/******************************************************************************* * * * Author : Angus Johnson * * Version : 5.1.5 * * Date : 4 May 2013 * * Website : http://www.angusj.com * * Copyright : Angus Johnson 2010-2013 * * * * License: * * Use, modification & distribution is subject to Boost Software License Ver 1. * * http://www.boost.org/LICENSE_1_0.txt * * * * Attributions: * * The code in this library is an extension of Bala Vatti's clipping algorithm: * * "A generic solution to polygon clipping" * * Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. * * http://portal.acm.org/citation.cfm?id=129906 * * * * Computer graphics and geometric modeling: implementation and algorithms * * By Max K. Agoston * * Springer; 1 edition (January 4, 2005) * * http://books.google.com/books?q=vatti+clipping+agoston * * * * See also: * * "Polygon Offsetting by Computing Winding Numbers" * * Paper no. DETC2005-85513 pp. 565-575 * * ASME 2005 International Design Engineering Technical Conferences * * and Computers and Information in Engineering Conference (IDETC/CIE2005) * * September 24-28, 2005 , Long Beach, California, USA * * http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf * * * *******************************************************************************/ /******************************************************************************* * * * This is a translation of the Delphi Clipper library and the naming style * * used has retained a Delphi flavour. * * * *******************************************************************************/ #include "clipper.hpp" #include #include #include #include #include #include #include namespace ClipperLib { static long64 const loRange = 0x3FFFFFFF; static long64 const hiRange = 0x3FFFFFFFFFFFFFFFLL; static double const pi = 3.141592653589793238; enum Direction { dRightToLeft, dLeftToRight }; #define HORIZONTAL (-1.0E+40) #define TOLERANCE (1.0e-20) #define NEAR_ZERO(val) (((val) > -TOLERANCE) && ((val) < TOLERANCE)) #define NEAR_EQUAL(a, b) NEAR_ZERO((a) - (b)) inline long64 Abs(long64 val) { return val < 0 ? -val : val; } //------------------------------------------------------------------------------ // PolyTree methods ... //------------------------------------------------------------------------------ void PolyTree::Clear() { for (PolyNodes::size_type i = 0; i < AllNodes.size(); ++i) delete AllNodes[i]; AllNodes.resize(0); Childs.resize(0); } //------------------------------------------------------------------------------ PolyNode* PolyTree::GetFirst() const { if (!Childs.empty()) return Childs[0]; else return 0; } //------------------------------------------------------------------------------ int PolyTree::Total() const { return AllNodes.size(); } //------------------------------------------------------------------------------ // PolyNode methods ... //------------------------------------------------------------------------------ PolyNode::PolyNode(): Childs(), Parent(0), Index(0) { } //------------------------------------------------------------------------------ int PolyNode::ChildCount() const { return Childs.size(); } //------------------------------------------------------------------------------ void PolyNode::AddChild(PolyNode& child) { unsigned cnt = Childs.size(); Childs.push_back(&child); child.Parent = this; child.Index = cnt; } //------------------------------------------------------------------------------ PolyNode* PolyNode::GetNext() const { if (!Childs.empty()) return Childs[0]; else return GetNextSiblingUp(); } //------------------------------------------------------------------------------ PolyNode* PolyNode::GetNextSiblingUp() const { if (!Parent) //protects against PolyTree.GetNextSiblingUp() return 0; else if (Index == Parent->Childs.size() - 1) return Parent->GetNextSiblingUp(); else return Parent->Childs[Index + 1]; } //------------------------------------------------------------------------------ bool PolyNode::IsHole() const { bool result = true; PolyNode* node = Parent; while (node) { result = !result; node = node->Parent; } return result; } //------------------------------------------------------------------------------ // Int128 class (enables safe math on signed 64bit integers) // eg Int128 val1((long64)9223372036854775807); //ie 2^63 -1 // Int128 val2((long64)9223372036854775807); // Int128 val3 = val1 * val2; // val3.AsString => "85070591730234615847396907784232501249" (8.5e+37) //------------------------------------------------------------------------------ class Int128 { public: ulong64 lo; long64 hi; Int128(long64 _lo = 0) { lo = (ulong64)_lo; if (_lo < 0) hi = -1; else hi = 0; } Int128(const Int128 &val): lo(val.lo), hi(val.hi){} Int128(const long64& _hi, const ulong64& _lo): lo(_lo), hi(_hi){} long64 operator = (const long64 &val) { lo = (ulong64)val; if (val < 0) hi = -1; else hi = 0; return val; } bool operator == (const Int128 &val) const {return (hi == val.hi && lo == val.lo);} bool operator != (const Int128 &val) const { return !(*this == val);} bool operator > (const Int128 &val) const { if (hi != val.hi) return hi > val.hi; else return lo > val.lo; } bool operator < (const Int128 &val) const { if (hi != val.hi) return hi < val.hi; else return lo < val.lo; } bool operator >= (const Int128 &val) const { return !(*this < val);} bool operator <= (const Int128 &val) const { return !(*this > val);} Int128& operator += (const Int128 &rhs) { hi += rhs.hi; lo += rhs.lo; if (lo < rhs.lo) hi++; return *this; } Int128 operator + (const Int128 &rhs) const { Int128 result(*this); result+= rhs; return result; } Int128& operator -= (const Int128 &rhs) { *this += -rhs; return *this; } Int128 operator - (const Int128 &rhs) const { Int128 result(*this); result -= rhs; return result; } Int128 operator-() const //unary negation { if (lo == 0) return Int128(-hi,0); else return Int128(~hi,~lo +1); } Int128 operator/ (const Int128 &rhs) const { if (rhs.lo == 0 && rhs.hi == 0) throw "Int128 operator/: divide by zero"; bool negate = (rhs.hi < 0) != (hi < 0); Int128 dividend = *this; Int128 divisor = rhs; if (dividend.hi < 0) dividend = -dividend; if (divisor.hi < 0) divisor = -divisor; if (divisor < dividend) { Int128 result = Int128(0); Int128 cntr = Int128(1); while (divisor.hi >= 0 && !(divisor > dividend)) { divisor.hi <<= 1; if ((long64)divisor.lo < 0) divisor.hi++; divisor.lo <<= 1; cntr.hi <<= 1; if ((long64)cntr.lo < 0) cntr.hi++; cntr.lo <<= 1; } divisor.lo >>= 1; if ((divisor.hi & 1) == 1) divisor.lo |= 0x8000000000000000LL; divisor.hi = (ulong64)divisor.hi >> 1; cntr.lo >>= 1; if ((cntr.hi & 1) == 1) cntr.lo |= 0x8000000000000000LL; cntr.hi >>= 1; while (cntr.hi != 0 || cntr.lo != 0) { if (!(dividend < divisor)) { dividend -= divisor; result.hi |= cntr.hi; result.lo |= cntr.lo; } divisor.lo >>= 1; if ((divisor.hi & 1) == 1) divisor.lo |= 0x8000000000000000LL; divisor.hi >>= 1; cntr.lo >>= 1; if ((cntr.hi & 1) == 1) cntr.lo |= 0x8000000000000000LL; cntr.hi >>= 1; } if (negate) result = -result; return result; } else if (rhs.hi == this->hi && rhs.lo == this->lo) return Int128(1); else return Int128(0); } double AsDouble() const { const double shift64 = 18446744073709551616.0; //2^64 if (hi < 0) { if (lo == 0) return (double)hi * shift64; else return -(double)(~lo + ~hi * shift64); } else return (double)(lo + hi * shift64); } }; Int128 Int128Mul (long64 lhs, long64 rhs) { bool negate = (lhs < 0) != (rhs < 0); if (lhs < 0) lhs = -lhs; ulong64 int1Hi = ulong64(lhs) >> 32; ulong64 int1Lo = ulong64(lhs & 0xFFFFFFFF); if (rhs < 0) rhs = -rhs; ulong64 int2Hi = ulong64(rhs) >> 32; ulong64 int2Lo = ulong64(rhs & 0xFFFFFFFF); //nb: see comments in clipper.pas ulong64 a = int1Hi * int2Hi; ulong64 b = int1Lo * int2Lo; ulong64 c = int1Hi * int2Lo + int1Lo * int2Hi; Int128 tmp; tmp.hi = long64(a + (c >> 32)); tmp.lo = long64(c << 32); tmp.lo += long64(b); if (tmp.lo < b) tmp.hi++; if (negate) tmp = -tmp; return tmp; } //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ bool FullRangeNeeded(const Polygon &pts) { bool result = false; for (Polygon::size_type i = 0; i < pts.size(); ++i) { if (Abs(pts[i].X) > hiRange || Abs(pts[i].Y) > hiRange) throw "Coordinate exceeds range bounds."; else if (Abs(pts[i].X) > loRange || Abs(pts[i].Y) > loRange) result = true; } return result; } //------------------------------------------------------------------------------ bool Orientation(const Polygon &poly) { return Area(poly) >= 0; } //------------------------------------------------------------------------------ inline bool PointsEqual( const IntPoint &pt1, const IntPoint &pt2) { return ( pt1.X == pt2.X && pt1.Y == pt2.Y ); } //------------------------------------------------------------------------------ double Area(const Polygon &poly) { int highI = (int)poly.size() -1; if (highI < 2) return 0; if (FullRangeNeeded(poly)) { Int128 a; a = Int128Mul(poly[highI].X + poly[0].X, poly[0].Y - poly[highI].Y); for (int i = 1; i <= highI; ++i) a += Int128Mul(poly[i - 1].X + poly[i].X, poly[i].Y - poly[i -1].Y); return a.AsDouble() / 2; } else { double a; a = ((double)poly[highI].X + poly[0].X) * ((double)poly[0].Y - poly[highI].Y); for (int i = 1; i <= highI; ++i) a += ((double)poly[i - 1].X + poly[i].X) * ((double)poly[i].Y - poly[i - 1].Y); return a / 2; } } //------------------------------------------------------------------------------ double Area(const OutRec &outRec, bool UseFullInt64Range) { OutPt *op = outRec.pts; if (!op) return 0; if (UseFullInt64Range) { Int128 a(0); do { a += Int128Mul(op->pt.X + op->prev->pt.X, op->prev->pt.Y - op->pt.Y); op = op->next; } while (op != outRec.pts); return a.AsDouble() / 2; } else { double a = 0; do { a = a + (op->pt.X + op->prev->pt.X) * (op->prev->pt.Y - op->pt.Y); op = op->next; } while (op != outRec.pts); return a / 2; } } //------------------------------------------------------------------------------ bool PointIsVertex(const IntPoint &pt, OutPt *pp) { OutPt *pp2 = pp; do { if (PointsEqual(pp2->pt, pt)) return true; pp2 = pp2->next; } while (pp2 != pp); return false; } //------------------------------------------------------------------------------ bool PointOnLineSegment(const IntPoint pt, const IntPoint linePt1, const IntPoint linePt2, bool UseFullInt64Range) { if (UseFullInt64Range) return ((pt.X == linePt1.X) && (pt.Y == linePt1.Y)) || ((pt.X == linePt2.X) && (pt.Y == linePt2.Y)) || (((pt.X > linePt1.X) == (pt.X < linePt2.X)) && ((pt.Y > linePt1.Y) == (pt.Y < linePt2.Y)) && ((Int128Mul((pt.X - linePt1.X), (linePt2.Y - linePt1.Y)) == Int128Mul((linePt2.X - linePt1.X), (pt.Y - linePt1.Y))))); else return ((pt.X == linePt1.X) && (pt.Y == linePt1.Y)) || ((pt.X == linePt2.X) && (pt.Y == linePt2.Y)) || (((pt.X > linePt1.X) == (pt.X < linePt2.X)) && ((pt.Y > linePt1.Y) == (pt.Y < linePt2.Y)) && ((pt.X - linePt1.X) * (linePt2.Y - linePt1.Y) == (linePt2.X - linePt1.X) * (pt.Y - linePt1.Y))); } //------------------------------------------------------------------------------ bool PointOnPolygon(const IntPoint pt, OutPt *pp, bool UseFullInt64Range) { OutPt *pp2 = pp; for (;;) { if (PointOnLineSegment(pt, pp2->pt, pp2->next->pt, UseFullInt64Range)) return true; pp2 = pp2->next; if (pp2 == pp) return false; } } //------------------------------------------------------------------------------ bool PointInPolygon(const IntPoint &pt, OutPt *pp, bool UseFullInt64Range) { OutPt *pp2 = pp; bool result = false; if (UseFullInt64Range) { do { if ((((pp2->pt.Y <= pt.Y) && (pt.Y < pp2->prev->pt.Y)) || ((pp2->prev->pt.Y <= pt.Y) && (pt.Y < pp2->pt.Y))) && Int128(pt.X - pp2->pt.X) < Int128Mul(pp2->prev->pt.X - pp2->pt.X, pt.Y - pp2->pt.Y) / Int128(pp2->prev->pt.Y - pp2->pt.Y)) result = !result; pp2 = pp2->next; } while (pp2 != pp); } else { do { if ((((pp2->pt.Y <= pt.Y) && (pt.Y < pp2->prev->pt.Y)) || ((pp2->prev->pt.Y <= pt.Y) && (pt.Y < pp2->pt.Y))) && (pt.X < (pp2->prev->pt.X - pp2->pt.X) * (pt.Y - pp2->pt.Y) / (pp2->prev->pt.Y - pp2->pt.Y) + pp2->pt.X )) result = !result; pp2 = pp2->next; } while (pp2 != pp); } return result; } //------------------------------------------------------------------------------ bool SlopesEqual(TEdge &e1, TEdge &e2, bool UseFullInt64Range) { if (UseFullInt64Range) return Int128Mul(e1.deltaY, e2.deltaX) == Int128Mul(e1.deltaX, e2.deltaY); else return e1.deltaY * e2.deltaX == e1.deltaX * e2.deltaY; } //------------------------------------------------------------------------------ bool SlopesEqual(const IntPoint pt1, const IntPoint pt2, const IntPoint pt3, bool UseFullInt64Range) { if (UseFullInt64Range) return Int128Mul(pt1.Y-pt2.Y, pt2.X-pt3.X) == Int128Mul(pt1.X-pt2.X, pt2.Y-pt3.Y); else return (pt1.Y-pt2.Y)*(pt2.X-pt3.X) == (pt1.X-pt2.X)*(pt2.Y-pt3.Y); } //------------------------------------------------------------------------------ bool SlopesEqual(const IntPoint pt1, const IntPoint pt2, const IntPoint pt3, const IntPoint pt4, bool UseFullInt64Range) { if (UseFullInt64Range) return Int128Mul(pt1.Y-pt2.Y, pt3.X-pt4.X) == Int128Mul(pt1.X-pt2.X, pt3.Y-pt4.Y); else return (pt1.Y-pt2.Y)*(pt3.X-pt4.X) == (pt1.X-pt2.X)*(pt3.Y-pt4.Y); } //------------------------------------------------------------------------------ double GetDx(const IntPoint pt1, const IntPoint pt2) { return (pt1.Y == pt2.Y) ? HORIZONTAL : (double)(pt2.X - pt1.X) / (pt2.Y - pt1.Y); } //--------------------------------------------------------------------------- void SetDx(TEdge &e) { e.deltaX = (e.xtop - e.xbot); e.deltaY = (e.ytop - e.ybot); if (e.deltaY == 0) e.dx = HORIZONTAL; else e.dx = (double)(e.deltaX) / e.deltaY; } //--------------------------------------------------------------------------- void SwapSides(TEdge &edge1, TEdge &edge2) { EdgeSide side = edge1.side; edge1.side = edge2.side; edge2.side = side; } //------------------------------------------------------------------------------ void SwapPolyIndexes(TEdge &edge1, TEdge &edge2) { int outIdx = edge1.outIdx; edge1.outIdx = edge2.outIdx; edge2.outIdx = outIdx; } //------------------------------------------------------------------------------ inline long64 Round(double val) { return (val < 0) ? static_cast(val - 0.5) : static_cast(val + 0.5); } //------------------------------------------------------------------------------ long64 TopX(TEdge &edge, const long64 currentY) { return ( currentY == edge.ytop ) ? edge.xtop : edge.xbot + Round(edge.dx *(currentY - edge.ybot)); } //------------------------------------------------------------------------------ bool IntersectPoint(TEdge &edge1, TEdge &edge2, IntPoint &ip, bool UseFullInt64Range) { double b1, b2; if (SlopesEqual(edge1, edge2, UseFullInt64Range)) { if (edge2.ybot > edge1.ybot) ip.Y = edge2.ybot; else ip.Y = edge1.ybot; return false; } else if (NEAR_ZERO(edge1.dx)) { ip.X = edge1.xbot; if (NEAR_EQUAL(edge2.dx, HORIZONTAL)) ip.Y = edge2.ybot; else { b2 = edge2.ybot - (edge2.xbot / edge2.dx); ip.Y = Round(ip.X / edge2.dx + b2); } } else if (NEAR_ZERO(edge2.dx)) { ip.X = edge2.xbot; if (NEAR_EQUAL(edge1.dx, HORIZONTAL)) ip.Y = edge1.ybot; else { b1 = edge1.ybot - (edge1.xbot / edge1.dx); ip.Y = Round(ip.X / edge1.dx + b1); } } else { b1 = edge1.xbot - edge1.ybot * edge1.dx; b2 = edge2.xbot - edge2.ybot * edge2.dx; double q = (b2-b1) / (edge1.dx - edge2.dx); ip.Y = Round(q); if (std::fabs(edge1.dx) < std::fabs(edge2.dx)) ip.X = Round(edge1.dx * q + b1); else ip.X = Round(edge2.dx * q + b2); } if (ip.Y < edge1.ytop || ip.Y < edge2.ytop) { if (edge1.ytop > edge2.ytop) { ip.X = edge1.xtop; ip.Y = edge1.ytop; return TopX(edge2, edge1.ytop) < edge1.xtop; } else { ip.X = edge2.xtop; ip.Y = edge2.ytop; return TopX(edge1, edge2.ytop) > edge2.xtop; } } else return true; } //------------------------------------------------------------------------------ void ReversePolyPtLinks(OutPt *pp) { if (!pp) return; OutPt *pp1, *pp2; pp1 = pp; do { pp2 = pp1->next; pp1->next = pp1->prev; pp1->prev = pp2; pp1 = pp2; } while( pp1 != pp ); } //------------------------------------------------------------------------------ void DisposeOutPts(OutPt*& pp) { if (pp == 0) return; pp->prev->next = 0; while( pp ) { OutPt *tmpPp = pp; pp = pp->next; delete tmpPp; } } //------------------------------------------------------------------------------ void InitEdge(TEdge *e, TEdge *eNext, TEdge *ePrev, const IntPoint &pt, PolyType polyType) { std::memset( e, 0, sizeof( TEdge )); e->next = eNext; e->prev = ePrev; e->xcurr = pt.X; e->ycurr = pt.Y; if (e->ycurr >= e->next->ycurr) { e->xbot = e->xcurr; e->ybot = e->ycurr; e->xtop = e->next->xcurr; e->ytop = e->next->ycurr; e->windDelta = 1; } else { e->xtop = e->xcurr; e->ytop = e->ycurr; e->xbot = e->next->xcurr; e->ybot = e->next->ycurr; e->windDelta = -1; } SetDx(*e); e->polyType = polyType; e->outIdx = -1; } //------------------------------------------------------------------------------ inline void SwapX(TEdge &e) { //swap horizontal edges' top and bottom x's so they follow the natural //progression of the bounds - ie so their xbots will align with the //adjoining lower edge. [Helpful in the ProcessHorizontal() method.] e.xcurr = e.xtop; e.xtop = e.xbot; e.xbot = e.xcurr; } //------------------------------------------------------------------------------ void SwapPoints(IntPoint &pt1, IntPoint &pt2) { IntPoint tmp = pt1; pt1 = pt2; pt2 = tmp; } //------------------------------------------------------------------------------ bool GetOverlapSegment(IntPoint pt1a, IntPoint pt1b, IntPoint pt2a, IntPoint pt2b, IntPoint &pt1, IntPoint &pt2) { //precondition: segments are colinear. if (Abs(pt1a.X - pt1b.X) > Abs(pt1a.Y - pt1b.Y)) { if (pt1a.X > pt1b.X) SwapPoints(pt1a, pt1b); if (pt2a.X > pt2b.X) SwapPoints(pt2a, pt2b); if (pt1a.X > pt2a.X) pt1 = pt1a; else pt1 = pt2a; if (pt1b.X < pt2b.X) pt2 = pt1b; else pt2 = pt2b; return pt1.X < pt2.X; } else { if (pt1a.Y < pt1b.Y) SwapPoints(pt1a, pt1b); if (pt2a.Y < pt2b.Y) SwapPoints(pt2a, pt2b); if (pt1a.Y < pt2a.Y) pt1 = pt1a; else pt1 = pt2a; if (pt1b.Y > pt2b.Y) pt2 = pt1b; else pt2 = pt2b; return pt1.Y > pt2.Y; } } //------------------------------------------------------------------------------ bool FirstIsBottomPt(const OutPt* btmPt1, const OutPt* btmPt2) { OutPt *p = btmPt1->prev; while (PointsEqual(p->pt, btmPt1->pt) && (p != btmPt1)) p = p->prev; double dx1p = std::fabs(GetDx(btmPt1->pt, p->pt)); p = btmPt1->next; while (PointsEqual(p->pt, btmPt1->pt) && (p != btmPt1)) p = p->next; double dx1n = std::fabs(GetDx(btmPt1->pt, p->pt)); p = btmPt2->prev; while (PointsEqual(p->pt, btmPt2->pt) && (p != btmPt2)) p = p->prev; double dx2p = std::fabs(GetDx(btmPt2->pt, p->pt)); p = btmPt2->next; while (PointsEqual(p->pt, btmPt2->pt) && (p != btmPt2)) p = p->next; double dx2n = std::fabs(GetDx(btmPt2->pt, p->pt)); return (dx1p >= dx2p && dx1p >= dx2n) || (dx1n >= dx2p && dx1n >= dx2n); } //------------------------------------------------------------------------------ OutPt* GetBottomPt(OutPt *pp) { OutPt* dups = 0; OutPt* p = pp->next; while (p != pp) { if (p->pt.Y > pp->pt.Y) { pp = p; dups = 0; } else if (p->pt.Y == pp->pt.Y && p->pt.X <= pp->pt.X) { if (p->pt.X < pp->pt.X) { dups = 0; pp = p; } else { if (p->next != pp && p->prev != pp) dups = p; } } p = p->next; } if (dups) { //there appears to be at least 2 vertices at bottomPt so ... while (dups != p) { if (!FirstIsBottomPt(p, dups)) pp = dups; dups = dups->next; while (!PointsEqual(dups->pt, pp->pt)) dups = dups->next; } } return pp; } //------------------------------------------------------------------------------ bool FindSegment(OutPt* &pp, bool UseFullInt64Range, IntPoint &pt1, IntPoint &pt2) { //outPt1 & outPt2 => the overlap segment (if the function returns true) if (!pp) return false; OutPt* pp2 = pp; IntPoint pt1a = pt1, pt2a = pt2; do { if (SlopesEqual(pt1a, pt2a, pp->pt, pp->prev->pt, UseFullInt64Range) && SlopesEqual(pt1a, pt2a, pp->pt, UseFullInt64Range) && GetOverlapSegment(pt1a, pt2a, pp->pt, pp->prev->pt, pt1, pt2)) return true; pp = pp->next; } while (pp != pp2); return false; } //------------------------------------------------------------------------------ bool Pt3IsBetweenPt1AndPt2(const IntPoint pt1, const IntPoint pt2, const IntPoint pt3) { if (PointsEqual(pt1, pt3) || PointsEqual(pt2, pt3)) return true; else if (pt1.X != pt2.X) return (pt1.X < pt3.X) == (pt3.X < pt2.X); else return (pt1.Y < pt3.Y) == (pt3.Y < pt2.Y); } //------------------------------------------------------------------------------ OutPt* InsertPolyPtBetween(OutPt* p1, OutPt* p2, const IntPoint pt) { if (p1 == p2) throw "JoinError"; OutPt* result = new OutPt; result->pt = pt; if (p2 == p1->next) { p1->next = result; p2->prev = result; result->next = p2; result->prev = p1; } else { p2->next = result; p1->prev = result; result->next = p1; result->prev = p2; } return result; } //------------------------------------------------------------------------------ // ClipperBase class methods ... //------------------------------------------------------------------------------ ClipperBase::ClipperBase() //constructor { m_MinimaList = 0; m_CurrentLM = 0; m_UseFullRange = true; } //------------------------------------------------------------------------------ ClipperBase::~ClipperBase() //destructor { Clear(); } //------------------------------------------------------------------------------ bool ClipperBase::AddPolygon( const Polygon &pg, PolyType polyType) { int len = (int)pg.size(); if (len < 3) return false; Polygon p(len); p[0] = pg[0]; int j = 0; long64 maxVal; if (m_UseFullRange) maxVal = hiRange; else maxVal = loRange; for (int i = 0; i < len; ++i) { if (Abs(pg[i].X) > maxVal || Abs(pg[i].Y) > maxVal) { if (Abs(pg[i].X) > hiRange || Abs(pg[i].Y) > hiRange) throw "Coordinate exceeds range bounds"; maxVal = hiRange; m_UseFullRange = true; } if (i == 0 || PointsEqual(p[j], pg[i])) continue; else if (j > 0 && SlopesEqual(p[j-1], p[j], pg[i], m_UseFullRange)) { if (PointsEqual(p[j-1], pg[i])) j--; } else j++; p[j] = pg[i]; } if (j < 2) return false; len = j+1; while (len > 2) { //nb: test for point equality before testing slopes ... if (PointsEqual(p[j], p[0])) j--; else if (PointsEqual(p[0], p[1]) || SlopesEqual(p[j], p[0], p[1], m_UseFullRange)) p[0] = p[j--]; else if (SlopesEqual(p[j-1], p[j], p[0], m_UseFullRange)) j--; else if (SlopesEqual(p[0], p[1], p[2], m_UseFullRange)) { for (int i = 2; i <= j; ++i) p[i-1] = p[i]; j--; } else break; len--; } if (len < 3) return false; //create a new edge array ... TEdge *edges = new TEdge [len]; m_edges.push_back(edges); //convert vertices to a double-linked-list of edges and initialize ... edges[0].xcurr = p[0].X; edges[0].ycurr = p[0].Y; InitEdge(&edges[len-1], &edges[0], &edges[len-2], p[len-1], polyType); for (int i = len-2; i > 0; --i) InitEdge(&edges[i], &edges[i+1], &edges[i-1], p[i], polyType); InitEdge(&edges[0], &edges[1], &edges[len-1], p[0], polyType); //reset xcurr & ycurr and find 'eHighest' (given the Y axis coordinates //increase downward so the 'highest' edge will have the smallest ytop) ... TEdge *e = &edges[0]; TEdge *eHighest = e; do { e->xcurr = e->xbot; e->ycurr = e->ybot; if (e->ytop < eHighest->ytop) eHighest = e; e = e->next; } while ( e != &edges[0]); //make sure eHighest is positioned so the following loop works safely ... if (eHighest->windDelta > 0) eHighest = eHighest->next; if (NEAR_EQUAL(eHighest->dx, HORIZONTAL)) eHighest = eHighest->next; //finally insert each local minima ... e = eHighest; do { e = AddBoundsToLML(e); } while( e != eHighest ); return true; } //------------------------------------------------------------------------------ void ClipperBase::InsertLocalMinima(LocalMinima *newLm) { if( ! m_MinimaList ) { m_MinimaList = newLm; } else if( newLm->Y >= m_MinimaList->Y ) { newLm->next = m_MinimaList; m_MinimaList = newLm; } else { LocalMinima* tmpLm = m_MinimaList; while( tmpLm->next && ( newLm->Y < tmpLm->next->Y ) ) tmpLm = tmpLm->next; newLm->next = tmpLm->next; tmpLm->next = newLm; } } //------------------------------------------------------------------------------ TEdge* ClipperBase::AddBoundsToLML(TEdge *e) { //Starting at the top of one bound we progress to the bottom where there's //a local minima. We then go to the top of the next bound. These two bounds //form the left and right (or right and left) bounds of the local minima. e->nextInLML = 0; e = e->next; for (;;) { if (NEAR_EQUAL(e->dx, HORIZONTAL)) { //nb: proceed through horizontals when approaching from their right, // but break on horizontal minima if approaching from their left. // This ensures 'local minima' are always on the left of horizontals. if (e->next->ytop < e->ytop && e->next->xbot > e->prev->xbot) break; if (e->xtop != e->prev->xbot) SwapX(*e); e->nextInLML = e->prev; } else if (e->ycurr == e->prev->ycurr) break; else e->nextInLML = e->prev; e = e->next; } //e and e.prev are now at a local minima ... LocalMinima* newLm = new LocalMinima; newLm->next = 0; newLm->Y = e->prev->ybot; if ( NEAR_EQUAL(e->dx, HORIZONTAL) ) //horizontal edges never start a left bound { if (e->xbot != e->prev->xbot) SwapX(*e); newLm->leftBound = e->prev; newLm->rightBound = e; } else if (e->dx < e->prev->dx) { newLm->leftBound = e->prev; newLm->rightBound = e; } else { newLm->leftBound = e; newLm->rightBound = e->prev; } newLm->leftBound->side = esLeft; newLm->rightBound->side = esRight; InsertLocalMinima( newLm ); for (;;) { if ( e->next->ytop == e->ytop && !NEAR_EQUAL(e->next->dx, HORIZONTAL) ) break; e->nextInLML = e->next; e = e->next; if ( NEAR_EQUAL(e->dx, HORIZONTAL) && e->xbot != e->prev->xtop) SwapX(*e); } return e->next; } //------------------------------------------------------------------------------ bool ClipperBase::AddPolygons(const Polygons &ppg, PolyType polyType) { bool result = false; for (Polygons::size_type i = 0; i < ppg.size(); ++i) if (AddPolygon(ppg[i], polyType)) result = true; return result; } //------------------------------------------------------------------------------ void ClipperBase::Clear() { DisposeLocalMinimaList(); for (EdgeList::size_type i = 0; i < m_edges.size(); ++i) delete [] m_edges[i]; m_edges.clear(); m_UseFullRange = false; } //------------------------------------------------------------------------------ void ClipperBase::Reset() { m_CurrentLM = m_MinimaList; if( !m_CurrentLM ) return; //ie nothing to process //reset all edges ... LocalMinima* lm = m_MinimaList; while( lm ) { TEdge* e = lm->leftBound; while( e ) { e->xcurr = e->xbot; e->ycurr = e->ybot; e->side = esLeft; e->outIdx = -1; e = e->nextInLML; } e = lm->rightBound; while( e ) { e->xcurr = e->xbot; e->ycurr = e->ybot; e->side = esRight; e->outIdx = -1; e = e->nextInLML; } lm = lm->next; } } //------------------------------------------------------------------------------ void ClipperBase::DisposeLocalMinimaList() { while( m_MinimaList ) { LocalMinima* tmpLm = m_MinimaList->next; delete m_MinimaList; m_MinimaList = tmpLm; } m_CurrentLM = 0; } //------------------------------------------------------------------------------ void ClipperBase::PopLocalMinima() { if( ! m_CurrentLM ) return; m_CurrentLM = m_CurrentLM->next; } //------------------------------------------------------------------------------ IntRect ClipperBase::GetBounds() { IntRect result; LocalMinima* lm = m_MinimaList; if (!lm) { result.left = result.top = result.right = result.bottom = 0; return result; } result.left = lm->leftBound->xbot; result.top = lm->leftBound->ybot; result.right = lm->leftBound->xbot; result.bottom = lm->leftBound->ybot; while (lm) { if (lm->leftBound->ybot > result.bottom) result.bottom = lm->leftBound->ybot; TEdge* e = lm->leftBound; for (;;) { TEdge* bottomE = e; while (e->nextInLML) { if (e->xbot < result.left) result.left = e->xbot; if (e->xbot > result.right) result.right = e->xbot; e = e->nextInLML; } if (e->xbot < result.left) result.left = e->xbot; if (e->xbot > result.right) result.right = e->xbot; if (e->xtop < result.left) result.left = e->xtop; if (e->xtop > result.right) result.right = e->xtop; if (e->ytop < result.top) result.top = e->ytop; if (bottomE == lm->leftBound) e = lm->rightBound; else break; } lm = lm->next; } return result; } //------------------------------------------------------------------------------ // TClipper methods ... //------------------------------------------------------------------------------ Clipper::Clipper() : ClipperBase() //constructor { m_Scanbeam = 0; m_ActiveEdges = 0; m_SortedEdges = 0; m_IntersectNodes = 0; m_ExecuteLocked = false; m_UseFullRange = false; m_ReverseOutput = false; m_ForceSimple = false; } //------------------------------------------------------------------------------ Clipper::~Clipper() //destructor { Clear(); DisposeScanbeamList(); } //------------------------------------------------------------------------------ void Clipper::Clear() { if (m_edges.empty()) return; //avoids problems with ClipperBase destructor DisposeAllPolyPts(); ClipperBase::Clear(); } //------------------------------------------------------------------------------ void Clipper::DisposeScanbeamList() { while ( m_Scanbeam ) { Scanbeam* sb2 = m_Scanbeam->next; delete m_Scanbeam; m_Scanbeam = sb2; } } //------------------------------------------------------------------------------ void Clipper::Reset() { ClipperBase::Reset(); m_Scanbeam = 0; m_ActiveEdges = 0; m_SortedEdges = 0; DisposeAllPolyPts(); LocalMinima* lm = m_MinimaList; while (lm) { InsertScanbeam(lm->Y); InsertScanbeam(lm->leftBound->ytop); lm = lm->next; } } //------------------------------------------------------------------------------ bool Clipper::Execute(ClipType clipType, Polygons &solution, PolyFillType subjFillType, PolyFillType clipFillType) { if( m_ExecuteLocked ) return false; m_ExecuteLocked = true; solution.resize(0); m_SubjFillType = subjFillType; m_ClipFillType = clipFillType; m_ClipType = clipType; m_UsingPolyTree = false; bool succeeded = ExecuteInternal(); if (succeeded) BuildResult(solution); m_ExecuteLocked = false; return succeeded; } //------------------------------------------------------------------------------ bool Clipper::Execute(ClipType clipType, PolyTree& polytree, PolyFillType subjFillType, PolyFillType clipFillType) { if( m_ExecuteLocked ) return false; m_ExecuteLocked = true; m_SubjFillType = subjFillType; m_ClipFillType = clipFillType; m_ClipType = clipType; m_UsingPolyTree = true; bool succeeded = ExecuteInternal(); if (succeeded) BuildResult2(polytree); m_ExecuteLocked = false; return succeeded; } //------------------------------------------------------------------------------ void Clipper::FixHoleLinkage(OutRec &outrec) { //skip OutRecs that (a) contain outermost polygons or //(b) already have the correct owner/child linkage ... if (!outrec.FirstLeft || (outrec.isHole != outrec.FirstLeft->isHole && outrec.FirstLeft->pts)) return; OutRec* orfl = outrec.FirstLeft; while (orfl && ((orfl->isHole == outrec.isHole) || !orfl->pts)) orfl = orfl->FirstLeft; outrec.FirstLeft = orfl; } //------------------------------------------------------------------------------ bool Clipper::ExecuteInternal() { bool succeeded; try { Reset(); if (!m_CurrentLM ) return true; long64 botY = PopScanbeam(); do { InsertLocalMinimaIntoAEL(botY); ClearHorzJoins(); ProcessHorizontals(); long64 topY = PopScanbeam(); succeeded = ProcessIntersections(botY, topY); if (!succeeded) break; ProcessEdgesAtTopOfScanbeam(topY); botY = topY; } while( m_Scanbeam ); } catch(...) { succeeded = false; } if (succeeded) { //tidy up output polygons and fix orientations where necessary ... for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) { OutRec *outRec = m_PolyOuts[i]; if (!outRec->pts) continue; FixupOutPolygon(*outRec); if (!outRec->pts) continue; if ((outRec->isHole ^ m_ReverseOutput) == (Area(*outRec, m_UseFullRange) > 0)) ReversePolyPtLinks(outRec->pts); } if (!m_Joins.empty()) JoinCommonEdges(); if (m_ForceSimple) DoSimplePolygons(); } ClearJoins(); ClearHorzJoins(); return succeeded; } //------------------------------------------------------------------------------ void Clipper::InsertScanbeam(const long64 Y) { if( !m_Scanbeam ) { m_Scanbeam = new Scanbeam; m_Scanbeam->next = 0; m_Scanbeam->Y = Y; } else if( Y > m_Scanbeam->Y ) { Scanbeam* newSb = new Scanbeam; newSb->Y = Y; newSb->next = m_Scanbeam; m_Scanbeam = newSb; } else { Scanbeam* sb2 = m_Scanbeam; while( sb2->next && ( Y <= sb2->next->Y ) ) sb2 = sb2->next; if( Y == sb2->Y ) return; //ie ignores duplicates Scanbeam* newSb = new Scanbeam; newSb->Y = Y; newSb->next = sb2->next; sb2->next = newSb; } } //------------------------------------------------------------------------------ long64 Clipper::PopScanbeam() { long64 Y = m_Scanbeam->Y; Scanbeam* sb2 = m_Scanbeam; m_Scanbeam = m_Scanbeam->next; delete sb2; return Y; } //------------------------------------------------------------------------------ void Clipper::DisposeAllPolyPts(){ for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) DisposeOutRec(i); m_PolyOuts.clear(); } //------------------------------------------------------------------------------ void Clipper::DisposeOutRec(PolyOutList::size_type index) { OutRec *outRec = m_PolyOuts[index]; if (outRec->pts) DisposeOutPts(outRec->pts); delete outRec; m_PolyOuts[index] = 0; } //------------------------------------------------------------------------------ void Clipper::SetWindingCount(TEdge &edge) { TEdge *e = edge.prevInAEL; //find the edge of the same polytype that immediately preceeds 'edge' in AEL while ( e && e->polyType != edge.polyType ) e = e->prevInAEL; if ( !e ) { edge.windCnt = edge.windDelta; edge.windCnt2 = 0; e = m_ActiveEdges; //ie get ready to calc windCnt2 } else if ( IsEvenOddFillType(edge) ) { //EvenOdd filling ... edge.windCnt = 1; edge.windCnt2 = e->windCnt2; e = e->nextInAEL; //ie get ready to calc windCnt2 } else { //nonZero, Positive or Negative filling ... if ( e->windCnt * e->windDelta < 0 ) { if (Abs(e->windCnt) > 1) { if (e->windDelta * edge.windDelta < 0) edge.windCnt = e->windCnt; else edge.windCnt = e->windCnt + edge.windDelta; } else edge.windCnt = e->windCnt + e->windDelta + edge.windDelta; } else { if ( Abs(e->windCnt) > 1 && e->windDelta * edge.windDelta < 0) edge.windCnt = e->windCnt; else if ( e->windCnt + edge.windDelta == 0 ) edge.windCnt = e->windCnt; else edge.windCnt = e->windCnt + edge.windDelta; } edge.windCnt2 = e->windCnt2; e = e->nextInAEL; //ie get ready to calc windCnt2 } //update windCnt2 ... if ( IsEvenOddAltFillType(edge) ) { //EvenOdd filling ... while ( e != &edge ) { edge.windCnt2 = (edge.windCnt2 == 0) ? 