#include "sla_test_utils.hpp" #include "libslic3r/SLA/AGGRaster.hpp" void test_support_model_collision(const std::string &obj_filename, const sla::SupportTreeConfig &input_supportcfg, const sla::HollowingConfig &hollowingcfg, const sla::DrainHoles &drainholes) { SupportByproducts byproducts; sla::SupportTreeConfig supportcfg = input_supportcfg; // Set head penetration to a small negative value which should ensure that // the supports will not touch the model body. supportcfg.head_penetration_mm = -0.15; test_supports(obj_filename, supportcfg, hollowingcfg, drainholes, byproducts); // Slice the support mesh given the slice grid of the model. std::vector support_slices = byproducts.supporttree.slice(byproducts.slicegrid, CLOSING_RADIUS); // The slices originate from the same slice grid so the numbers must match bool support_mesh_is_empty = byproducts.supporttree.retrieve_mesh(sla::MeshType::Pad).empty() && byproducts.supporttree.retrieve_mesh(sla::MeshType::Support).empty(); if (support_mesh_is_empty) REQUIRE(support_slices.empty()); else REQUIRE(support_slices.size() == byproducts.model_slices.size()); bool notouch = true; for (size_t n = 0; notouch && n < support_slices.size(); ++n) { const ExPolygons &sup_slice = support_slices[n]; const ExPolygons &mod_slice = byproducts.model_slices[n]; Polygons intersections = intersection(sup_slice, mod_slice); double pinhead_r = scaled(input_supportcfg.head_front_radius_mm); // TODO:: make it strict without a threshold of PI * pihead_radius ^ 2 notouch = notouch && area(intersections) < PI * pinhead_r * pinhead_r; } /*if (!notouch) */export_failed_case(support_slices, byproducts); REQUIRE(notouch); } void export_failed_case(const std::vector &support_slices, const SupportByproducts &byproducts) { for (size_t n = 0; n < support_slices.size(); ++n) { const ExPolygons &sup_slice = support_slices[n]; const ExPolygons &mod_slice = byproducts.model_slices[n]; Polygons intersections = intersection(sup_slice, mod_slice); std::stringstream ss; if (!intersections.empty()) { ss << byproducts.obj_fname << std::setprecision(4) << n << ".svg"; SVG svg(ss.str()); svg.draw(sup_slice, "green"); svg.draw(mod_slice, "blue"); svg.draw(intersections, "red"); svg.Close(); } } TriangleMesh m; byproducts.supporttree.retrieve_full_mesh(m); m.merge(byproducts.input_mesh); m.repair(); m.require_shared_vertices(); m.WriteOBJFile((Catch::getResultCapture().getCurrentTestName() + "_" + byproducts.obj_fname).c_str()); } void test_supports(const std::string &obj_filename, const sla::SupportTreeConfig &supportcfg, const sla::HollowingConfig &hollowingcfg, const sla::DrainHoles &drainholes, SupportByproducts &out) { using namespace Slic3r; TriangleMesh mesh = load_model(obj_filename); REQUIRE_FALSE(mesh.empty()); if (hollowingcfg.enabled) { auto inside = sla::generate_interior(mesh, hollowingcfg); REQUIRE(inside); mesh.merge(*inside); mesh.require_shared_vertices(); } TriangleMeshSlicer slicer{&mesh}; auto bb = mesh.bounding_box(); double zmin = bb.min.z(); double zmax = bb.max.z(); double gnd = zmin - supportcfg.object_elevation_mm; auto layer_h = 0.05f; out.slicegrid = grid(float(gnd), float(zmax), layer_h); slicer.slice(out.slicegrid, SlicingMode::Regular, CLOSING_RADIUS, &out.model_slices, []{}); sla::cut_drainholes(out.model_slices, out.slicegrid, CLOSING_RADIUS, drainholes, []{}); // Create