#include "TriangleSelector.hpp" #include "Model.hpp" namespace Slic3r { // sides_to_split==-1 : just restore previous split void TriangleSelector::Triangle::set_division(int sides_to_split, int special_side_idx) { assert(sides_to_split >=-1 && sides_to_split <= 3); assert(special_side_idx >=-1 && special_side_idx < 3); // If splitting one or two sides, second argument must be provided. assert(sides_to_split != 1 || special_side_idx != -1); assert(sides_to_split != 2 || special_side_idx != -1); if (sides_to_split != -1) { this->number_of_splits = sides_to_split; if (sides_to_split != 0) { assert(old_number_of_splits == 0); this->special_side_idx = special_side_idx; this->old_number_of_splits = sides_to_split; } } else { assert(old_number_of_splits != 0); this->number_of_splits = old_number_of_splits; // indices of children should still be there. } } void TriangleSelector::select_patch(const Vec3f& hit, int facet_start, const Vec3f& source, const Vec3f& dir, float radius, FacetSupportType new_state) { assert(facet_start < m_orig_size_indices); assert(is_approx(dir.norm(), 1.f)); // Save current cursor center, squared radius and camera direction, // so we don't have to pass it around. m_cursor = {hit, source, dir, radius*radius}; // In case user changed cursor size since last time, update triangle edge limit. if (m_old_cursor_radius != radius) { set_edge_limit(radius / 5.f); m_old_cursor_radius = radius; } // Now start with the facet the pointer points to and check all adjacent facets. std::vector facets_to_check{facet_start}; std::vector visited(m_orig_size_indices, false); // keep track of facets we already processed int facet_idx = 0; // index into facets_to_check while (facet_idx < int(facets_to_check.size())) { int facet = facets_to_check[facet_idx]; if (! visited[facet]) { if (select_triangle(facet, new_state)) { // add neighboring facets to list to be proccessed later for (int n=0; n<3; ++n) { int neighbor_idx = m_mesh->stl.neighbors_start[facet].neighbor[n]; if (neighbor_idx >=0 && faces_camera(neighbor_idx)) facets_to_check.push_back(neighbor_idx); } } } visited[facet] = true; ++facet_idx; } } // Selects either the whole triangle (discarding any children it had), or divides // the triangle recursively, selecting just subtriangles truly inside the circle. // This is done by an actual recursive call. Returns false if the triangle is // outside the cursor. bool TriangleSelector::select_triangle(int facet_idx, FacetSupportType type, bool recursive_call) { assert(facet_idx < int(m_triangles.size())); Triangle* tr = &m_triangles[facet_idx]; if (! tr->valid) return false; int num_of_inside_vertices = vertices_inside(facet_idx); if (num_of_inside_vertices == 0 && ! is_pointer_in_triangle(facet_idx) && ! is_edge_inside_cursor(facet_idx)) return false; if (num_of_inside_vertices == 3) { // dump any subdivision and select whole triangle undivide_triangle(facet_idx); tr->set_state(type); } else { // the triangle is partially inside, let's recursively divide it // (if not already) and try selecting its children. if (! tr->is_split() && tr->get_state() == type) { // This is leaf triangle that is already of correct type as a whole. // No need to split, all children would end up selected anyway. return true; } split_triangle(facet_idx); tr = &m_triangles[facet_idx]; // might have been invalidated int num_of_children = tr->number_of_split_sides() + 1; if (num_of_children != 1) { for (int i=0; ichildren.size())); assert(tr->children[i] < int(m_triangles.size())); select_triangle(tr->children[i], type, true); tr = &m_triangles[facet_idx]; // might have been invalidated } } } if (! recursive_call) { // In case that all children are leafs and have the same state now, // they may be removed and substituted by the parent triangle. remove_useless_children(facet_idx); // Make sure that we did not lose track of invalid triangles. assert(m_invalid_triangles == std::count_if(m_triangles.begin(), m_triangles.end(), [](const