1 : 0; e = e->nextInAEL; } } else { //nonZero, Positive or Negative filling ... while ( e != &edge ) { edge.windCnt2 += e->windDelta; e = e->nextInAEL; } } } //------------------------------------------------------------------------------ bool Clipper::IsEvenOddFillType(const TEdge& edge) const { if (edge.polyType == ptSubject) return m_SubjFillType == pftEvenOdd; else return m_ClipFillType == pftEvenOdd; } //------------------------------------------------------------------------------ bool Clipper::IsEvenOddAltFillType(const TEdge& edge) const { if (edge.polyType == ptSubject) return m_ClipFillType == pftEvenOdd; else return m_SubjFillType == pftEvenOdd; } //------------------------------------------------------------------------------ bool Clipper::IsContributing(const TEdge& edge) const { PolyFillType pft, pft2; if (edge.polyType == ptSubject) { pft = m_SubjFillType; pft2 = m_ClipFillType; } else { pft = m_ClipFillType; pft2 = m_SubjFillType; } switch(pft) { case pftEvenOdd: case pftNonZero: if (Abs(edge.windCnt) != 1) return false; break; case pftPositive: if (edge.windCnt != 1) return false; break; default: //pftNegative if (edge.windCnt != -1) return false; } switch(m_ClipType) { case ctIntersection: switch(pft2) { case pftEvenOdd: case pftNonZero: return (edge.windCnt2 != 0); case pftPositive: return (edge.windCnt2 > 0); default: return (edge.windCnt2 < 0); } case ctUnion: switch(pft2) { case pftEvenOdd: case pftNonZero: return (edge.windCnt2 == 0); case pftPositive: return (edge.windCnt2 <= 0); default: return (edge.windCnt2 >= 0); } case ctDifference: if (edge.polyType == ptSubject) switch(pft2) { case pftEvenOdd: case pftNonZero: return (edge.windCnt2 == 0); case pftPositive: return (edge.windCnt2 <= 0); default: return (edge.windCnt2 >= 0); } else switch(pft2) { case pftEvenOdd: case pftNonZero: return (edge.windCnt2 != 0); case pftPositive: return (edge.windCnt2 > 0); default: return (edge.windCnt2 < 0); } default: return true; } } //------------------------------------------------------------------------------ void Clipper::AddLocalMinPoly(TEdge *e1, TEdge *e2, const IntPoint &pt) { TEdge *e, *prevE; if( NEAR_EQUAL(e2->dx, HORIZONTAL) || ( e1->dx > e2->dx ) ) { AddOutPt( e1, pt ); e2->outIdx = e1->outIdx; e1->side = esLeft; e2->side = esRight; e = e1; if (e->prevInAEL == e2) prevE = e2->prevInAEL; else prevE = e->prevInAEL; } else { AddOutPt( e2, pt ); e1->outIdx = e2->outIdx; e1->side = esRight; e2->side = esLeft; e = e2; if (e->prevInAEL == e1) prevE = e1->prevInAEL; else prevE = e->prevInAEL; } if (prevE && prevE->outIdx >= 0 && (TopX(*prevE, pt.Y) == TopX(*e, pt.Y)) && SlopesEqual(*e, *prevE, m_UseFullRange)) AddJoin(e, prevE, -1, -1); } //------------------------------------------------------------------------------ void Clipper::AddLocalMaxPoly(TEdge *e1, TEdge *e2, const IntPoint &pt) { AddOutPt( e1, pt ); if( e1->outIdx == e2->outIdx ) { e1->outIdx = -1; e2->outIdx = -1; } else if (e1->outIdx < e2->outIdx) AppendPolygon(e1, e2); else AppendPolygon(e2, e1); } //------------------------------------------------------------------------------ void Clipper::AddEdgeToSEL(TEdge *edge) { //SEL pointers in PEdge are reused to build a list of horizontal edges. //However, we don't need to worry about order with horizontal edge processing. if( !m_SortedEdges ) { m_SortedEdges = edge; edge->prevInSEL = 0; edge->nextInSEL = 0; } else { edge->nextInSEL = m_SortedEdges; edge->prevInSEL = 0; m_SortedEdges->prevInSEL = edge; m_SortedEdges = edge; } } //------------------------------------------------------------------------------ void Clipper::CopyAELToSEL() { TEdge* e = m_ActiveEdges; m_SortedEdges = e; while ( e ) { e->prevInSEL = e->prevInAEL; e->nextInSEL = e->nextInAEL; e = e->nextInAEL; } } //------------------------------------------------------------------------------ void Clipper::AddJoin(TEdge *e1, TEdge *e2, int e1OutIdx, int e2OutIdx) { JoinRec* jr = new JoinRec; if (e1OutIdx >= 0) jr->poly1Idx = e1OutIdx; else jr->poly1Idx = e1->outIdx; jr->pt1a = IntPoint(e1->xcurr, e1->ycurr); jr->pt1b = IntPoint(e1->xtop, e1->ytop); if (e2OutIdx >= 0) jr->poly2Idx = e2OutIdx; else jr->poly2Idx = e2->outIdx; jr->pt2a = IntPoint(e2->xcurr, e2->ycurr); jr->pt2b = IntPoint(e2->xtop, e2->ytop); m_Joins.push_back(jr); } //------------------------------------------------------------------------------ void Clipper::ClearJoins() { for (JoinList::size_type i = 0; i < m_Joins.size(); i++) delete m_Joins[i]; m_Joins.resize(0); } //------------------------------------------------------------------------------ void Clipper::AddHorzJoin(TEdge *e, int idx) { HorzJoinRec* hj = new HorzJoinRec; hj->edge = e; hj->savedIdx = idx; m_HorizJoins.push_back(hj); } //------------------------------------------------------------------------------ void Clipper::ClearHorzJoins() { for (HorzJoinList::size_type i = 0; i < m_HorizJoins.size(); i++) delete m_HorizJoins[i]; m_HorizJoins.resize(0); } //------------------------------------------------------------------------------ void Clipper::InsertLocalMinimaIntoAEL(const long64 botY) { while( m_CurrentLM && ( m_CurrentLM->Y == botY ) ) { TEdge* lb = m_CurrentLM->leftBound; TEdge* rb = m_CurrentLM->rightBound; InsertEdgeIntoAEL( lb ); InsertScanbeam( lb->ytop ); InsertEdgeIntoAEL( rb ); if (IsEvenOddFillType(*lb)) { lb->windDelta = 1; rb->windDelta = 1; } else { rb->windDelta = -lb->windDelta; } SetWindingCount( *lb ); rb->windCnt = lb->windCnt; rb->windCnt2 = lb->windCnt2; if( NEAR_EQUAL(rb->dx, HORIZONTAL) ) { //nb: only rightbounds can have a horizontal bottom edge AddEdgeToSEL( rb ); InsertScanbeam( rb->nextInLML->ytop ); } else InsertScanbeam( rb->ytop ); if( IsContributing(*lb) ) AddLocalMinPoly( lb, rb, IntPoint(lb->xcurr, m_CurrentLM->Y) ); //if any output polygons share an edge, they'll need joining later ... if (rb->outIdx >= 0 && NEAR_EQUAL(rb->dx, HORIZONTAL)) { for (HorzJoinList::size_type i = 0; i < m_HorizJoins.size(); ++i) { IntPoint pt, pt2; //returned by GetOverlapSegment() but unused here. HorzJoinRec* hj = m_HorizJoins[i]; //if horizontals rb and hj.edge overlap, flag for joining later ... if (GetOverlapSegment(IntPoint(hj->edge->xbot, hj->edge->ybot), IntPoint(hj->edge->xtop, hj->edge->ytop), IntPoint(rb->xbot, rb->ybot), IntPoint(rb->xtop, rb->ytop), pt, pt2)) AddJoin(hj->edge, rb, hj->savedIdx); } } if( lb->nextInAEL != rb ) { if (rb->outIdx >= 0 && rb->prevInAEL->outIdx >= 0 && SlopesEqual(*rb->prevInAEL, *rb, m_UseFullRange)) AddJoin(rb, rb->prevInAEL); TEdge* e = lb->nextInAEL; IntPoint pt = IntPoint(lb->xcurr, lb->ycurr); while( e != rb ) { if(!e) throw clipperException("InsertLocalMinimaIntoAEL: missing rightbound!"); //nb: For calculating winding counts etc, IntersectEdges() assumes //that param1 will be to the right of param2 ABOVE the intersection ... IntersectEdges( rb , e , pt , ipNone); //order important here e = e->nextInAEL; } } PopLocalMinima(); } } //------------------------------------------------------------------------------ void Clipper::DeleteFromAEL(TEdge *e) { TEdge* AelPrev = e->prevInAEL; TEdge* AelNext = e->nextInAEL; if( !AelPrev && !AelNext && (e != m_ActiveEdges) ) return; //already deleted if( AelPrev ) AelPrev->nextInAEL = AelNext; else m_ActiveEdges = AelNext; if( AelNext ) AelNext->prevInAEL = AelPrev; e->nextInAEL = 0; e->prevInAEL = 0; } //------------------------------------------------------------------------------ void Clipper::DeleteFromSEL(TEdge *e) { TEdge* SelPrev = e->prevInSEL; TEdge* SelNext = e->nextInSEL; if( !SelPrev && !SelNext && (e != m_SortedEdges) ) return; //already deleted if( SelPrev ) SelPrev->nextInSEL = SelNext; else m_SortedEdges = SelNext; if( SelNext ) SelNext->prevInSEL = SelPrev; e->nextInSEL = 0; e->prevInSEL = 0; } //------------------------------------------------------------------------------ void Clipper::IntersectEdges(TEdge *e1, TEdge *e2, const IntPoint &pt, const IntersectProtects protects) { //e1 will be to the left of e2 BELOW the intersection. Therefore e1 is before //e2 in AEL except when e1 is being inserted at the intersection point ... bool e1stops = !(ipLeft & protects) && !e1->nextInLML && e1->xtop == pt.X && e1->ytop == pt.Y; bool e2stops = !(ipRight & protects) && !e2->nextInLML && e2->xtop == pt.X && e2->ytop == pt.Y; bool e1Contributing = ( e1->outIdx >= 0 ); bool e2contributing = ( e2->outIdx >= 0 ); //update winding counts... //assumes that e1 will be to the right of e2 ABOVE the intersection if ( e1->polyType == e2->polyType ) { if ( IsEvenOddFillType( *e1) ) { int oldE1WindCnt = e1->windCnt; e1->windCnt = e2->windCnt; e2->windCnt = oldE1WindCnt; } else { if (e1->windCnt + e2->windDelta == 0 ) e1->windCnt = -e1->windCnt; else e1->windCnt += e2->windDelta; if ( e2->windCnt - e1->windDelta == 0 ) e2->windCnt = -e2->windCnt; else e2->windCnt -= e1->windDelta; } } else { if (!IsEvenOddFillType(*e2)) e1->windCnt2 += e2->windDelta; else e1->windCnt2 = ( e1->windCnt2 == 0 ) ? 1 : 0; if (!IsEvenOddFillType(*e1)) e2->windCnt2 -= e1->windDelta; else e2->windCnt2 = ( e2->windCnt2 == 0 ) ? 1 : 0; } PolyFillType e1FillType, e2FillType, e1FillType2, e2FillType2; if (e1->polyType == ptSubject) { e1FillType = m_SubjFillType; e1FillType2 = m_ClipFillType; } else { e1FillType = m_ClipFillType; e1FillType2 = m_SubjFillType; } if (e2->polyType == ptSubject) { e2FillType = m_SubjFillType; e2FillType2 = m_ClipFillType; } else { e2FillType = m_ClipFillType; e2FillType2 = m_SubjFillType; } long64 e1Wc, e2Wc; switch (e1FillType) { case pftPositive: e1Wc = e1->windCnt; break; case pftNegative: e1Wc = -e1->windCnt; break; default: e1Wc = Abs(e1->windCnt); } switch(e2FillType) { case pftPositive: e2Wc = e2->windCnt; break; case pftNegative: e2Wc = -e2->windCnt; break; default: e2Wc = Abs(e2->windCnt); } if ( e1Contributing && e2contributing ) { if ( e1stops || e2stops || (e1Wc != 0 && e1Wc != 1) || (e2Wc != 0 && e2Wc != 1) || (e1->polyType != e2->polyType && m_ClipType != ctXor) ) AddLocalMaxPoly(e1, e2, pt); else { AddOutPt(e1, pt); AddOutPt(e2, pt); SwapSides( *e1 , *e2 ); SwapPolyIndexes( *e1 , *e2 ); } } else if ( e1Contributing ) { if (e2Wc == 0 || e2Wc == 1) { AddOutPt(e1, pt); SwapSides(*e1, *e2); SwapPolyIndexes(*e1, *e2); } } else if ( e2contributing ) { if (e1Wc == 0 || e1Wc == 1) { AddOutPt(e2, pt); SwapSides(*e1, *e2); SwapPolyIndexes(*e1, *e2); } } else if ( (e1Wc == 0 || e1Wc == 1) && (e2Wc == 0 || e2Wc == 1) && !e1stops && !e2stops ) { //neither edge is currently contributing ... long64 e1Wc2, e2Wc2; switch (e1FillType2) { case pftPositive: e1Wc2 = e1->windCnt2; break; case pftNegative : e1Wc2 = -e1->windCnt2; break; default: e1Wc2 = Abs(e1->windCnt2); } switch (e2FillType2) { case pftPositive: e2Wc2 = e2->windCnt2; break; case pftNegative: e2Wc2 = -e2->windCnt2; break; default: e2Wc2 = Abs(e2->windCnt2); } if (e1->polyType != e2->polyType) AddLocalMinPoly(e1, e2, pt); else if (e1Wc == 1 && e2Wc == 1) switch( m_ClipType ) { case ctIntersection: if (e1Wc2 > 0 && e2Wc2 > 0) AddLocalMinPoly(e1, e2, pt); break; case ctUnion: if ( e1Wc2 <= 0 && e2Wc2 <= 0 ) AddLocalMinPoly(e1, e2, pt); break; case ctDifference: if (((e1->polyType == ptClip) && (e1Wc2 > 0) && (e2Wc2 > 0)) || ((e1->polyType == ptSubject) && (e1Wc2 <= 0) && (e2Wc2 <= 0))) AddLocalMinPoly(e1, e2, pt); break; case ctXor: AddLocalMinPoly(e1, e2, pt); } else SwapSides( *e1, *e2 ); } if( (e1stops != e2stops) && ( (e1stops && (e1->outIdx >= 0)) || (e2stops && (e2->outIdx >= 0)) ) ) { SwapSides( *e1, *e2 ); SwapPolyIndexes( *e1, *e2 ); } //finally, delete any