for later saving it. printer.finish_layer(level_id); // Status indication guarded with the spinlock { std::lock_guard lck(slck); dstatus += increment; double st = std::round(dstatus); if(st > pst) { m_report_status(*this, st, PRINT_STEP_LABELS(slapsRasterize)); pst = st; } } }; // last minute escape if(canceled()) return; // Sequential version (for testing) // for(unsigned l = 0; l < lvlcnt; ++l) process_level(l); // Print all the layers in parallel tbb::parallel_for(0, lvlcnt, lvlfn); // Set statistics values to the printer m_printer->set_statistics( {(m_print_statistics.objects_used_material + m_print_statistics.support_used_material) / 1000, double(m_default_object_config.faded_layers.getInt()), double(m_print_statistics.slow_layers_count), double(m_print_statistics.fast_layers_count)}); }; using slaposFn = std::function; using slapsFn = std::function; std::array pobj_program = { slice_model, support_points, support_tree, base_pool, slice_supports }; std::array print_program = { merge_slices_and_eval_stats, rasterize }; double st = min_objstatus; unsigned incr = 0; BOOST_LOG_TRIVIAL(info) << "Start slicing process."; // TODO: this loop could run in parallel but should not exhaust all the CPU // power available // Calculate the support structures first before slicing the supports, // so that the preview will get displayed ASAP for all objects. std::vector step_ranges = {slaposObjectSlice, slaposSliceSupports, slaposCount}; for (size_t idx_range = 0; idx_range + 1 < step_ranges.size(); ++idx_range) { for (SLAPrintObject *po : m_objects) { BOOST_LOG_TRIVIAL(info) << "Slicing object " << po->model_object()->name; for (int s = int(step_ranges[idx_range]); s < int(step_ranges[idx_range + 1]); ++s) { auto currentstep = static_cast(s); // Cancellation checking. Each step will check for // cancellation on its own and return earlier gracefully. // Just after it returns execution gets to this point and // throws the canceled signal. throw_if_canceled(); st += incr * ostepd; if (po->m_stepmask[currentstep] && po->set_started(currentstep)) { m_report_status(*this, st, OBJ_STEP_LABELS(currentstep)); pobj_program[currentstep](*po); throw_if_canceled(); po->set_done(currentstep); } incr = OBJ_STEP_LEVELS[currentstep]; } } } std::array printsteps = { slapsMergeSlicesAndEval, slapsRasterize }; // this would disable the rasterization step // m_stepmask[slapsRasterize] = false; double pstd = (100 - max_objstatus) / 100.0; st = max_objstatus; for(size_t s = 0; s < print_program.size(); ++s) { auto currentstep = printsteps[s]; throw_if_canceled(); if(m_stepmask[currentstep] && set_started(currentstep)) { m_report_status(*this, st, PRINT_STEP_LABELS(currentstep)); print_program[currentstep](); throw_if_canceled(); set_done(currentstep); } st += PRINT_STEP_LEVELS[currentstep] * pstd; } // If everything vent well m_report_status(*this, 100, L("Slicing done")); } bool SLAPrint::invalidate_state_by_config_options(const std::vector &opt_keys, bool &invalidate_all_model_objects) { if (opt_keys.empty()) return false; static std::unordered_set steps_full = { "initial_layer_height", "material_correction", "relative_correction", "absolute_correction", "gamma_correction" }; // Cache the plenty of parameters, which influence the final rasterization only, // or they are only notes not influencing the rasterization step. static std::unordered_set steps_rasterize = { "exposure_time", "initial_exposure_time", "display_width", "display_height", "display_pixels_x", "display_pixels_y", "display_mirror_x", "display_mirror_y", "display_orientation" }; static std::unordered_set steps_ignore = { "bed_shape", "max_print_height", "printer_technology", "output_filename_format", "fast_tilt_time", "slow_tilt_time", "area_fill" }; std::vector steps; std::vector osteps; bool invalidated = false; for (const t_config_option_key &opt_key : opt_keys) { if (steps_rasterize.find(opt_key) != steps_rasterize.end()) { // These options only affect the final rasterization, or they are just notes without influence on the output, // so there is nothing to invalidate. steps.emplace_back(slapsMergeSlicesAndEval); } else if (steps_ignore.find(opt_key) != steps_ignore.end()) { // These steps have no influence on the output. Just ignore them. } else if (steps_full.find(opt_key) != steps_full.end()) { steps.emplace_back(slapsMergeSlicesAndEval); osteps.emplace_back(slaposObjectSlice); invalidate_all_model_objects = true; } else { // All values should be covered. assert(false); } } sort_remove_duplicates(steps); for (SLAPrintStep step : steps) invalidated |= this->invalidate_step(step); sort_remove_duplicates(osteps); for (SLAPrintObjectStep ostep : osteps) for (SLAPrintObject *object : m_objects) invalidated |= object->invalidate_step(ostep); return invalidated; } // Returns true if an object