#include "ArrangeJob.hpp"

#include "libslic3r/BuildVolume.hpp"
#include "libslic3r/Model.hpp"
#include "libslic3r/Print.hpp"
#include "libslic3r/SLAPrint.hpp"
#include "libslic3r/Geometry/ConvexHull.hpp"

#include "slic3r/GUI/Plater.hpp"
#include "slic3r/GUI/GLCanvas3D.hpp"
#include "slic3r/GUI/GUI.hpp"
#include "slic3r/GUI/GUI_App.hpp"
#include "slic3r/GUI/GUI_ObjectManipulation.hpp"
#include "slic3r/GUI/NotificationManager.hpp"
#include "slic3r/GUI/format.hpp"


#include "libnest2d/common.hpp"

#include <numeric>
#include <random>

namespace Slic3r { namespace GUI {

// Cache the wti info
class WipeTower: public GLCanvas3D::WipeTowerInfo {
    using ArrangePolygon = arrangement::ArrangePolygon;
public:
    explicit WipeTower(const GLCanvas3D::WipeTowerInfo &wti)
        : GLCanvas3D::WipeTowerInfo(wti)
    {}
    
    explicit WipeTower(GLCanvas3D::WipeTowerInfo &&wti)
        : GLCanvas3D::WipeTowerInfo(std::move(wti))
    {}

    void apply_arrange_result(const Vec2d& tr, double rotation)
    {
        m_pos = unscaled(tr); m_rotation = rotation;
        apply_wipe_tower();
    }
    
    ArrangePolygon get_arrange_polygon() const
    {
        Polygon ap({
            {scaled(m_bb.min)},
            {scaled(m_bb.max.x()), scaled(m_bb.min.y())},
            {scaled(m_bb.max)},
            {scaled(m_bb.min.x()), scaled(m_bb.max.y())}
            });
        
        ArrangePolygon ret;
        ret.poly.contour = std::move(ap);
        ret.translation  = scaled(m_pos);
        ret.rotation     = m_rotation;
        ++ret.priority;

        return ret;
    }
};

static WipeTower get_wipe_tower(const Plater &plater)
{
    return WipeTower{plater.canvas3D()->get_wipe_tower_info()};
}

void ArrangeJob::clear_input()
{
    const Model &model = m_plater->model();
    
    size_t count = 0, cunprint = 0; // To know how much space to reserve
    for (auto obj : model.objects)
        for (auto mi : obj->instances)
            mi->printable ? count++ : cunprint++;
    
    m_selected.clear();
    m_unselected.clear();
    m_unprintable.clear();
    m_unarranged.clear();
    m_selected.reserve(count + 1 /* for optional wti */);
    m_unselected.reserve(count + 1 /* for optional wti */);
    m_unprintable.reserve(cunprint /* for optional wti */);
}

void ArrangeJob::prepare_all() {
    clear_input();
    
    for (ModelObject *obj: m_plater->model().objects)
        for (ModelInstance *mi : obj->instances) {
            ArrangePolygons & cont = mi->printable ? m_selected : m_unprintable;
            cont.emplace_back(get_arrange_poly_(mi));
        }

    if (auto wti = get_wipe_tower_arrangepoly(*m_plater))
        m_selected.emplace_back(std::move(*wti));
}

void ArrangeJob::prepare_selected() {
    clear_input();

    Model &model = m_plater->model();
    double stride = bed_stride(m_plater);

    std::vector<const Selection::InstanceIdxsList *>
            obj_sel(model.objects.size(), nullptr);
    
    for (auto &s : m_plater->get_selection().get_content())
        if (s.first < int(obj_sel.size()))
            obj_sel[size_t(s.first)] = &s.second;

    // Go through the objects and check if inside the selection
    for (size_t oidx = 0; oidx < model.objects.size(); ++oidx) {
        const Selection::InstanceIdxsList * instlist = obj_sel[oidx];
        ModelObject *mo = model.objects[oidx];

        std::vector<bool> inst_sel(mo->instances.size(), false);

        if (instlist)
            for (auto inst_id : *instlist)
                inst_sel[size_t(inst_id)] = true;

        for (size_t i = 0; i < inst_sel.size(); ++i) {
            ModelInstance * mi = mo->instances[i];
            ArrangePolygon &&ap = get_arrange_poly_(mi);

            ArrangePolygons &cont = mo->instances[i]->printable ?
                        (inst_sel[i] ? m_selected :
                                       m_unselected) :
                        m_unprintable;

            cont.emplace_back(std::move(ap));
        }
    }

    if (auto wti = get_wipe_tower(*m_plater)) {
        ArrangePolygon &&ap = get_arrange_poly(wti, m_plater);

        auto &cont = m_plater->get_selection().is_wipe_tower() ? m_selected :
                                                                 m_unselected;
        cont.emplace_back(std::move(ap));
    }

    // If the selection was empty arrange everything
    if (m_selected.empty())
        m_selected.swap(m_unselected);