non-contributing maxima edges ... if( e1stops ) DeleteFromAEL( e1 ); if( e2stops ) DeleteFromAEL( e2 ); } //------------------------------------------------------------------------------ void Clipper::SetHoleState(TEdge *e, OutRec *outrec) { bool isHole = false; TEdge *e2 = e->prevInAEL; while (e2) { if (e2->outIdx >= 0) { isHole = !isHole; if (! outrec->FirstLeft) outrec->FirstLeft = m_PolyOuts[e2->outIdx]; } e2 = e2->prevInAEL; } if (isHole) outrec->isHole = true; } //------------------------------------------------------------------------------ OutRec* GetLowermostRec(OutRec *outRec1, OutRec *outRec2) { //work out which polygon fragment has the correct hole state ... if (!outRec1->bottomPt) outRec1->bottomPt = GetBottomPt(outRec1->pts); if (!outRec2->bottomPt) outRec2->bottomPt = GetBottomPt(outRec2->pts); OutPt *outPt1 = outRec1->bottomPt; OutPt *outPt2 = outRec2->bottomPt; if (outPt1->pt.Y > outPt2->pt.Y) return outRec1; else if (outPt1->pt.Y < outPt2->pt.Y) return outRec2; else if (outPt1->pt.X < outPt2->pt.X) return outRec1; else if (outPt1->pt.X > outPt2->pt.X) return outRec2; else if (outPt1->next == outPt1) return outRec2; else if (outPt2->next == outPt2) return outRec1; else if (FirstIsBottomPt(outPt1, outPt2)) return outRec1; else return outRec2; } //------------------------------------------------------------------------------ bool Param1RightOfParam2(OutRec* outRec1, OutRec* outRec2) { do { outRec1 = outRec1->FirstLeft; if (outRec1 == outRec2) return true; } while (outRec1); return false; } //------------------------------------------------------------------------------ OutRec* Clipper::GetOutRec(int idx) { OutRec* outrec = m_PolyOuts[idx]; while (outrec != m_PolyOuts[outrec->idx]) outrec = m_PolyOuts[outrec->idx]; return outrec; } //------------------------------------------------------------------------------ void Clipper::AppendPolygon(TEdge *e1, TEdge *e2) { //get the start and ends of both output polygons ... OutRec *outRec1 = m_PolyOuts[e1->outIdx]; OutRec *outRec2 = m_PolyOuts[e2->outIdx]; OutRec *holeStateRec; if (Param1RightOfParam2(outRec1, outRec2)) holeStateRec = outRec2; else if (Param1RightOfParam2(outRec2, outRec1)) holeStateRec = outRec1; else holeStateRec = GetLowermostRec(outRec1, outRec2); OutPt* p1_lft = outRec1->pts; OutPt* p1_rt = p1_lft->prev; OutPt* p2_lft = outRec2->pts; OutPt* p2_rt = p2_lft->prev; EdgeSide side; //join e2 poly onto e1 poly and delete pointers to e2 ... if( e1->side == esLeft ) { if( e2->side == esLeft ) { //z y x a b c ReversePolyPtLinks(p2_lft); p2_lft->next = p1_lft; p1_lft->prev = p2_lft; p1_rt->next = p2_rt; p2_rt->prev = p1_rt; outRec1->pts = p2_rt; } else { //x y z a b c p2_rt->next = p1_lft; p1_lft->prev = p2_rt; p2_lft->prev = p1_rt; p1_rt->next = p2_lft; outRec1->pts = p2_lft; } side = esLeft; } else { if( e2->side == esRight ) { //a b c z y x ReversePolyPtLinks(p2_lft); p1_rt->next = p2_rt; p2_rt->prev = p1_rt; p2_lft->next = p1_lft; p1_lft->prev = p2_lft; } else { //a b c x y z p1_rt->next = p2_lft; p2_lft->prev = p1_rt; p1_lft->prev = p2_rt; p2_rt->next = p1_lft; } side = esRight; } outRec1->bottomPt = 0; if (holeStateRec == outRec2) { if (outRec2->FirstLeft != outRec1) outRec1->FirstLeft = outRec2->FirstLeft; outRec1->isHole = outRec2->isHole; } outRec2->pts = 0; outRec2->bottomPt = 0; outRec2->FirstLeft = outRec1; int OKIdx = e1->outIdx; int ObsoleteIdx = e2->outIdx; e1->outIdx = -1; //nb: safe because we only get here via AddLocalMaxPoly e2->outIdx = -1; TEdge* e = m_ActiveEdges; while( e ) { if( e->outIdx == ObsoleteIdx ) { e->outIdx = OKIdx; e->side = side; break; } e = e->nextInAEL; } outRec2->idx = outRec1->idx; } //------------------------------------------------------------------------------ OutRec* Clipper::CreateOutRec() { OutRec* result = new OutRec; result->isHole = false; result->FirstLeft = 0; result->pts = 0; result->bottomPt = 0; result->polyNode = 0; m_PolyOuts.push_back(result); result->idx = (int)m_PolyOuts.size()-1; return result; } //------------------------------------------------------------------------------ void Clipper::AddOutPt(TEdge *e, const IntPoint &pt) { bool ToFront = (e->side == esLeft); if( e->outIdx < 0 ) { OutRec *outRec = CreateOutRec(); e->outIdx = outRec->idx; OutPt* op = new OutPt; outRec->pts = op; op->pt = pt; op->idx = outRec->idx; op->next = op; op->prev = op; SetHoleState(e, outRec); } else { OutRec *outRec = m_PolyOuts[e->outIdx]; OutPt* op = outRec->pts; if ((ToFront && PointsEqual(pt, op->pt)) || (!ToFront && PointsEqual(pt, op->prev->pt))) return; OutPt* op2 = new OutPt; op2->pt = pt; op2->idx = outRec->idx; op2->next = op; op2->prev = op->prev; op2->prev->next = op2; op->prev = op2; if (ToFront) outRec->pts = op2; } } //------------------------------------------------------------------------------ void Clipper::ProcessHorizontals() { TEdge* horzEdge = m_SortedEdges; while( horzEdge ) { DeleteFromSEL( horzEdge ); ProcessHorizontal( horzEdge ); horzEdge = m_SortedEdges; } } //------------------------------------------------------------------------------ bool Clipper::IsTopHorz(const long64 XPos) { TEdge* e = m_SortedEdges; while( e ) { if( ( XPos >= std::min(e->xcurr, e->xtop) ) && ( XPos <= std::max(e->xcurr, e->xtop) ) ) return false; e = e->nextInSEL; } return true; } //------------------------------------------------------------------------------ inline bool IsMinima(TEdge *e) { return e && (e->prev->nextInLML != e) && (e->next->nextInLML != e); } //------------------------------------------------------------------------------ inline bool IsMaxima(TEdge *e, const long64 Y) { return e && e->ytop == Y && !e->nextInLML; } //------------------------------------------------------------------------------ inline bool IsIntermediate(TEdge *e, const long64 Y) { return e->ytop == Y && e->nextInLML; } //------------------------------------------------------------------------------ TEdge *GetMaximaPair(TEdge *e) { if( !IsMaxima(e->next, e->ytop) || e->next->xtop != e->xtop ) return e->prev; else return e->next; } //------------------------------------------------------------------------------ void Clipper::SwapPositionsInAEL(TEdge *edge1, TEdge *edge2) { if( edge1->nextInAEL == edge2 ) { TEdge* next = edge2->nextInAEL; if( next ) next->prevInAEL = edge1; TEdge* prev = edge1->prevInAEL; if( prev ) prev->nextInAEL = edge2; edge2->prevInAEL = prev; edge2->nextInAEL = edge1; edge1->prevInAEL = edge2; edge1->nextInAEL = next; } else if( edge2->nextInAEL == edge1 ) { TEdge* next = edge1->nextInAEL; if( next ) next->prevInAEL = edge2; TEdge* prev = edge2->prevInAEL; if( prev ) prev->nextInAEL = edge1; edge1->prevInAEL = prev; edge1->nextInAEL = edge2; edge2->prevInAEL = edge1; edge2->nextInAEL = next; } else { TEdge* next = edge1->nextInAEL; TEdge* prev = edge1->prevInAEL; edge1->nextInAEL = edge2->nextInAEL; if( edge1->nextInAEL ) edge1->nextInAEL->prevInAEL = edge1; edge1->prevInAEL = edge2->prevInAEL; if( edge1->prevInAEL ) edge1->prevInAEL->nextInAEL = edge1; edge2->nextInAEL = next; if( edge2->nextInAEL ) edge2->nextInAEL->prevInAEL = edge2; edge2->prevInAEL = prev; if( edge2->prevInAEL ) edge2->prevInAEL->nextInAEL = edge2; } if( !edge1->prevInAEL ) m_ActiveEdges = edge1; else if( !edge2->prevInAEL ) m_ActiveEdges = edge2; } //------------------------------------------------------------------------------ void Clipper::SwapPositionsInSEL(TEdge *edge1, TEdge *edge2) { if( !( edge1->nextInSEL ) && !( edge1->prevInSEL ) ) return; if( !( edge2->nextInSEL ) && !( edge2->prevInSEL ) ) return; if( edge1->nextInSEL == edge2 ) { TEdge* next = edge2->nextInSEL; if( next ) next->prevInSEL = edge1; TEdge* prev = edge1->prevInSEL; if( prev ) prev->nextInSEL = edge2; edge2->prevInSEL = prev; edge2->nextInSEL = edge1; edge1->prevInSEL = edge2; edge1->nextInSEL = next; } else if( edge2->nextInSEL == edge1 ) { TEdge* next = edge1->nextInSEL; if( next ) next->prevInSEL = edge2; TEdge* prev = edge2->prevInSEL; if( prev ) prev->nextInSEL = edge1; edge1->prevInSEL = prev; edge1->nextInSEL = edge2; edge2->prevInSEL = edge1; edge2->nextInSEL = next; } else { TEdge* next = edge1->nextInSEL; TEdge* prev = edge1->prevInSEL; edge1->nextInSEL = edge2->nextInSEL; if( edge1->nextInSEL ) edge1->nextInSEL->prevInSEL = edge1; edge1->prevInSEL = edge2->prevInSEL; if( edge1->prevInSEL ) edge1->prevInSEL->nextInSEL = edge1; edge2->nextInSEL = next; if( edge2->nextInSEL ) edge2->nextInSEL->prevInSEL = edge2; edge2->prevInSEL = prev; if( edge2->prevInSEL ) edge2->prevInSEL->nextInSEL = edge2; } if( !edge1->prevInSEL ) m_SortedEdges = edge1; else if( !edge2->prevInSEL ) m_SortedEdges = edge2; } //------------------------------------------------------------------------------ TEdge* GetNextInAEL(TEdge *e, Direction dir) { return dir == dLeftToRight ? e->nextInAEL : e->prevInAEL; } //------------------------------------------------------------------------------ void Clipper::ProcessHorizontal(TEdge *horzEdge) { Direction dir; long64 horzLeft, horzRight; if( horzEdge->xcurr < horzEdge->xtop ) { horzLeft = horzEdge->xcurr; horzRight = horzEdge->xtop; dir = dLeftToRight; } else { horzLeft = horzEdge->xtop; horzRight = horzEdge->xcurr; dir = dRightToLeft; } TEdge* eMaxPair; if( horzEdge->nextInLML ) eMaxPair = 0; else eMaxPair = GetMaximaPair(horzEdge); TEdge* e = GetNextInAEL( horzEdge , dir ); while( e ) { if ( e->xcurr == horzEdge->xtop && !eMaxPair ) { if (SlopesEqual(*e, *horzEdge->nextInLML, m_UseFullRange)) { //if output polygons share an edge, they'll need joining later ... if (horzEdge->outIdx >= 0 && e->outIdx >= 0) AddJoin(horzEdge->nextInLML, e, horzEdge->outIdx); break; //we've reached the end of the horizontal line } else if (e->dx < horzEdge->nextInLML->dx) //we really have got to the end of the intermediate horz edge so quit. //nb: More -ve slopes follow more +ve slopes ABOVE the horizontal. break; } TEdge* eNext = GetNextInAEL( e, dir ); if (eMaxPair || ((dir == dLeftToRight) && (e->xcurr < horzRight)) || ((dir == dRightToLeft) && (e->xcurr > horzLeft))) { //so far we're still in range of the horizontal edge if( e == eMaxPair ) { //horzEdge is evidently a maxima horizontal and we've arrived at its end. if (dir == dLeftToRight) IntersectEdges(horzEdge, e, IntPoint(e->xcurr, horzEdge->ycurr), ipNone); else IntersectEdges(e, horzEdge, IntPoint(e->xcurr, horzEdge->ycurr), ipNone); if (eMaxPair->outIdx >= 0) throw clipperException("ProcessHorizontal error"); return; } else if( NEAR_EQUAL(e->dx, HORIZONTAL) && !IsMinima(e) && !