step is done on all objects and there's at least one object. bool SLAPrint::is_step_done(SLAPrintObjectStep step) const { if (m_objects.empty()) return false; tbb::mutex::scoped_lock lock(this->state_mutex()); for (const SLAPrintObject *object : m_objects) if (! object->is_step_done_unguarded(step)) return false; return true; } SLAPrintObject::SLAPrintObject(SLAPrint *print, ModelObject *model_object) : Inherited(print, model_object) , m_stepmask(slaposCount, true) , m_transformed_rmesh([this](TriangleMesh &obj) { obj = m_model_object->raw_mesh(); if (!obj.empty()) { obj.transform(m_trafo); obj.require_shared_vertices(); } }) {} SLAPrintObject::~SLAPrintObject() {} // Called by SLAPrint::apply(). // This method only accepts SLAPrintObjectConfig option keys. bool SLAPrintObject::invalidate_state_by_config_options(const std::vector &opt_keys) { if (opt_keys.empty()) return false; std::vector steps; bool invalidated = false; for (const t_config_option_key &opt_key : opt_keys) { if ( opt_key == "layer_height" || opt_key == "faded_layers" || opt_key == "pad_enable" || opt_key == "pad_wall_thickness" || opt_key == "supports_enable" || opt_key == "support_object_elevation" || opt_key == "slice_closing_radius") { steps.emplace_back(slaposObjectSlice); } else if ( opt_key == "support_points_density_relative" || opt_key == "support_points_minimal_distance") { steps.emplace_back(slaposSupportPoints); } else if ( opt_key == "support_head_front_diameter" || opt_key == "support_head_penetration" || opt_key == "support_head_width" || opt_key == "support_pillar_diameter" || opt_key == "support_pillar_connection_mode" || opt_key == "support_buildplate_only" || opt_key == "support_base_diameter" || opt_key == "support_base_height" || opt_key == "support_critical_angle" || opt_key == "support_max_bridge_length" || opt_key == "support_max_pillar_link_distance" || opt_key == "support_base_safety_distance" ) { steps.emplace_back(slaposSupportTree); } else if ( opt_key == "pad_wall_height" || opt_key == "pad_max_merge_distance" || opt_key == "pad_wall_slope" || opt_key == "pad_edge_radius" || opt_key == "pad_object_gap" || opt_key == "pad_object_connector_stride" || opt_key == "pad_object_connector_width" || opt_key == "pad_object_connector_penetration" ) { steps.emplace_back(slaposBasePool); } else { // All keys should be covered. assert(false); } } sort_remove_duplicates(steps); for (SLAPrintObjectStep step : steps) invalidated |= this->invalidate_step(step); return invalidated; } bool SLAPrintObject::invalidate_step(SLAPrintObjectStep step) { bool invalidated = Inherited::invalidate_step(step); // propagate to dependent steps if (step == slaposObjectSlice) { invalidated |= this->invalidate_all_steps(); } else if (step == slaposSupportPoints) { invalidated |= this->invalidate_steps({ slaposSupportTree, slaposBasePool, slaposSliceSupports }); invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval); } else if (step == slaposSupportTree) { invalidated |= this->invalidate_steps({ slaposBasePool, slaposSliceSupports }); invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval); } else if (step == slaposBasePool) { invalidated |= this->invalidate_steps({slaposSliceSupports}); invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval); } else if (step == slaposSliceSupports) { invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval); } return invalidated; } bool SLAPrintObject::invalidate_all_steps() { return Inherited::invalidate_all_steps() | m_print->invalidate_all_steps(); } double SLAPrintObject::get_elevation() const { bool en = m_config.supports_enable.getBool(); double ret = en ? m_config.support_object_elevation.getFloat() : 0.; if(m_config.pad_enable.getBool()) { // Normally the elevation for the pad itself would be the thickness of // its walls but currently it is half of its thickness. Whatever it // will be in the future, we provide the config to the get_pad_elevation // method and we will have the correct value sla::PoolConfig pcfg = make_pool_config(m_config); if(!pcfg.embed_object) ret += sla::get_pad_elevation(pcfg); } return ret; } double SLAPrintObject::get_current_elevation() const { bool has_supports = is_step_done(slaposSupportTree); bool has_pad = is_step_done(slaposBasePool); if(!has_supports && !has_pad) return 0; else if(has_supports && !has_pad) { return m_config.support_object_elevation.getFloat(); } return get_elevation(); } Vec3d SLAPrint::relative_correction() const { Vec3d corr(1., 1., 1.); if(printer_config().relative_correction.values.size() >= 2) { corr(X) = printer_config().relative_correction.values[0]; corr(Y) = printer_config().relative_correction.values[0]; corr(Z) = printer_config().relative_correction.values.back(); } if(material_config().material_correction.values.size() >= 