Triangle& tr) { return ! tr.valid; })); // Do garbage collection maybe? if (2*m_invalid_triangles > int(m_triangles.size())) garbage_collect(); } return true; } void TriangleSelector::set_facet(int facet_idx, FacetSupportType state) { assert(facet_idx < m_orig_size_indices); undivide_triangle(facet_idx); assert(! m_triangles[facet_idx].is_split()); m_triangles[facet_idx].set_state(state); } void TriangleSelector::split_triangle(int facet_idx) { if (m_triangles[facet_idx].is_split()) { // The triangle is divided already. return; } Triangle* tr = &m_triangles[facet_idx]; FacetSupportType old_type = tr->get_state(); if (tr->was_split_before() != 0) { // This triangle is not split at the moment, but was at one point // in history. We can just restore it and resurrect its children. tr->set_division(-1); for (int i=0; i<=tr->number_of_split_sides(); ++i) { m_triangles[tr->children[i]].set_state(old_type); m_triangles[tr->children[i]].valid = true; --m_invalid_triangles; } return; } // If we got here, we are about to actually split the triangle. const double limit_squared = m_edge_limit_sqr; std::array& facet = tr->verts_idxs; const stl_vertex* pts[3] = { &m_vertices[facet[0]].v, &m_vertices[facet[1]].v, &m_vertices[facet[2]].v}; double sides[3] = { (*pts[2]-*pts[1]).squaredNorm(), (*pts[0]-*pts[2]).squaredNorm(), (*pts[1]-*pts[0]).squaredNorm() }; std::vector sides_to_split; int side_to_keep = -1; for (int pt_idx = 0; pt_idx<3; ++pt_idx) { if (sides[pt_idx] > limit_squared) sides_to_split.push_back(pt_idx); else side_to_keep = pt_idx; } if (sides_to_split.empty()) { // This shall be unselected. tr->set_division(0); return; } // Save how the triangle will be split. Second argument makes sense only for one // or two split sides, otherwise the value is ignored. tr->set_division(sides_to_split.size(), sides_to_split.size() == 2 ? side_to_keep : sides_to_split[0]); perform_split(facet_idx, old_type); } // Calculate distance of a point from a line. bool TriangleSelector::is_point_inside_cursor(const Vec3f& point) const { Vec3f diff = m_cursor.center - point; return (diff - diff.dot(m_cursor.dir) * m_cursor.dir).squaredNorm() < m_cursor.radius_sqr; } // Is pointer in a triangle? bool TriangleSelector::is_pointer_in_triangle(int facet_idx) const { auto signed_volume_sign = [](const Vec3f& a, const Vec3f& b, const Vec3f& c, const Vec3f& d) -> bool { return ((b-a).cross(c-a)).dot(d-a) > 0.; }; const Vec3f& p1 = m_vertices[m_triangles[facet_idx].verts_idxs[0]].v; const Vec3f& p2 = m_vertices[m_triangles[facet_idx].verts_idxs[1]].v; const Vec3f& p3 = m_vertices[m_triangles[facet_idx].verts_idxs[2]].v; const Vec3f& q1 = m_cursor.center + m_cursor.dir; const Vec3f q2 = m_cursor.center - m_cursor.dir; if (signed_volume_sign(q1,p1,p2,p3) != signed_volume_sign(q2,p1,p2,p3)) { bool pos = signed_volume_sign(q1,q2,p1,p2); if (signed_volume_sign(q1,q2,p2,p3) == pos && signed_volume_sign(q1,q2,p3,p1) == pos) return true; } return false; } // Determine whether this facet is potentially visible (still can be obscured). bool TriangleSelector::faces_camera(int facet) const { assert(facet < m_orig_size_indices); // The normal is cached in mesh->stl, use it. return (m_mesh->stl.facet_start[facet].normal.dot(m_cursor.dir) < 0.); } // How many vertices of a triangle are inside the circle? int TriangleSelector::vertices_inside(int facet_idx) const { int inside = 0; for (size_t i=0; i<3; ++i) { if (is_point_inside_cursor(m_vertices[m_triangles[facet_idx].verts_idxs[i]].v)) ++inside; } return inside; } // Is edge inside cursor? bool TriangleSelector::is_edge_inside_cursor(int facet_idx) const { Vec3f pts[3]; for (int i=0; i<3; ++i) pts[i] = m_vertices[m_triangles[facet_idx].verts_idxs[i]].v; const Vec3f& p = m_cursor.center; for (int side = 0; side < 3; ++side) { const Vec3f& a = pts[side]; const Vec3f& b = pts[side<2 ? side+1 : 0]; Vec3f s = (b-a).normalized(); float t = (p-a).dot(s); Vec3f vector = a+t*s - p; // vector is 3D vector from center to the intersection. What we want to // measure is length of its projection onto plane perpendicular to dir. float dist_sqr = vector.squaredNorm() - std::pow(vector.dot(m_cursor.dir), 2.f); if (dist_sqr < m_cursor.radius_sqr && t>=0.f && t<=(b-a).norm()) return true; } return false; } // Recursively remove all subtriangles. void TriangleSelector::undivide_triangle(int facet_idx) { assert(facet_idx < int(m_triangles.size())); Triangle& tr = m_triangles[facet_idx]; if (tr.is_split()) { for (int i=0; i<=tr.number_of_split_sides(); ++i) { undivide_triangle(tr.children[i]); m_triangles[tr.children[i]].valid = false; ++m_invalid_triangles; } tr.set_division(0); // not split } } void TriangleSelector::remove_useless_children(int facet_idx) { // Check that all children are leafs of the same type. If not, try to // make them (recursive call). Remove them if sucessful. assert(facet_idx < int(m_triangles.size()) && m_triangles[facet_idx].valid); Triangle& tr = m_triangles[facet_idx]; if (! tr.is_split()) { // This is a leaf, there nothing to do. This can happen during the // first (non-recursive call). Shouldn't otherwise. return; } // Call this for all non-leaf children. for (int child_idx=0; child_idx<=tr.number_of_split_sides(); ++child_idx) { assert(child_idx < int(m_triangles.size()) && m_triangles[child_idx].valid); if (m_triangles[tr.children[child_idx]].is_split()) remove_useless_children(tr.children[child_idx]); } // Return if a child is not leaf or two children differ in type. FacetSupportType first_child_type = FacetSupportType::NONE; for (int child_idx=0; child_idx<=tr.number_of_split_sides(); ++child_idx) { if (m_triangles[tr.children[child_idx]].is_split()) return; if (child_idx == 0) first_child_type = m_triangles[tr.children[0]].get_state(); else if (m_triangles[tr.children[child_idx]].get_state() != first_child_type) return; } // If we got here, the children can be removed. undivide_triangle(facet_idx); tr.set_state(first_child_type); } void TriangleSelector::garbage_collect() { // First make a map from old to new triangle indices. int new_idx = m_orig_size_indices; std::vector new_triangle_indices(m_triangles.size(), -1); for (int i = m_orig_size_indices; i new_vertices_indices(m_vertices.size(), -1); for (int i=m_orig_size_vertices; i= 0); if (m_vertices[i].ref_cnt != 0) { new_vertices_indices[i] = new_idx; ++new_idx; } } // We can remove all invalid triangles and vertices that are no longer referenced. m_triangles.erase(std::remove_if(m_triangles.begin()+m_orig_size_indices, m_triangles.end(), [](const Triangle& tr) { return ! tr.valid; }), m_triangles.end()); m_vertices.erase(std::remove_if(m_vertices.begin()+m_orig_size_vertices, m_vertices.end(), [](const Vertex& vert) { return vert.ref_cnt == 0; }), m_vertices.end()); // Now go through all remaining triangles and update changed indices. for (Triangle& tr : m_triangles) { assert(tr.valid); if (tr.is_split()) { // There are children. Update their indices. for (int j=0; j<=tr.number_of_split_sides(); ++j) { assert(new_triangle_indices[tr.children[j]] != -1); tr.children[j] = new_triangle_indices[tr.children[j]]; } } // Update indices into m_vertices. The original vertices are never // touched and need not be reindexed. for (int& idx : tr.verts_idxs) { if (idx >= m_orig_size_vertices) { assert(new_vertices_indices[idx] != -1); idx = new_vertices_indices[idx]; } } // If this triangle was split before, forget it. // Children referenced in the cache are dead by now. tr.forget_history(); } m_invalid_triangles = 0; } TriangleSelector::TriangleSelector(const TriangleMesh& mesh) : m_mesh{&mesh} { reset(); } void TriangleSelector::reset() { if (! m_orig_size_indices != 0) // unless this is run from constructor garbage_collect(); m_vertices.clear(); m_triangles.clear(); for (const stl_vertex& vert : m_mesh->its.vertices) m_vertices.emplace_back(vert); for (const stl_triangle_vertex_indices& ind : m_mesh->its.indices) push_triangle(ind[0], ind[1], ind[2]); m_orig_size_vertices = m_vertices.size(); m_orig_size_indices = m_triangles.size(); m_invalid_triangles = 0; } void TriangleSelector::set_edge_limit(float edge_limit) { float new_limit_sqr = std::pow(edge_limit, 2.f); if (new_limit_sqr != m_edge_limit_sqr) { m_edge_limit_sqr = new_limit_sqr; // The way how triangles split may be different now, forget // all cached splits. garbage_collect(); } } void TriangleSelector::push_triangle(int a, int b, int c) { for (int i : {a, b, c}) { assert(i >= 0 && i < int(m_vertices.size())); ++m_vertices[i].ref_cnt; } m_triangles.emplace_back(a, b, c); } void TriangleSelector::perform_split(int facet_idx, FacetSupportType old_state) { Triangle* tr = &m_triangles[facet_idx]; assert(tr->is_split()); // Read info about how to split this triangle. int sides_to_split = tr->number_of_split_sides(); // indices of triangle vertices std::vector verts_idxs; int idx = tr->special_side(); for (int j=0; j<3; ++j) { verts_idxs.push_back(tr->verts_idxs[idx++]); if (idx == 3) idx = 0; } if (sides_to_split == 1) { m_vertices.emplace_back((m_vertices[verts_idxs[1]].v + m_vertices[verts_idxs[2]].v)/2.); verts_idxs.insert(verts_idxs.begin()+2, m_vertices.size() - 1); push_triangle(verts_idxs[0], verts_idxs[1], verts_idxs[2]); push_triangle(verts_idxs[2], verts_idxs[3], verts_idxs[0]); } if (sides_to_split == 2) { m_vertices.emplace_back((m_vertices[verts_idxs[0]].v + m_vertices[verts_idxs[1]].v)/2.); verts_idxs.insert(verts_idxs.begin()+1, m_vertices.size() - 1); m_vertices.emplace_back((m_vertices[verts_idxs[0]].v + m_vertices[verts_idxs[3]].v)/2.); verts_idxs.insert(verts_idxs.begin()+4, m_vertices.size() - 1); push_triangle(verts_idxs[0], verts_idxs[1], verts_idxs[4]); push_triangle(verts_idxs[1], verts_idxs[2], verts_idxs[4]); push_triangle(verts_idxs[2], verts_idxs[3], verts_idxs[4]); } if (sides_to_split == 3) { m_vertices.emplace_back((m_vertices[verts_idxs[0]].v + m_vertices[verts_idxs[1]].v)/2.); verts_idxs.insert(verts_idxs.begin()+1, m_vertices.size() - 1); m_vertices.emplace_back((m_vertices[verts_idxs[2]].v + m_vertices[verts_idxs[3]].v)/2.); verts_idxs.insert(verts_idxs.begin()+3, m_vertices.size() - 1); m_vertices.emplace_back((m_vertices[verts_idxs[4]].v + m_vertices[verts_idxs[0]].v)/2.); verts_idxs.insert(verts_idxs.begin()+5, m_vertices.size() - 1); push_triangle(verts_idxs[0], verts_idxs[1], verts_idxs[5]); push_triangle(verts_idxs[1], verts_idxs[2], verts_idxs[3]); push_triangle(verts_idxs[3], verts_idxs[4], verts_idxs[5]); push_triangle(verts_idxs[1], verts_idxs[3], verts_idxs[5]); } tr = &m_triangles[facet_idx]; // may have been invalidated // And save the children. All children should start in the same state as the triangle we just split. assert(sides_to_split <= 3); for (int i=0; i<=sides_to_split; ++i) { tr->children[i] = m_triangles.size()-1-i; m_triangles[tr->children[i]].set_state(old_state); } } indexed_triangle_set TriangleSelector::get_facets(FacetSupportType state) const { indexed_triangle_set out; for (const Triangle& tr : m_triangles) { if (tr.valid && ! tr.is_split() && tr.get_state() == state) { stl_triangle_vertex_indices indices; for (int i=0; i<3; ++i) { out.vertices.emplace_back(m_vertices[tr.verts_idxs[i]].v); indices[i] = out.vertices.size() - 1; } out.indices.emplace_back(indices); } } return out; } std::map> TriangleSelector::serialize() const { // Each original triangle of the mesh is assigned a number encoding its state // or how it is split. Each triangle is encoded by 4 bits (xxyy): // leaf triangle: xx = FacetSupportType, yy = 0 // non-leaf: xx = special side, yy = number of split sides // These are bitwise appended and formed into one 64-bit integer. // The function returns a map from original triangle indices to // stream of bits encoding state and offsprings. std::map> out; for (int i=0; i data; // complete