(e->xcurr > e->xtop) ) { //An overlapping horizontal edge. Overlapping horizontal edges are //processed as if layered with the current horizontal edge (horizEdge) //being infinitesimally lower that the next (e). Therfore, we //intersect with e only if e.xcurr is within the bounds of horzEdge ... if( dir == dLeftToRight ) IntersectEdges( horzEdge , e, IntPoint(e->xcurr, horzEdge->ycurr), (IsTopHorz( e->xcurr ))? ipLeft : ipBoth ); else IntersectEdges( e, horzEdge, IntPoint(e->xcurr, horzEdge->ycurr), (IsTopHorz( e->xcurr ))? ipRight : ipBoth ); } else if( dir == dLeftToRight ) { IntersectEdges( horzEdge, e, IntPoint(e->xcurr, horzEdge->ycurr), (IsTopHorz( e->xcurr ))? ipLeft : ipBoth ); } else { IntersectEdges( e, horzEdge, IntPoint(e->xcurr, horzEdge->ycurr), (IsTopHorz( e->xcurr ))? ipRight : ipBoth ); } SwapPositionsInAEL( horzEdge, e ); } else if( (dir == dLeftToRight && e->xcurr >= horzRight) || (dir == dRightToLeft && e->xcurr <= horzLeft) ) break; e = eNext; } //end while if( horzEdge->nextInLML ) { if( horzEdge->outIdx >= 0 ) AddOutPt( horzEdge, IntPoint(horzEdge->xtop, horzEdge->ytop)); UpdateEdgeIntoAEL( horzEdge ); } else { if ( horzEdge->outIdx >= 0 ) IntersectEdges( horzEdge, eMaxPair, IntPoint(horzEdge->xtop, horzEdge->ycurr), ipBoth); if (eMaxPair->outIdx >= 0) throw clipperException("ProcessHorizontal error"); DeleteFromAEL(eMaxPair); DeleteFromAEL(horzEdge); } } //------------------------------------------------------------------------------ void Clipper::UpdateEdgeIntoAEL(TEdge *&e) { if( !e->nextInLML ) throw clipperException("UpdateEdgeIntoAEL: invalid call"); TEdge* AelPrev = e->prevInAEL; TEdge* AelNext = e->nextInAEL; e->nextInLML->outIdx = e->outIdx; if( AelPrev ) AelPrev->nextInAEL = e->nextInLML; else m_ActiveEdges = e->nextInLML; if( AelNext ) AelNext->prevInAEL = e->nextInLML; e->nextInLML->side = e->side; e->nextInLML->windDelta = e->windDelta; e->nextInLML->windCnt = e->windCnt; e->nextInLML->windCnt2 = e->windCnt2; e = e->nextInLML; e->prevInAEL = AelPrev; e->nextInAEL = AelNext; if( !NEAR_EQUAL(e->dx, HORIZONTAL) ) InsertScanbeam( e->ytop ); } //------------------------------------------------------------------------------ bool Clipper::ProcessIntersections(const long64 botY, const long64 topY) { if( !m_ActiveEdges ) return true; try { BuildIntersectList(botY, topY); if (!m_IntersectNodes) return true; if (!m_IntersectNodes->next || FixupIntersectionOrder()) ProcessIntersectList(); else return false; } catch(...) { m_SortedEdges = 0; DisposeIntersectNodes(); throw clipperException("ProcessIntersections error"); } m_SortedEdges = 0; return true; } //------------------------------------------------------------------------------ void Clipper::DisposeIntersectNodes() { while ( m_IntersectNodes ) { IntersectNode* iNode = m_IntersectNodes->next; delete m_IntersectNodes; m_IntersectNodes = iNode; } } //------------------------------------------------------------------------------ void Clipper::BuildIntersectList(const long64 botY, const long64 topY) { if ( !m_ActiveEdges ) return; //prepare for sorting ... TEdge* e = m_ActiveEdges; m_SortedEdges = e; while( e ) { e->prevInSEL = e->prevInAEL; e->nextInSEL = e->nextInAEL; e->xcurr = TopX( *e, topY ); e = e->nextInAEL; } //bubblesort ... bool isModified = true; while( isModified && m_SortedEdges ) { isModified = false; e = m_SortedEdges; while( e->nextInSEL ) { TEdge *eNext = e->nextInSEL; IntPoint pt; if(e->xcurr > eNext->xcurr) { if (!IntersectPoint(*e, *eNext, pt, m_UseFullRange) && e->xcurr > eNext->xcurr +1) throw clipperException("Intersection error"); if (pt.Y > botY) { pt.Y = botY; pt.X = TopX(*e, pt.Y); } AddIntersectNode( e, eNext, pt ); SwapPositionsInSEL(e, eNext); isModified = true; } else e = eNext; } if( e->prevInSEL ) e->prevInSEL->nextInSEL = 0; else break; } m_SortedEdges = 0; } //------------------------------------------------------------------------------ void Clipper::AddIntersectNode(TEdge *e1, TEdge *e2, const IntPoint &pt) { IntersectNode* newNode = new IntersectNode; newNode->edge1 = e1; newNode->edge2 = e2; newNode->pt = pt; newNode->next = 0; if( !m_IntersectNodes ) m_IntersectNodes = newNode; else if(newNode->pt.Y > m_IntersectNodes->pt.Y ) { newNode->next = m_IntersectNodes; m_IntersectNodes = newNode; } else { IntersectNode* iNode = m_IntersectNodes; while(iNode->next && newNode->pt.Y <= iNode->next->pt.Y) iNode = iNode->next; newNode->next = iNode->next; iNode->next = newNode; } } //------------------------------------------------------------------------------ void Clipper::ProcessIntersectList() { while( m_IntersectNodes ) { IntersectNode* iNode = m_IntersectNodes->next; { IntersectEdges( m_IntersectNodes->edge1 , m_IntersectNodes->edge2 , m_IntersectNodes->pt, ipBoth ); SwapPositionsInAEL( m_IntersectNodes->edge1 , m_IntersectNodes->edge2 ); } delete m_IntersectNodes; m_IntersectNodes = iNode; } } //------------------------------------------------------------------------------ void Clipper::DoMaxima(TEdge *e, long64 topY) { TEdge* eMaxPair = GetMaximaPair(e); long64 X = e->xtop; TEdge* eNext = e->nextInAEL; while( eNext != eMaxPair ) { if (!eNext) throw clipperException("DoMaxima error"); IntersectEdges( e, eNext, IntPoint(X, topY), ipBoth ); SwapPositionsInAEL(e, eNext); eNext = e->nextInAEL; } if( e->outIdx < 0 && eMaxPair->outIdx < 0 ) { DeleteFromAEL( e ); DeleteFromAEL( eMaxPair ); } else if( e->outIdx >= 0 && eMaxPair->outIdx >= 0 ) { IntersectEdges( e, eMaxPair, IntPoint(X, topY), ipNone ); } else throw clipperException("DoMaxima error"); } //------------------------------------------------------------------------------ void Clipper::ProcessEdgesAtTopOfScanbeam(const long64 topY) { TEdge* e = m_ActiveEdges; while( e ) { //1. process maxima, treating them as if they're 'bent' horizontal edges, // but exclude maxima with horizontal edges. nb: e can't be a horizontal. if( IsMaxima(e, topY) && !NEAR_EQUAL(GetMaximaPair(e)->dx, HORIZONTAL) ) { //'e' might be removed from AEL, as may any following edges so ... TEdge* ePrev = e->prevInAEL; DoMaxima(e, topY); if( !ePrev ) e = m_ActiveEdges; else e = ePrev->nextInAEL; } else { bool intermediateVert = IsIntermediate(e, topY); //2. promote horizontal edges, otherwise update xcurr and ycurr ... if (intermediateVert && NEAR_EQUAL(e->nextInLML->dx, HORIZONTAL) ) { if (e->outIdx >= 0) { AddOutPt(e, IntPoint(e->xtop, e->ytop)); for (HorzJoinList::size_type i = 0; i < m_HorizJoins.size(); ++i) { IntPoint pt, pt2; HorzJoinRec* hj = m_HorizJoins[i]; if (GetOverlapSegment(IntPoint(hj->edge->xbot, hj->edge->ybot), IntPoint(hj->edge->xtop, hj->edge->ytop), IntPoint(e->nextInLML->xbot, e->nextInLML->ybot), IntPoint(e->nextInLML->xtop, e->nextInLML->ytop), pt, pt2)) AddJoin(hj->edge, e->nextInLML, hj->savedIdx, e->outIdx); } AddHorzJoin(e->nextInLML, e->outIdx); } UpdateEdgeIntoAEL(e); AddEdgeToSEL(e); } else { e->xcurr = TopX( *e, topY ); e->ycurr = topY; if (m_ForceSimple && e->prevInAEL && e->prevInAEL->xcurr == e->xcurr && e->outIdx >= 0 && e->prevInAEL->outIdx >= 0) { if (intermediateVert) AddOutPt(e->prevInAEL, IntPoint(e->xcurr, topY)); else AddOutPt(e, IntPoint(e->xcurr, topY)); } } e = e->nextInAEL; } } //3. Process horizontals at the top of the scanbeam ... ProcessHorizontals(); //4. Promote intermediate vertices ... e = m_ActiveEdges; while( e ) { if( IsIntermediate( e, topY ) ) { if( e->outIdx >= 0 ) AddOutPt(e, IntPoint(e->xtop,e->ytop)); UpdateEdgeIntoAEL(e); //if output polygons share an edge, they'll need joining later ... TEdge* ePrev = e->prevInAEL; TEdge* eNext = e->nextInAEL; if (ePrev && ePrev->xcurr == e->xbot && ePrev->ycurr == e->ybot && e->outIdx >= 0 && ePrev->outIdx >= 0 && ePrev->ycurr > ePrev->ytop && SlopesEqual(*e, *ePrev, m_UseFullRange)) { AddOutPt(ePrev, IntPoint(e->xbot, e->ybot)); AddJoin(e, ePrev); } else if (eNext && eNext->xcurr == e->xbot && eNext->ycurr == e->ybot && e->outIdx >= 0 && eNext->outIdx >= 0 && eNext->ycurr > eNext->ytop && SlopesEqual(*e, *eNext, m_UseFullRange)) { AddOutPt(eNext, IntPoint(e->xbot, e->ybot)); AddJoin(e, eNext); } } e = e->nextInAEL; } } //------------------------------------------------------------------------------ void Clipper::FixupOutPolygon(OutRec &outrec) { //FixupOutPolygon() - removes duplicate points and simplifies consecutive //parallel edges by removing the middle vertex. OutPt *lastOK = 0; outrec.bottomPt = 0; OutPt *pp = outrec.pts; for (;;) { if (pp->prev == pp || pp->prev == pp->next ) { DisposeOutPts(pp); outrec.pts = 0; return; } //test for duplicate points and for same slope (cross-product) ... if ( PointsEqual(pp->pt, pp->next->pt) || SlopesEqual(pp->prev->pt, pp->pt, pp->next->pt, m_UseFullRange) ) { lastOK = 0; OutPt *tmp = pp; pp->prev->next = pp->next; pp->next->prev = pp->prev; pp = pp->prev; delete tmp; } else if (pp == lastOK) break; else { if (!lastOK) lastOK = pp; pp = pp->next; } } outrec.pts = pp; } //------------------------------------------------------------------------------ void Clipper::BuildResult(Polygons &polys) { polys.reserve(m_PolyOuts.size()); for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) { if (m_PolyOuts[i]->pts) { Polygon pg; OutPt* p = m_PolyOuts[i]->pts; do { pg.push_back(p->pt); p = p->prev; } while (p != m_PolyOuts[i]->pts); if (pg.size() > 2) polys.push_back(pg); } } } //------------------------------------------------------------------------------ int PointCount(OutPt *pts) { if (!pts) return 0; int result = 0; OutPt* p = pts; do { result++; p = p->next; } while (p != pts); return result; } //------------------------------------------------------------------------------ void Clipper::BuildResult2(PolyTree& polytree) { polytree.Clear(); polytree.AllNodes.reserve(m_PolyOuts.size()); //add each output polygon/contour to polytree ... for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); i++) { OutRec* outRec = m_PolyOuts[i]; int cnt = PointCount(outRec->pts); if (cnt < 3) continue; FixHoleLinkage(*outRec); PolyNode* pn = new PolyNode(); //nb: polytree takes ownership of all the PolyNodes polytree.AllNodes.push_back(pn); outRec->polyNode = pn; pn->Parent = 0; pn->Index = 0; pn->Contour.reserve(cnt); OutPt *op = outRec->pts; for (int j = 0; j < cnt; j++) { pn->Contour.push_back(op->pt); op = op->prev; } } //fixup PolyNode links etc ... polytree.Childs.reserve(m_PolyOuts.size()); for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); i++) { OutRec* outRec = m_PolyOuts[i]; if (!outRec->polyNode) continue; if (outRec->FirstLeft) outRec->FirstLeft->polyNode->AddChild(*outRec->polyNode); else polytree.AddChild(*outRec->polyNode); } } //------------------------------------------------------------------------------ void SwapIntersectNodes(IntersectNode &int1, IntersectNode &int2) { //just swap the contents (because fIntersectNodes is a single-linked-list) IntersectNode inode = int1; //gets a copy of Int1 int1.edge1 = int2.edge1; int1.edge2 = int2.edge2; int1.pt = int2.pt; int2.edge1 = inode.edge1; int2.edge2 = inode.edge2; int2.pt = inode.pt; } //------------------------------------------------------------------------------ inline bool EdgesAdjacent(const IntersectNode &inode) { return (inode.edge1->nextInSEL == inode.edge2) || (inode.edge1->prevInSEL == inode.edge2); } //------------------------------------------------------------------------------ bool Clipper::FixupIntersectionOrder() { //pre-condition: intersections are sorted bottom-most (then left-most) first. //Now it's crucial that intersections are made only between adjacent edges, //so to ensure this the order of intersections may need adjusting ... IntersectNode *inode = m_IntersectNodes; CopyAELToSEL(); while (inode) { if (!EdgesAdjacent(*inode)) { IntersectNode *nextNode = inode->next; while (nextNode && !EdgesAdjacent(*nextNode)) nextNode = nextNode->next; if (!nextNode) return false; SwapIntersectNodes(*inode, *nextNode); } SwapPositionsInSEL(inode->edge1, inode->edge2); inode = inode->next; } return true; } //------------------------------------------------------------------------------ bool E2InsertsBeforeE1(TEdge &e1, TEdge &e2) { if (e2.xcurr == e1.xcurr) { if (e2.ytop > e1.ytop) return e2.xtop < TopX(e1, e2.ytop); else return e1.xtop > TopX(e2, e1.ytop); } else return e2.xcurr < e1.xcurr; } //------------------------------------------------------------------------------ void Clipper::InsertEdgeIntoAEL(TEdge *edge) { edge->prevInAEL = 0; edge->nextInAEL = 0; if( !m_ActiveEdges ) { m_ActiveEdges = edge; } else