    // The strides have to be removed from the fixed items. For the
    // arrangeable (selected) items bed_idx is ignored and the
    // translation is irrelevant.
    for (auto &p : m_unselected)
        p.translation(X) -= p.bed_idx * stride;
}

static void update_arrangepoly_slaprint(arrangement::ArrangePolygon &ret,
                                        const SLAPrintObject &po,
                                        const ModelInstance &inst)
{
    // The 1.1 multiplier is a safety gap, as the offset might be bigger
    // in sharp edges of a polygon, depending on clipper's offset algorithm
    coord_t pad_infl = 0;
    {
        double infl = po.config().pad_enable.getBool() * (
                        po.config().pad_brim_size.getFloat() +
                        po.config().pad_around_object.getBool() *
                          po.config().pad_object_gap.getFloat() );

        pad_infl = scaled(1.1 * infl);
    }

    auto laststep = po.last_completed_step();

    if (laststep < slaposCount && laststep > slaposSupportTree) {
        auto omesh = po.get_mesh_to_print();
        auto &smesh = po.support_mesh();

        Vec3d rotation = inst.get_rotation();
        rotation.z()   = 0.;
        Transform3f trafo_instance =
            Geometry::assemble_transform(inst.get_offset().z() * Vec3d::UnitZ(),
                                         rotation,
                                         inst.get_scaling_factor(),
                                         inst.get_mirror()).cast<float>();

        trafo_instance = trafo_instance * po.trafo().cast<float>().inverse();

        Polygons polys;
        polys.reserve(3);
        auto zlvl = -po.get_elevation();

        if (omesh) {
            polys.emplace_back(its_convex_hull_2d_above(*omesh, trafo_instance, zlvl));
            ret.poly.contour = polys.back();
            ret.poly.holes = {};
        }

        polys.emplace_back(its_convex_hull_2d_above(smesh.its, trafo_instance, zlvl));
        ret.poly.contour = Geometry::convex_hull(polys);
        ret.poly.holes = {};
    }

    ret.inflation = pad_infl;
}

static coord_t brim_offset(const PrintObject &po, const ModelInstance &inst)
{
    const BrimType brim_type         = po.config().brim_type.value;
    const float    brim_separation   = po.config().brim_separation.getFloat();
    const float    brim_width        = po.config().brim_width.getFloat();
    const bool     has_outer_brim    = brim_type == BrimType::btOuterOnly ||
                                       brim_type == BrimType::btOuterAndInner;

    // How wide is the brim? (in scaled units)
    return  has_outer_brim ? scaled(brim_width + brim_separation) : 0;
}

arrangement::ArrangePolygon ArrangeJob::get_arrange_poly_(ModelInstance *mi)
{
    arrangement::ArrangePolygon ap = get_arrange_poly(mi, m_plater);

    auto setter = ap.setter;
    ap.setter = [this, setter, mi](const arrangement::ArrangePolygon &set_ap) {
        setter(set_ap);
        if (!set_ap.is_arranged())
            m_unarranged.emplace_back(mi);
    };

    return ap;
}

coord_t get_skirt_offset(const Plater* plater) {
    float skirt_inset = 0.f;
    // Try to subtract the skirt from the bed shape so we don't arrange outside of it.
    if (plater->printer_technology() == ptFFF && plater->fff_print().has_skirt()) {
        const auto& print = plater->fff_print();
        if (!print.objects().empty()) {
            skirt_inset = print.config().skirts.value * print.skirt_flow().width() +
                          print.config().skirt_distance.value;
        }
    }

    return scaled(skirt_inset);
}

void ArrangeJob::prepare()
{
    m_selection_only ? prepare_selected() : prepare_all();

    coord_t min_offset = 0;
    for (auto &ap : m_selected) {
        min_offset = std::max(ap.inflation, min_offset);
    }

    if (m_plater->printer_technology() == ptSLA) {
        // Apply the max offset for all the objects
        for (auto &ap : m_selected) {
            ap.inflation = min_offset;
        }
    } else { // it's fff, brims only need to be minded from bed edges
        for (auto &ap : m_selected) {
            ap.inflation = 0;
        }
        m_min_bed_inset = min_offset;
    }
}

void ArrangeJob::process(Ctl &ctl)
{
    static const auto arrangestr = _u8L("Arranging");

    arrangement::ArrangeParams params;
    arrangement::ArrangeBed bed;
    ctl.call_on_main_thread([this, &params, &bed]{
           prepare();
           params = get_arrange_params(m_plater);
           get_bed_shape(*m_plater->config(), bed);
           coord_t min_inset = get_skirt_offset(m_plater) + m_min_bed_inset;
           params.min_bed_distance = std::max(params.min_bed_distance, min_inset);
    }).wait();

    auto count  = unsigned(m_selected.size() + m_unprintable.size());

    if (count == 0) // Should be taken care of by plater, but doesn't hurt
        return;

    ctl.update_status(0, arrangestr);

    params.stopcondition = [&ctl]() { return ctl.was_canceled(); };

    params.progressind = [this, count, &ctl](unsigned st) {
        st += m_unprintable.size();
        if (st > 0) ctl.update_status(int(count - st) * 100 / status_range(), arrangestr);
    };

    ctl.update_status(0, arrangestr);

    arrangement::arrange(m_selected, m_unselected, bed, params);

    params.progressind = [this, count, &ctl](unsigned st) {
        if (st > 0) ctl.update_status(int(count - st) * 100 / status_range(), arrangestr);
    };

    arrangement::arrange(m_unprintable, {}, bed, params);