encoding of this mesh triangle int stored_triangles = 0; // how many have been already encoded std::function serialize_recursive; serialize_recursive = [this, &serialize_recursive, &stored_triangles, &data](int facet_idx) { const Triangle& tr = m_triangles[facet_idx]; // Always save number of split sides. It is zero for unsplit triangles. int split_sides = tr.number_of_split_sides(); assert(split_sides >= 0 && split_sides <= 3); //data |= (split_sides << (stored_triangles * 4)); data.push_back(split_sides & 0b01); data.push_back(split_sides & 0b10); if (tr.is_split()) { // If this triangle is split, save which side is split (in case // of one split) or kept (in case of two splits). The value will // be ignored for 3-side split. assert(split_sides > 0); assert(tr.special_side() >= 0 && tr.special_side() <= 3); data.push_back(tr.special_side() & 0b01); data.push_back(tr.special_side() & 0b10); ++stored_triangles; // Now save all children. for (int child_idx=0; child_idx<=split_sides; ++child_idx) serialize_recursive(tr.children[child_idx]); } else { // In case this is leaf, we better save information about its state. assert(int(tr.get_state()) <= 3); data.push_back(int(tr.get_state()) & 0b01); data.push_back(int(tr.get_state()) & 0b10); ++stored_triangles; } }; serialize_recursive(i); out[i] = data; } return out; } void TriangleSelector::deserialize(const std::map> data) { reset(); // dump any current state for (const auto& [triangle_id, code] : data) { assert(triangle_id < int(m_triangles.size())); assert(! code.empty()); int processed_triangles = 0; struct ProcessingInfo { int facet_id = 0; int processed_children = 0; int total_children = 0; }; // Vector to store all parents that have offsprings. std::vector parents; while (true) { // Read next triangle info. int next_code = 0; for (int i=3; i>=0; --i) { next_code = next_code << 1; next_code |= int(code[4 * processed_triangles + i]); } ++processed_triangles; int num_of_split_sides = (next_code & 0b11); int num_of_children = num_of_split_sides != 0 ? num_of_split_sides + 1 : 0; bool is_split = num_of_children != 0; FacetSupportType state = FacetSupportType(next_code >> 2); int special_side = (next_code >> 2); // Take care of the first iteration separately, so handling of the others is simpler. if (parents.empty()) { if (! is_split) { // root is not split. just set the state and that's it. m_triangles[triangle_id].set_state(state); break; } else { // root is split, add it into list of parents and split it. // then go to the next. parents.push_back({triangle_id, 0, num_of_children}); m_triangles[triangle_id].set_division(num_of_children-1, special_side); perform_split(triangle_id, FacetSupportType::NONE); continue; } } // This is not the first iteration. This triangle is a child of last seen parent. assert(! parents.empty()); assert(parents.back().processed_children < parents.back().total_children); if (is_split) { // split the triangle and save it as parent of the next ones. const ProcessingInfo& last = parents.back(); int this_idx = m_triangles[last.facet_id].children[last.processed_children]; m_triangles[this_idx].set_division(num_of_children-1, special_side); perform_split(this_idx, FacetSupportType::NONE); parents.push_back({this_idx, 0, num_of_children}); } else { // this triangle belongs to last split one m_triangles[m_triangles[parents.back().facet_id].children[parents.back().processed_children]].set_state(state); ++parents.back().processed_children; } // If all children of the past parent triangle are claimed, move to grandparent. while (parents.back().processed_children == parents.back().total_children) { parents.pop_back(); if (parents.empty()) break; // And increment the grandparent children counter, because // we have just finished that branch and got back here. ++parents.back().processed_children; } // In case we popped back the root, we should be done. if (parents.empty()) break; } } } } // namespace Slic3r