2) { corr(X) *= material_config().material_correction.values[0]; corr(Y) *= material_config().material_correction.values[0]; corr(Z) *= material_config().material_correction.values.back(); } return corr; } namespace { // dummy empty static containers for return values in some methods const std::vector EMPTY_SLICES; const TriangleMesh EMPTY_MESH; const ExPolygons EMPTY_SLICE; const std::vector EMPTY_SUPPORT_POINTS; } const SliceRecord SliceRecord::EMPTY(0, std::nanf(""), 0.f); const std::vector& SLAPrintObject::get_support_points() const { return m_supportdata? m_supportdata->support_points : EMPTY_SUPPORT_POINTS; } const std::vector &SLAPrintObject::get_support_slices() const { // assert(is_step_done(slaposSliceSupports)); if (!m_supportdata) return EMPTY_SLICES; return m_supportdata->support_slices; } const ExPolygons &SliceRecord::get_slice(SliceOrigin o) const { size_t idx = o == soModel ? m_model_slices_idx : m_support_slices_idx; if(m_po == nullptr) return EMPTY_SLICE; const std::vector& v = o == soModel? m_po->get_model_slices() : m_po->get_support_slices(); if(idx >= v.size()) return EMPTY_SLICE; return idx >= v.size() ? EMPTY_SLICE : v[idx]; } bool SLAPrintObject::has_mesh(SLAPrintObjectStep step) const { switch (step) { case slaposSupportTree: return ! this->support_mesh().empty(); case slaposBasePool: return ! this->pad_mesh().empty(); default: return false; } } TriangleMesh SLAPrintObject::get_mesh(SLAPrintObjectStep step) const { switch (step) { case slaposSupportTree: return this->support_mesh(); case slaposBasePool: return this->pad_mesh(); default: return TriangleMesh(); } } const TriangleMesh& SLAPrintObject::support_mesh() const { if(m_config.supports_enable.getBool() && m_supportdata && m_supportdata->support_tree_ptr) { return m_supportdata->support_tree_ptr->merged_mesh(); } return EMPTY_MESH; } const TriangleMesh& SLAPrintObject::pad_mesh() const { if(m_config.pad_enable.getBool() && m_supportdata && m_supportdata->support_tree_ptr) return m_supportdata->support_tree_ptr->get_pad(); return EMPTY_MESH; } const TriangleMesh &SLAPrintObject::transformed_mesh() const { // we need to transform the raw mesh... // currently all the instances share the same x and y rotation and scaling // so we have to extract those from e.g. the first instance and apply to the // raw mesh. This is also true for the support points. // BUT: when the support structure is spawned for each instance than it has // to omit the X, Y rotation and scaling as those have been already applied // or apply an inverse transformation on the support structure after it // has been created. return m_transformed_rmesh.get(); } std::vector SLAPrintObject::transformed_support_points() const { assert(m_model_object != nullptr); std::vector& spts = m_model_object->sla_support_points; // this could be cached as well std::vector ret; ret.reserve(spts.size()); for(sla::SupportPoint& sp : spts) { Vec3f transformed_pos = trafo().cast() * sp.pos; ret.emplace_back(transformed_pos, sp.head_front_radius, sp.is_new_island); } return ret; } DynamicConfig SLAPrintStatistics::config() const { DynamicConfig config; const std::string print_time = Slic3r::short_time(this->estimated_print_time); config.set_key_value("print_time", new ConfigOptionString(print_time)); config.set_key_value("objects_used_material", new ConfigOptionFloat(this->objects_used_material)); config.set_key_value("support_used_material", new ConfigOptionFloat(this->support_used_material)); config.set_key_value("total_cost", new ConfigOptionFloat(this->total_cost)); config.set_key_value("total_weight", new ConfigOptionFloat(this->total_weight)); return config; } DynamicConfig SLAPrintStatistics::placeholders() { DynamicConfig config; for (const std::string &key : { "print_time", "total_cost", "total_weight", "objects_used_material", "support_used_material" }) config.set_key_value(key, new ConfigOptionString(std::string("{") + key + "}")); return config; } std::string SLAPrintStatistics::finalize_output_path(const std::string &path_in) const { std::string final_path; try { boost::filesystem::path path(path_in); DynamicConfig cfg = this->config(); PlaceholderParser pp; std::string new_stem = pp.process(path.stem().string(), 0, &cfg); final_path = (path.parent_path() / (new_stem + path.extension().string())).string(); } catch (const std::exception &ex) { BOOST_LOG_TRIVIAL(error) << "Failed to apply the print statistics to the export file name: " << ex.what(); final_path = path_in; } return final_path; } void SLAPrint::StatusReporter::operator()(SLAPrint & p, double st, const std::string &msg, unsigned flags, const std::string &logmsg) { m_st = st; BOOST_LOG_TRIVIAL(info) << st << "% " << msg << (logmsg.empty() ? "" : ": ") << logmsg << log_memory_info(); p.set_status(int(std::round(st)), msg, flags); } } // namespace Slic3r