the special index-triangle mesh with spatial indexing which // is the input of the support point and support mesh generators sla::IndexedMesh emesh{mesh}; #ifdef SLIC3R_HOLE_RAYCASTER if (hollowingcfg.enabled) emesh.load_holes(drainholes); #endif // TODO: do the cgal hole cutting... // Create the support point generator sla::SupportPointGenerator::Config autogencfg; autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm); sla::SupportPointGenerator point_gen{emesh, autogencfg, [] {}, [](int) {}}; point_gen.seed(0); // Make the test repeatable point_gen.execute(out.model_slices, out.slicegrid); // Get the calculated support points. std::vector support_points = point_gen.output(); int validityflags = ASSUME_NO_REPAIR; // If there is no elevation, support points shall be removed from the // bottom of the object. if (std::abs(supportcfg.object_elevation_mm) < EPSILON) { sla::remove_bottom_points(support_points, zmin + supportcfg.base_height_mm); } else { // Should be support points at least on the bottom of the model REQUIRE_FALSE(support_points.empty()); // Also the support mesh should not be empty. validityflags |= ASSUME_NO_EMPTY; } // Generate the actual support tree sla::SupportTreeBuilder treebuilder; sla::SupportableMesh sm{emesh, support_points, supportcfg}; sla::SupportTreeBuildsteps::execute(treebuilder, sm); check_support_tree_integrity(treebuilder, supportcfg); const TriangleMesh &output_mesh = treebuilder.retrieve_mesh(); check_validity(output_mesh, validityflags); // Quick check if the dimensions and placement of supports are correct auto obb = output_mesh.bounding_box(); double allowed_zmin = zmin - supportcfg.object_elevation_mm; if (std::abs(supportcfg.object_elevation_mm) < EPSILON) allowed_zmin = zmin - 2 * supportcfg.head_back_radius_mm; REQUIRE(obb.min.z() >= Approx(allowed_zmin)); REQUIRE(obb.max.z() <= Approx(zmax)); // Move out the support tree into the byproducts, we can examine it further // in various tests. out.obj_fname = std::move(obj_filename); out.supporttree = std::move(treebuilder); out.input_mesh = std::move(mesh); } void check_support_tree_integrity(const sla::SupportTreeBuilder &stree, const sla::SupportTreeConfig &cfg) { double gnd = stree.ground_level; double H1 = cfg.max_solo_pillar_height_mm; double H2 = cfg.max_dual_pillar_height_mm; for (const sla::Head &head : stree.heads()) { REQUIRE((!head.is_valid() || head.pillar_id != sla::SupportTreeNode::ID_UNSET || head.bridge_id != sla::SupportTreeNode::ID_UNSET)); } for (const sla::Pillar &pillar : stree.pillars()) { if (std::abs(pillar.endpoint().z() - gnd) < EPSILON) { double h = pillar.height; if (h > H1) REQUIRE(pillar.links >= 1); else if(h > H2) { REQUIRE(pillar.links >= 2); } } REQUIRE(pillar.links <= cfg.pillar_cascade_neighbors); REQUIRE(pillar.bridges <= cfg.max_bridges_on_pillar); } double max_bridgelen = 0.; auto chck_bridge = [&cfg](const sla::Bridge &bridge, double &max_brlen) { Vec3d n = bridge.endp - bridge.startp; double d = sla::distance(n); max_brlen = std::max(d, max_brlen); double z = n.z(); double polar = std::acos(z / d); double slope = -polar + PI / 2.; REQUIRE(std::abs(slope) >= cfg.bridge_slope - EPSILON); }; for (auto &bridge : stree.bridges()) chck_bridge(bridge, max_bridgelen); REQUIRE(max_bridgelen <= cfg.max_bridge_length_mm); max_bridgelen = 0; for (auto &bridge : stree.crossbridges()) chck_bridge(bridge, max_bridgelen); double md = cfg.max_pillar_link_distance_mm / std::cos(-cfg.bridge_slope); REQUIRE(max_bridgelen <= md); } void test_pad(const std::string &obj_filename, const sla::PadConfig &padcfg, PadByproducts &out) { REQUIRE(padcfg.validate().empty()); TriangleMesh mesh = load_model(obj_filename); REQUIRE_FALSE(mesh.empty()); // Create pad skeleton only from the model Slic3r::sla::pad_blueprint(mesh, out.model_contours); test_concave_hull(out.model_contours); REQUIRE_FALSE(out.model_contours.empty()); // Create the pad geometry for the model contours only Slic3r::sla::create_pad({}, out.model_contours, out.mesh, padcfg); check_validity(out.mesh); auto bb = out.mesh.bounding_box(); REQUIRE(bb.max.z() - bb.min.z() == Approx(padcfg.full_height())); } static void _test_concave_hull(const Polygons &hull, const ExPolygons &polys) { REQUIRE(polys.size() >=hull.size()); double polys_area = 0; for (const ExPolygon &p : polys) polys_area += p.area(); double cchull_area = 0; for (const Slic3r::Polygon &p : hull) cchull_area += p.area(); REQUIRE(cchull_area >= Approx(polys_area)); size_t cchull_holes = 0; for (const Slic3r::Polygon &p : hull) cchull_holes += p.is_clockwise() ? 1 : 0; REQUIRE(cchull_holes == 0); Polygons intr = diff(to_polygons(polys), hull); REQUIRE(intr.empty()); } void test_concave_hull(const ExPolygons &polys) { sla::PadConfig pcfg; Slic3r::sla::ConcaveHull cchull{polys, pcfg.max_merge_dist_mm, []{}}; _test_concave_hull(cchull.polygons(), polys); coord_t delta = scaled(pcfg.brim_size_mm + pcfg.wing_distance()); ExPolygons wafflex = sla::offset_waffle_style_ex(cchull, delta); Polygons waffl = sla::offset_waffle_style(cchull, delta); _test_concave_hull(to_polygons(wafflex), polys); _test_concave_hull(waffl, polys); } void check_validity(const TriangleMesh &input_mesh, int flags) { TriangleMesh mesh{input_mesh}; if (flags & ASSUME_NO_EMPTY) { REQUIRE_FALSE(mesh.empty()); } else if (mesh.empty()) return; // If it can be empty and it is, there is nothing left to do. REQUIRE(stl_validate(&mesh.stl)); bool do_update_shared_vertices = false; mesh.repair(do_update_shared_vertices); if (flags & ASSUME_NO_REPAIR) { REQUIRE_FALSE(mesh.needed_repair()); } if (flags & ASSUME_MANIFOLD) { mesh.require_shared_vertices(); if (!mesh.is_manifold()) mesh.WriteOBJFile("non_manifold.obj"); REQUIRE(mesh.is_manifold()); } } void check_raster_transformations(sla::RasterBase::Orientation o, sla::RasterBase::TMirroring mirroring) { double disp_w = 120., disp_h = 68.; sla::RasterBase::Resolution res{2560, 1440}; sla::RasterBase::PixelDim pixdim{disp_w / res.width_px, disp_h / res.height_px}; auto bb = BoundingBox({0, 0}, {scaled(disp_w), scaled(disp_h)}); sla::RasterBase::Trafo trafo{o, mirroring}; trafo.center_x = bb.center().x(); trafo.center_y = bb.center().y(); double gamma = 1.; sla::RasterGrayscaleAAGammaPower raster{res, pixdim, trafo, gamma}; // create box of size 32x32 pixels (not 1x1 to avoid antialiasing errors) coord_t pw = 32 * coord_t(std::ceil(scaled(pixdim.w_mm))); coord_t ph = 32 * coord_t(std::ceil(scaled(pixdim.h_mm))); ExPolygon box; box.contour.points = {{-pw, -ph}, {pw, -ph}, {pw, ph}, {-pw, ph}}; double tr_x = scaled(20.), tr_y = tr_x; box.translate(tr_x, tr_y); ExPolygon expected_box = box; // Now calculate the position of the translated box according to output // trafo. if (o == sla::RasterBase::Orientation::roPortrait) expected_box.rotate(PI / 2.); if (mirroring[X]) for (auto &p : expected_box.contour.points) p.x() = -p.x(); if (mirroring[Y]) for (auto &p : expected_box.contour.points) p.y() = -p.y(); raster.draw(box); Point expected_coords = expected_box.contour.bounding_box().center(); double rx = unscaled(expected_coords.x() + bb.center().x()) / pixdim.w_mm; double ry = unscaled(expected_coords.y() + bb.center().y()) / pixdim.h_mm; auto w = size_t(std::floor(rx)); auto h = res.height_px - size_t(std::floor(ry)); REQUIRE((w < res.width_px && h < res.height_px)); auto px = raster.read_pixel(w, h); if (px != FullWhite) { std::fstream outf("out.png", std::ios::out); outf << raster.encode(sla::PNGRasterEncoder()); } REQUIRE(px == FullWhite); } ExPolygon square_with_hole(double v) { ExPolygon poly; coord_t V = scaled(v / 2.); poly.contour.points = {{-V, -V}, {V, -V}, {V, V}, {-V, V}}; poly.holes.emplace_back(); V = V / 2; poly.holes.front().points = {{-V, V}, {V, V}, {V, -V}, {-V, -V}}; return poly; } long raster_pxsum(const sla::RasterGrayscaleAA &raster) { auto res = raster.resolution(); long a = 0; for (size_t x = 0; x < res.width_px; ++x) for (size_t y = 0; y < res.height_px; ++y) a += raster.read_pixel(x, y); return a; } double raster_white_area(const sla::RasterGrayscaleAA &raster) { if (raster.resolution().pixels() == 0) return std::nan(""); auto res = raster.resolution(); double a = 0; for (size_t x = 0; x < res.width_px; ++x) for (size_t y = 0; y < res.height_px; ++y) { auto px = raster.read_pixel(x, y); a += pixel_area(px, raster.pixel_dimensions()); } return a; } double predict_error(const ExPolygon &p, const sla::RasterBase::PixelDim &pd) { auto lines = p.lines(); double pix_err = pixel_area(FullWhite, pd) / 2.; // Worst case is when a line is parallel to the shorter axis of one pixel, // when the line will be composed of the max number of pixels double pix_l = std::min(pd.h_mm, pd.w_mm); double error = 0.; for (auto &l : lines) error += (unscaled(l.length()) / pix_l) * pix_err; return error; } // Make a 3D pyramid TriangleMesh make_pyramid(float base, float height) { float a = base / 2.f; TriangleMesh mesh( { {-a, -a, 0}, {a, -a, 0}, {a, a, 0}, {-a, a, 0}, {0.f, 0.f, height} }, { {0, 1, 2}, {0, 2, 3}, {0, 1, 4}, {1, 2, 4}, {2, 3, 4}, {3, 0, 4} }); mesh.repair(); return mesh; } TriangleMesh make_prism(double width, double length, double height) { // We need two upward facing triangles double x = width / 2., y = length / 2.; TriangleMesh mesh( { {-x, -y, 0.}, {x, -y, 0.}, {0., -y, height}, {-x, y, 0.}, {x, y, 0.}, {0., y, height}, }, { {0, 1, 2}, // side 1 {4, 3, 5}, // side 2 {1, 4, 2}, {2, 4, 5}, // roof 1 {0, 2, 5}, {0, 5, 3}, // roof 2 {3, 4, 1}, {3, 1, 0} // bottom }); return mesh; } sla::SupportPoints calc_support_pts( const TriangleMesh & mesh, const sla::SupportPointGenerator::Config &cfg) { // Prepare the slice grid and the slices std::vector slices; auto bb = cast(mesh.bounding_box()); std::vector heights = grid(bb.min.z(), bb.max.z(), 0.1f); slice_mesh(mesh, heights, slices, CLOSING_RADIUS, [] {}); // Prepare the support point calculator sla::IndexedMesh emesh{mesh}; sla::SupportPointGenerator spgen{emesh, cfg, []{}, [](int){}}; // Calculate the support points spgen.seed(0); spgen.execute(slices, heights); return spgen.output(); }