if( E2InsertsBeforeE1(*m_ActiveEdges, *edge) ) { edge->nextInAEL = m_ActiveEdges; m_ActiveEdges->prevInAEL = edge; m_ActiveEdges = edge; } else { TEdge* e = m_ActiveEdges; while( e->nextInAEL && !E2InsertsBeforeE1(*e->nextInAEL , *edge) ) e = e->nextInAEL; edge->nextInAEL = e->nextInAEL; if( e->nextInAEL ) e->nextInAEL->prevInAEL = edge; edge->prevInAEL = e; e->nextInAEL = edge; } } //---------------------------------------------------------------------- bool Clipper::JoinPoints(const JoinRec *j, OutPt *&p1, OutPt *&p2) { OutRec *outRec1 = m_PolyOuts[j->poly1Idx]; OutRec *outRec2 = m_PolyOuts[j->poly2Idx]; if (!outRec1 || !outRec2) return false; OutPt *pp1a = outRec1->pts; OutPt *pp2a = outRec2->pts; IntPoint pt1 = j->pt2a, pt2 = j->pt2b; IntPoint pt3 = j->pt1a, pt4 = j->pt1b; if (!FindSegment(pp1a, m_UseFullRange, pt1, pt2)) return false; if (outRec1 == outRec2) { //we're searching the same polygon for overlapping segments so //segment 2 mustn't be the same as segment 1 ... pp2a = pp1a->next; if (!FindSegment(pp2a, m_UseFullRange, pt3, pt4) || (pp2a == pp1a)) return false; } else if (!FindSegment(pp2a, m_UseFullRange, pt3, pt4)) return false; if (!GetOverlapSegment(pt1, pt2, pt3, pt4, pt1, pt2)) return false; OutPt *p3, *p4, *prev = pp1a->prev; //get p1 & p2 polypts - the overlap start & endpoints on poly1 if (PointsEqual(pp1a->pt, pt1)) p1 = pp1a; else if (PointsEqual(prev->pt, pt1)) p1 = prev; else p1 = InsertPolyPtBetween(pp1a, prev, pt1); if (PointsEqual(pp1a->pt, pt2)) p2 = pp1a; else if (PointsEqual(prev->pt, pt2)) p2 = prev; else if ((p1 == pp1a) || (p1 == prev)) p2 = InsertPolyPtBetween(pp1a, prev, pt2); else if (Pt3IsBetweenPt1AndPt2(pp1a->pt, p1->pt, pt2)) p2 = InsertPolyPtBetween(pp1a, p1, pt2); else p2 = InsertPolyPtBetween(p1, prev, pt2); //get p3 & p4 polypts - the overlap start & endpoints on poly2 prev = pp2a->prev; if (PointsEqual(pp2a->pt, pt1)) p3 = pp2a; else if (PointsEqual(prev->pt, pt1)) p3 = prev; else p3 = InsertPolyPtBetween(pp2a, prev, pt1); if (PointsEqual(pp2a->pt, pt2)) p4 = pp2a; else if (PointsEqual(prev->pt, pt2)) p4 = prev; else if ((p3 == pp2a) || (p3 == prev)) p4 = InsertPolyPtBetween(pp2a, prev, pt2); else if (Pt3IsBetweenPt1AndPt2(pp2a->pt, p3->pt, pt2)) p4 = InsertPolyPtBetween(pp2a, p3, pt2); else p4 = InsertPolyPtBetween(p3, prev, pt2); //p1.pt == p3.pt and p2.pt == p4.pt so join p1 to p3 and p2 to p4 ... if (p1->next == p2 && p3->prev == p4) { p1->next = p3; p3->prev = p1; p2->prev = p4; p4->next = p2; return true; } else if (p1->prev == p2 && p3->next == p4) { p1->prev = p3; p3->next = p1; p2->next = p4; p4->prev = p2; return true; } else return false; //an orientation is probably wrong } //---------------------------------------------------------------------- void Clipper::FixupJoinRecs(JoinRec *j, OutPt *pt, unsigned startIdx) { for (JoinList::size_type k = startIdx; k < m_Joins.size(); k++) { JoinRec* j2 = m_Joins[k]; if (j2->poly1Idx == j->poly1Idx && PointIsVertex(j2->pt1a, pt)) j2->poly1Idx = j->poly2Idx; if (j2->poly2Idx == j->poly1Idx && PointIsVertex(j2->pt2a, pt)) j2->poly2Idx = j->poly2Idx; } } //---------------------------------------------------------------------- bool Poly2ContainsPoly1(OutPt* outPt1, OutPt* outPt2, bool UseFullInt64Range) { OutPt* pt = outPt1; //Because the polygons may be touching, we need to find a vertex that //isn't touching the other polygon ... if (PointOnPolygon(pt->pt, outPt2, UseFullInt64Range)) { pt = pt->next; while (pt != outPt1 && PointOnPolygon(pt->pt, outPt2, UseFullInt64Range)) pt = pt->next; if (pt == outPt1) return true; } return PointInPolygon(pt->pt, outPt2, UseFullInt64Range); } //---------------------------------------------------------------------- void Clipper::FixupFirstLefts1(OutRec* OldOutRec, OutRec* NewOutRec) { for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) { OutRec* outRec = m_PolyOuts[i]; if (outRec->pts && outRec->FirstLeft == OldOutRec) { if (Poly2ContainsPoly1(outRec->pts, NewOutRec->pts, m_UseFullRange)) outRec->FirstLeft = NewOutRec; } } } //---------------------------------------------------------------------- void Clipper::FixupFirstLefts2(OutRec* OldOutRec, OutRec* NewOutRec) { for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) { OutRec* outRec = m_PolyOuts[i]; if (outRec->FirstLeft == OldOutRec) outRec->FirstLeft = NewOutRec; } } //---------------------------------------------------------------------- void Clipper::JoinCommonEdges() { for (JoinList::size_type i = 0; i < m_Joins.size(); i++) { JoinRec* j = m_Joins[i]; OutRec *outRec1 = GetOutRec(j->poly1Idx); OutRec *outRec2 = GetOutRec(j->poly2Idx); if (!outRec1->pts || !outRec2->pts) continue; //get the polygon fragment with the correct hole state (FirstLeft) //before calling JoinPoints() ... OutRec *holeStateRec; if (outRec1 == outRec2) holeStateRec = outRec1; else if (Param1RightOfParam2(outRec1, outRec2)) holeStateRec = outRec2; else if (Param1RightOfParam2(outRec2, outRec1)) holeStateRec = outRec1; else holeStateRec = GetLowermostRec(outRec1, outRec2); OutPt *p1, *p2; if (!JoinPoints(j, p1, p2)) continue; if (outRec1 == outRec2) { //instead of joining two polygons, we've just created a new one by //splitting one polygon into two. outRec1->pts = p1; outRec1->bottomPt = 0; outRec2 = CreateOutRec(); outRec2->pts = p2; if (Poly2ContainsPoly1(outRec2->pts, outRec1->pts, m_UseFullRange)) { //outRec2 is contained by outRec1 ... outRec2->isHole = !outRec1->isHole; outRec2->FirstLeft = outRec1; FixupJoinRecs(j, p2, i+1); //fixup FirstLeft pointers that may need reassigning to OutRec1 if (m_UsingPolyTree) FixupFirstLefts2(outRec2, outRec1); FixupOutPolygon(*outRec1); //nb: do this BEFORE testing orientation FixupOutPolygon(*outRec2); // but AFTER calling FixupJoinRecs() if ((outRec2->isHole ^ m_ReverseOutput) == (Area(*outRec2, m_UseFullRange) > 0)) ReversePolyPtLinks(outRec2->pts); } else if (Poly2ContainsPoly1(outRec1->pts, outRec2->pts, m_UseFullRange)) { //outRec1 is contained by outRec2 ... outRec2->isHole = outRec1->isHole; outRec1->isHole = !outRec2->isHole; outRec2->FirstLeft = outRec1->FirstLeft; outRec1->FirstLeft = outRec2; FixupJoinRecs(j, p2, i+1); //fixup FirstLeft pointers that may need reassigning to OutRec1 if (m_UsingPolyTree) FixupFirstLefts2(outRec1, outRec2); FixupOutPolygon(*outRec1); //nb: do this BEFORE testing orientation FixupOutPolygon(*outRec2); // but AFTER calling FixupJoinRecs() if ((outRec1->isHole ^ m_ReverseOutput) == (Area(*outRec1, m_UseFullRange) > 0)) ReversePolyPtLinks(outRec1->pts); } else { //the 2 polygons are completely separate ... outRec2->isHole = outRec1->isHole; outRec2->FirstLeft = outRec1->FirstLeft; FixupJoinRecs(j, p2, i+1); //fixup FirstLeft pointers that may need reassigning to OutRec2 if (m_UsingPolyTree) FixupFirstLefts1(outRec1, outRec2); FixupOutPolygon(*outRec1); //nb: do this BEFORE testing orientation FixupOutPolygon(*outRec2); // but AFTER calling FixupJoinRecs() } } else { //joined 2 polygons together ... //cleanup redundant edges ... FixupOutPolygon(*outRec1); outRec2->pts = 0; outRec2->bottomPt = 0; outRec2->idx = outRec1->idx; outRec1->isHole = holeStateRec->isHole; if (holeStateRec == outRec2) outRec1->FirstLeft = outRec2->FirstLeft; outRec2->FirstLeft = outRec1; //fixup FirstLeft pointers that may need reassigning to OutRec1 if (m_UsingPolyTree) FixupFirstLefts2(outRec2, outRec1); } } } //------------------------------------------------------------------------------ inline void UpdateOutPtIdxs(OutRec& outrec) { OutPt* op = outrec.pts; do { op->idx = outrec.idx; op = op->prev; } while(op != outrec.pts); } //------------------------------------------------------------------------------ void Clipper::DoSimplePolygons() { PolyOutList::size_type i = 0; while (i < m_PolyOuts.size()) { OutRec* outrec = m_PolyOuts[i++]; OutPt* op = outrec->pts; if (!op) continue; do //for each Pt in Polygon until duplicate found do ... { OutPt* op2 = op->next; while (op2 != outrec->pts) { if (PointsEqual(op->pt, op2->pt) && op2->next != op && op2->prev != op) { //split the polygon into two ... OutPt* op3 = op->prev; OutPt* op4 = op2->prev; op->prev = op4; op4->next = op; op2->prev = op3; op3->next = op2; outrec->pts = op; OutRec* outrec2 = CreateOutRec(); outrec2->pts = op2; UpdateOutPtIdxs(*outrec2); if (Poly2ContainsPoly1(outrec2->pts, outrec->pts, m_UseFullRange)) { //OutRec2 is contained by OutRec1 ... outrec2->isHole = !outrec->isHole; outrec2->FirstLeft = outrec; } else if (Poly2ContainsPoly1(outrec->pts, outrec2->pts, m_UseFullRange)) { //OutRec1 is contained by OutRec2 ... outrec2->isHole = outrec->isHole; outrec->isHole = !outrec2->isHole; outrec2->FirstLeft = outrec->FirstLeft; outrec->FirstLeft = outrec2; } else { //the 2 polygons are separate ... outrec2->isHole = outrec->isHole; outrec2->FirstLeft = outrec->FirstLeft; } op2 = op; //ie get ready for the next iteration } op2 = op2->next; } op = op->next; } while (op != outrec->pts); } } //------------------------------------------------------------------------------ void ReversePolygon(Polygon& p) { std::reverse(p.begin(), p.end()); } //------------------------------------------------------------------------------ void ReversePolygons(Polygons& p) { for (Polygons::size_type i = 0; i < p.size(); ++i) ReversePolygon(p[i]); } //------------------------------------------------------------------------------ // OffsetPolygon functions ... //------------------------------------------------------------------------------ struct DoublePoint { double X; double Y; DoublePoint(double x = 0, double y = 0) : X(x), Y(y) {} }; //------------------------------------------------------------------------------ Polygon BuildArc(const IntPoint &pt, const double a1, const double a2, const double r, double limit) { //see notes in clipper.pas regarding steps double arcFrac = std::fabs(a2 - a1) / (2 * pi); int steps = (int)(arcFrac * pi / std::acos(1 - limit / std::fabs(r))); if (steps < 2) steps = 2; else if (steps > (int)(222.0 * arcFrac)) steps = (int)(222.0 * arcFrac); double x = std::cos(a1); double y = std::sin(a1); double c = std::cos((a2 - a1) / steps); double s = std::sin((a2 - a1) / steps); Polygon result(steps +1); for (int i = 0; i <= steps; ++i) { result[i].X = pt.X + Round(x * r); result[i].Y = pt.Y + Round(y * r); double x2 = x; x = x * c - s * y; //cross product y = x2 * s + y * c; //dot product } return result; } //------------------------------------------------------------------------------ DoublePoint GetUnitNormal(const IntPoint &pt1, const IntPoint &pt2) { if(pt2.X == pt1.X && pt2.Y == pt1.Y) return DoublePoint(0, 0); double dx = (double)(pt2.X - pt1.X); double dy = (double)(pt2.Y - pt1.Y); double f = 1 *1.0/ std::sqrt( dx*dx + dy*dy ); dx *= f; dy *= f; return DoublePoint(dy, -dx); } //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ class PolyOffsetBuilder { private: Polygons m_p; Polygon* m_curr_poly; std::vector normals; double m_delta, m_RMin, m_R; size_t m_i, m_j, m_k; static const int buffLength = 128; JoinType m_jointype; public: PolyOffsetBuilder(const Polygons& in_polys, Polygons& out_polys, double delta, JoinType jointype, double limit, bool autoFix) { //nb precondition - out_polys != ptsin_polys if (NEAR_ZERO(delta)) { out_polys = in_polys; return; } this->m_p = in_polys; this->m_delta = delta; this->m_jointype = jointype; //ChecksInput - fixes polygon orientation if necessary and removes //duplicate vertices. Can be set false when you're sure that polygon //orientation is correct and that there are no duplicate vertices. if (autoFix) { size_t Len = m_p.size(), botI = 0; while (botI < Len && m_p[botI].empty()) botI++; if (botI == Len) return; //botPt: used to find the lowermost (in inverted Y-axis) & leftmost point //This point (on m_p[botI]) must be on an outer polygon ring and if //its orientation is false (counterclockwise) then assume all polygons //need reversing ... IntPoint botPt = m_p[botI][0]; for (size_t i = botI; i < Len; ++i) { if (m_p[i].size() < 3) continue; if (UpdateBotPt(m_p[i][0], botPt)) botI = i; Polygon::iterator it = m_p[i].begin() +1; while (it != m_p[i].end()) { if (PointsEqual(*it, *(it -1))) it = m_p[i].erase(it); else { if (UpdateBotPt(*it, botPt)) botI = i; ++it; } } } if (!Orientation(m_p[botI])) ReversePolygons(m_p); } switch (jointype) { case jtRound: if (limit <= 0) limit = 0.25; else if (limit > std::fabs(delta)) limit = std::fabs(delta); break; case jtMiter: if (limit < 2) limit = 2; break; default: //unused limit = 1; } m_RMin = 2.0/(limit*limit); double deltaSq = delta*delta; out_polys.clear(); out_polys.resize(m_p.size()); for (m_i = 0; m_i < m_p.size(); m_i++) { m_curr_poly = &out_polys[m_i]; size_t len = m_p[m_i].size(); if (len > 1 && m_p[m_i][0].X == m_p[m_i][len - 1].X && m_p[m_i][0].Y == m_p[m_i][len-1].Y) len--; //when 'shrinking' polygons - to minimize artefacts //strip those polygons that have an area < pi * delta^2 ... double a1 = Area(m_p[m_i]); if (delta < 0) { if (a1 > 0 && a1 < deltaSq *pi) len = 0; } else if (a1 < 0 && -a1 < deltaSq *pi) len = 0; //holes have neg. area if (len == 0 || (len < 3 && delta <= 0)) continue; else if (len == 1) { Polygon arc; arc = BuildArc(m_p[m_i][len-1], 0, 2 * pi, delta, limit); out_polys[m_i] = arc; continue; } //build normals ... normals.clear(); normals.resize(len); normals[len-1] = GetUnitNormal(m_p[m_i][len-1], m_p[m_i][0]); for (m_j = 0; m_j < len -1; ++m_j) normals[m_j] = GetUnitNormal(m_p[m_i][m_j], m_p[m_i][m_j+1]); m_k = len -1; for (m_j = 0; m_j < len; ++m_j) { switch (jointype) { case jtMiter: { m_R = 1 + (normals[m_j].X*normals[m_k].X + normals[m_j].Y*normals[m_k].Y); if (m_R >= m_RMin) DoMiter(); else DoSquare(limit); break; } case jtSquare: DoSquare(1.0); break; case jtRound: DoRound(limit); break; } m_k = m_j; } } //finally, clean up untidy corners using Clipper ... Clipper clpr; clpr.AddPolygons(out_polys, ptSubject); if (delta > 0) { if (!clpr.Execute(ctUnion, out_polys, pftPositive, pftPositive)) out_polys.clear(); } else { IntRect r = clpr.GetBounds(); Polygon outer(4); outer[0] = IntPoint(r.left - 10, r.bottom + 10); outer[1] = IntPoint(r.right + 10, r.bottom + 10); outer[2] = IntPoint(r.right + 10, r.top - 10); outer[3] = IntPoint(r.left - 10, r.top - 10); clpr.AddPolygon(outer, ptSubject); if (clpr.Execute(ctUnion, out_polys, pftNegative, pftNegative)) { out_polys.erase(out_polys.begin()); ReversePolygons(out_polys); } else out_polys.clear(); } } //------------------------------------------------------------------------------ private: void AddPoint(const IntPoint& pt) { if (m_curr_poly->size() == m_curr_poly->capacity()) m_curr_poly->reserve(m_curr_poly->capacity() + buffLength); m_curr_poly->push_back(pt); } //------------------------------------------------------------------------------ void DoSquare(double mul) { IntPoint pt1 = IntPoint((long64)Round(m_p[m_i][m_j].X + normals[m_k].X * m_delta), (long64)Round(m_p[m_i][m_j].Y + normals[m_k].Y * m_delta)); IntPoint pt2 = IntPoint((long64)Round(m_p[m_i][m_j].X + normals[m_j].X * m_delta), (long64)Round(m_p[m_i][m_j].Y + normals[m_j].Y * m_delta)); if ((normals[m_k].X * normals[m_j].Y - normals[m_j].X * normals[m_k].Y) * m_delta >= 0) { double a1 = std::atan2(normals[m_k].Y, normals[m_k].X); double a2 = std::atan2(-normals[m_j].Y, -normals[m_j].X); a1 = std::fabs(a2 - a1); if (a1 > pi) a1 = pi * 2 - a1; double dx = std::tan((pi - a1) / 4) * std::fabs(m_delta * mul); pt1 = IntPoint((long64)(pt1.X -normals[m_k].Y * dx), (long64)(pt1.Y + normals[m_k].X * dx)); AddPoint(pt1); pt2 = IntPoint((long64)(pt2.X + normals[m_j].Y * dx), (long64)(pt2.Y -normals[m_j].X * dx)); AddPoint(pt2); } else { AddPoint(pt1); AddPoint(m_p[m_i][m_j]); AddPoint(pt2); } } //------------------------------------------------------------------------------ void DoMiter() { if ((normals[m_k].X * normals[m_j].Y - normals[m_j].X * normals[m_k].Y) * m_delta >= 0) { double q = m_delta / m_R; AddPoint(IntPoint((long64)Round(m_p[m_i][m_j].X + (normals[m_k].X + normals[m_j].X) * q), (long64)Round(m_p[m_i][m_j].Y + (normals[m_k].Y + normals[m_j].Y) * q))); } else { IntPoint pt1 = IntPoint((long64)Round(m_p[m_i][m_j].X + normals[m_k].X * m_delta), (long64)Round(m_p[m_i][m_j].Y + normals[m_k].Y * m_delta)); IntPoint pt2 = IntPoint((long64)Round(m_p[m_i][m_j].X + normals[m_j].X * m_delta), (long64)Round(m_p[m_i][m_j].Y + normals[m_j].Y * m_delta)); AddPoint(pt1); AddPoint(m_p[m_i][m_j]); AddPoint(pt2); } } //------------------------------------------------------------------------------ void DoRound(double limit) { IntPoint pt1 = IntPoint((long64)Round(m_p[m_i][m_j].X + normals[m_k].X * m_delta), (long64)Round(m_p[m_i][m_j].Y + normals[m_k].Y * m_delta)); IntPoint pt2 = IntPoint((long64)Round(m_p[m_i][m_j].X + normals[m_j].X * m_delta), (long64)Round(m_p[m_i][m_j].Y + normals[m_j].Y * m_delta)); AddPoint(pt1); //round off reflex angles (ie > 180 deg) unless almost flat (ie < ~10deg). if ((normals[m_k].X*normals[m_j].Y - normals[m_j].X*normals[m_k].Y) * m_delta >= 0) { if (normals[m_j].X * normals[m_k].X + normals[m_j].Y * normals[m_k].Y < 0.985) { double a1 = std::atan2(normals[m_k].Y, normals[m_k].X); double a2 = std::atan2(normals[m_j].Y, normals[m_j].X); if (m_delta > 0 && a2 < a1) a2 += pi *2; else if (m_delta < 0 && a2 > a1) a2 -= pi *2; Polygon arc = BuildArc(m_p[m_i][m_j], a1, a2, m_delta, limit); for (Polygon::size_type m = 0; m < arc.size(); m++) AddPoint(arc[m]); } } else AddPoint(m_p[m_i][m_j]); AddPoint(pt2); } //-------------------------------------------------------------------------- bool UpdateBotPt(const IntPoint &pt, IntPoint &botPt) { if (pt.Y > botPt.Y || (pt.Y == botPt.Y && pt.X < botPt.X)) { botPt = pt; return true; } else return false; } //-------------------------------------------------------------------------- }; //end PolyOffsetBuilder //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ void OffsetPolygons(const Polygons &in_polys, Polygons &out_polys, double delta, JoinType jointype, double limit, bool autoFix) { if (&out_polys == &in_polys) { Polygons poly2(in_polys); PolyOffsetBuilder(poly2, out_polys, delta, jointype, limit, autoFix); } else PolyOffsetBuilder(in_polys, out_polys, delta, jointype, limit, autoFix); } //------------------------------------------------------------------------------ void SimplifyPolygon(const Polygon &in_poly, Polygons &out_polys, PolyFillType fillType) { Clipper c; c.ForceSimple(true); c.AddPolygon(in_poly, ptSubject); c.Execute(ctUnion, out_polys, fillType, fillType); } //------------------------------------------------------------------------------ void SimplifyPolygons(const Polygons &in_polys, Polygons &out_polys, PolyFillType fillType) { Clipper c; c.ForceSimple(true); c.AddPolygons(in_polys, ptSubject); c.Execute(ctUnion, out_polys, fillType, fillType); } //------------------------------------------------------------------------------ void SimplifyPolygons(Polygons &polys, PolyFillType fillType) { SimplifyPolygons(polys, polys, fillType); } //------------------------------------------------------------------------------ inline double DistanceSqrd(const IntPoint& pt1, const IntPoint& pt2) { double dx = ((double)pt1.X - pt2.X); double dy = ((double)pt1.Y - pt2.Y); return (dx*dx + dy*dy); } //------------------------------------------------------------------------------ DoublePoint ClosestPointOnLine(const IntPoint& pt, const IntPoint& linePt1, const IntPoint& linePt2) { double dx = ((double)linePt2.X - linePt1.X); double dy = ((double)linePt2.Y - linePt1.Y); if (dx == 0 && dy == 0) return DoublePoint((double)linePt1.X, (double)linePt1.Y); double q = ((pt.X-linePt1.X)*dx + (pt.Y-linePt1.Y)*dy) / (dx*dx + dy*dy); return DoublePoint( (1-q)*linePt1.X + q*linePt2.X, (1-q)*linePt1.Y + q*linePt2.Y); } //------------------------------------------------------------------------------ bool SlopesNearColinear(const IntPoint& pt1, const IntPoint& pt2, const IntPoint& pt3, double distSqrd) { if (DistanceSqrd(pt1, pt2) > DistanceSqrd(pt1, pt3)) return false; DoublePoint cpol = ClosestPointOnLine(pt2, pt1, pt3); double dx = pt2.X - cpol.X; double dy = pt2.Y - cpol.Y; return (dx*dx + dy*dy) < distSqrd; } //------------------------------------------------------------------------------ bool PointsAreClose(IntPoint pt1, IntPoint pt2, double distSqrd) { double dx = (double)pt1.X - pt2.X; double dy = (double)pt1.Y - pt2.Y; return ((dx * dx) + (dy * dy) <= distSqrd); } //------------------------------------------------------------------------------ void CleanPolygon(Polygon& in_poly, Polygon& out_poly, double distance) { //distance = proximity in units/pixels below which vertices //will be stripped. Default ~= sqrt(2). int highI = in_poly.size() -1; double distSqrd = distance * distance; while (highI > 0 && PointsAreClose(in_poly[highI], in_poly[0], distSqrd)) highI--; if (highI < 2) { out_poly.clear(); return; } out_poly.resize(highI + 1); IntPoint pt = in_poly[highI]; int i = 0, k = 0; for (;;) { while (i <= highI && PointsAreClose(pt, in_poly[i+1], distSqrd)) i+=2; int i2 = i; while (i <= highI && PointsAreClose(in_poly[i], in_poly[i+1], distSqrd) || SlopesNearColinear(pt, in_poly[i], in_poly[+1], distSqrd)) i++; if (i >= highI) break; else if (i != i2) continue; pt = in_poly[i++]; out_poly[k++] = pt; } if (i <= highI) out_poly[k++] = in_poly[i]; if (k > 2 && SlopesNearColinear(out_poly[k -2], out_poly[k -1], out_poly[0], distSqrd)) k--; if (k < 3) out_poly.clear(); else if (k <= highI) out_poly.resize(k); } //------------------------------------------------------------------------------ void CleanPolygons(Polygons& in_polys, Polygons& out_polys, double distance) { for (Polygons::size_type i = 0; i < in_polys.size(); ++i) CleanPolygon(in_polys[i], out_polys[i], distance); } //------------------------------------------------------------------------------ void AddPolyNodeToPolygons(PolyNode& polynode, Polygons& polygons) { if (!polynode.Contour.empty()) polygons.push_back(polynode.Contour); for (int i = 0; i < polynode.ChildCount(); ++i) AddPolyNodeToPolygons(*polynode.Childs[i], polygons); } //------------------------------------------------------------------------------ void PolyTreeToPolygons(PolyTree& polytree, Polygons& polygons) { polygons.resize(0); polygons.reserve(polytree.Total()); AddPolyNodeToPolygons(polytree, polygons); } //------------------------------------------------------------------------------ std::ostream& operator <<(std::ostream &s, IntPoint& p) { s << p.X << ' ' << p.Y << "\n"; return s; } //------------------------------------------------------------------------------ std::ostream& operator <<(std::ostream &s, Polygon &p) { for (Polygon::size_type i = 0; i < p.size(); i++) s << p[i]; s << "\n"; return s; } //------------------------------------------------------------------------------ std::ostream& operator <<(std::ostream &s, Polygons &p) { for (Polygons::size_type i = 0; i < p.size(); i++) s << p[i]; s << "\n"; return s; } //------------------------------------------------------------------------------ } //ClipperLib namespace