    // finalize just here.
    ctl.update_status(int(count) * 100 / status_range(), ctl.was_canceled() ?
                                      _u8L("Arranging canceled.") :
                                      _u8L("Arranging done."));
}

ArrangeJob::ArrangeJob(Mode mode)
    : m_plater{wxGetApp().plater()},
      m_selection_only{mode == Mode::SelectionOnly}
{}

static std::string concat_strings(const std::set<std::string> &strings,
                                  const std::string &delim = "\n")
{
    return std::accumulate(
        strings.begin(), strings.end(), std::string(""),
        [delim](const std::string &s, const std::string &name) {
            return s + name + delim;
        });
}

void ArrangeJob::finalize(bool canceled, std::exception_ptr &eptr) {
    try {
        if (eptr)
            std::rethrow_exception(eptr);
    } catch (libnest2d::GeometryException &) {
        show_error(m_plater, _(L("Could not arrange model objects! "
                                 "Some geometries may be invalid.")));
        eptr = nullptr;
    } catch(...) {
        eptr = std::current_exception();
    }

    if (canceled || eptr)
        return;

    // Unprintable items go to the last virtual bed
    int beds = 0;
    
    // Apply the arrange result to all selected objects
    for (ArrangePolygon &ap : m_selected) {
        beds = std::max(ap.bed_idx, beds);
        ap.apply();
    }
    
    // Get the virtual beds from the unselected items
    for (ArrangePolygon &ap : m_unselected)
        beds = std::max(ap.bed_idx, beds);
    
    // Move the unprintable items to the last virtual bed.
    for (ArrangePolygon &ap : m_unprintable) {
        if (ap.bed_idx >= 0)
            ap.bed_idx += beds + 1;

        ap.apply();
    }

    m_plater->update((unsigned int)Plater::UpdateParams::FORCE_FULL_SCREEN_REFRESH);
    wxGetApp().obj_manipul()->set_dirty();

    if (!m_unarranged.empty()) {
        std::set<std::string> names;
        for (ModelInstance *mi : m_unarranged)
            names.insert(mi->get_object()->name);

        m_plater->get_notification_manager()->push_notification(GUI::format(
            _L("Arrangement ignored the following objects which can't fit into a single bed:\n%s"),
            concat_strings(names, "\n")));
    }
}

std::optional<arrangement::ArrangePolygon>
get_wipe_tower_arrangepoly(const Plater &plater)
{
    if (auto wti = get_wipe_tower(plater))
        return get_arrange_poly(wti, &plater);

    return {};
}

double bed_stride(const Plater *plater) {
    double bedwidth = plater->build_volume().bounding_volume().size().x();
    return scaled<double>((1. + LOGICAL_BED_GAP) * bedwidth);
}

template<>
arrangement::ArrangePolygon get_arrange_poly(ModelInstance *inst,
                                             const Plater * plater)
{
    auto ap = get_arrange_poly(PtrWrapper{inst}, plater);

    auto obj_id = inst->get_object()->id();
    if (plater->printer_technology() == ptSLA) {
        const SLAPrintObject *po =
            plater->sla_print().get_print_object_by_model_object_id(obj_id);

        if (po) {
            update_arrangepoly_slaprint(ap, *po, *inst);
        }
    } else {
        const PrintObject *po =
            plater->fff_print().get_print_object_by_model_object_id(obj_id);

        if (po) {
            ap.inflation = brim_offset(*po, *inst);
        }
    }

    return ap;
}

arrangement::ArrangeParams get_arrange_params(Plater *p)
{
    const GLCanvas3D::ArrangeSettings &settings =
        p->canvas3D()->get_arrange_settings();

    arrangement::ArrangeParams params;
    params.allow_rotations  = settings.enable_rotation;
    params.min_obj_distance = scaled(settings.distance);
    params.min_bed_distance = scaled(settings.distance_from_bed);

    arrangement::Pivots pivot = arrangement::Pivots::Center;

    int pivot_max = static_cast<int>(arrangement::Pivots::TopRight);
    if (settings.alignment < 0) {
        pivot = arrangement::Pivots::Center;
    } else if (settings.alignment > pivot_max) {
        // means it should be random
        std::random_device rd{};
        std::mt19937 rng(rd());
        std::uniform_int_distribution<std::mt19937::result_type> dist(0, pivot_max);
        pivot = static_cast<arrangement::Pivots>(dist(rng));
    } else {
        pivot = static_cast<arrangement::Pivots>(settings.alignment);
    }

    params.alignment = pivot;

    return params;
}

}} // namespace Slic3r::GUI