#include #include "libslic3r/Flow.hpp" #include "libslic3r/Slicing.hpp" #include "libslic3r/libslic3r.h" #include "PresetHints.hpp" #include #include "GUI.hpp" #include "format.hpp" #include "I18N.hpp" namespace Slic3r { #define MIN_BUF_LENGTH 4096 std::string PresetHints::cooling_description(const Preset &preset) { std::string out; bool cooling = preset.config.opt_bool("cooling", 0); int fan_below_layer_time = preset.config.opt_int("fan_below_layer_time", 0); int full_fan_speed_layer = preset.config.opt_int("full_fan_speed_layer", 0); if (cooling) { int slowdown_below_layer_time = preset.config.opt_int("slowdown_below_layer_time", 0); int min_fan_speed = preset.config.opt_int("min_fan_speed", 0); int max_fan_speed = preset.config.opt_int("max_fan_speed", 0); int min_print_speed = int(preset.config.opt_float("min_print_speed", 0) + 0.5); out += GUI::format(_L("If estimated layer time is below ~%1%s, " "fan will run at %2%%% and print speed will be reduced " "so that no less than %3%s are spent on that layer " "(however, speed will never be reduced below %4%mm/s)."), slowdown_below_layer_time, max_fan_speed, slowdown_below_layer_time, min_print_speed); if (fan_below_layer_time > slowdown_below_layer_time) out += "\n" + GUI::format(_L("If estimated layer time is greater, but still below ~%1%s, " "fan will run at a proportionally decreasing speed between %2%%% and %3%%%."), fan_below_layer_time, max_fan_speed, min_fan_speed); out += "\n"; } if (preset.config.opt_bool("fan_always_on", 0)) { int disable_fan_first_layers = preset.config.opt_int("disable_fan_first_layers", 0); int min_fan_speed = preset.config.opt_int("min_fan_speed", 0); if (full_fan_speed_layer > disable_fan_first_layers + 1) out += GUI::format(_L("Fan speed will be ramped from zero at layer %1% to %2%%% at layer %3%."), disable_fan_first_layers, min_fan_speed, full_fan_speed_layer); else { out += GUI::format(cooling ? _L("During the other layers, fan will always run at %1%%%") : _L("Fan will always run at %1%%%"), min_fan_speed) + " "; if (disable_fan_first_layers > 1) out += GUI::format(_L("except for the first %1% layers."), disable_fan_first_layers); else if (disable_fan_first_layers == 1) out += GUI::format(_L("except for the first layer.")); } } else out += cooling ? _u8L("During the other layers, fan will be turned off.") : _u8L("Fan will be turned off."); return out; } static const ConfigOptionFloatOrPercent& first_positive(const ConfigOptionFloatOrPercent *v1, const ConfigOptionFloatOrPercent &v2, const ConfigOptionFloatOrPercent &v3) { return (v1 != nullptr && v1->value > 0) ? *v1 : ((v2.value > 0) ? v2 : v3); } std::string PresetHints::maximum_volumetric_flow_description(const PresetBundle &preset_bundle) { // Find out, to which nozzle index is the current filament profile assigned. int idx_extruder = 0; int num_extruders = (int)preset_bundle.filament_presets.size(); for (; idx_extruder < num_extruders; ++ idx_extruder) if (preset_bundle.filament_presets[idx_extruder] == preset_bundle.filaments.get_selected_preset_name()) break; if (idx_extruder == num_extruders) // The current filament preset is not active for any extruder. idx_extruder = -1; const DynamicPrintConfig &print_config = preset_bundle.prints .get_edited_preset().config; const DynamicPrintConfig &filament_config = preset_bundle.filaments.get_edited_preset().config; const DynamicPrintConfig &printer_config = preset_bundle.printers .get_edited_preset().config; // Current printer values. float nozzle_diameter = (float)printer_config.opt_float("nozzle_diameter", idx_extruder); // Print config values double layer_height = print_config.opt_float("layer_height"); double first_layer_height = print_config.get_abs_value("first_layer_height", layer_height); double support_material_speed = print_config.opt_float("support_material_speed"); double support_material_interface_speed = print_config.get_abs_value("support_material_interface_speed", support_material_speed); double bridge_speed = print_config.opt_float("bridge_speed"); double bridge_flow_ratio = print_config.opt_float("bridge_flow_ratio"); double perimeter_speed = print_config.opt_float("perimeter_speed"); double external_perimeter_speed = print_config.get_abs_value("external_perimeter_speed", perimeter_speed); // double gap_fill_speed = print_config.opt_bool("gap_fill_enabled") ? print_config.opt_float("gap_fill_speed") : 0.; double infill_speed = print_config.opt_float("infill_speed"); double small_perimeter_speed = print_config.get_abs_value("small_perimeter_speed", perimeter_speed); double solid_infill_speed = print_config.get_abs_value("solid_infill_speed", infill_speed); double top_solid_infill_speed = print_config.get_abs_value("top_solid_infill_speed", solid_infill_speed); // Maximum print speed when auto-speed is enabled by setting any of the above speed values to zero. double max_print_speed = print_config.opt_float("max_print_speed"); // Maximum volumetric speed allowed for the print profile. double max_volumetric_speed = print_config.opt_float("max_volumetric_speed"); const auto &extrusion_width = *print_config.option("extrusion_width"); const auto &external_perimeter_extrusion_width = *print_config.option("external_perimeter_extrusion_width"); const auto &first_layer_extrusion_width = *print_config.option("first_layer_extrusion_width"); const auto &infill_extrusion_width = *print_config.option("infill_extrusion_width"); const auto &perimeter_extrusion_width = *print_config.option("perimeter_extrusion_width"); const auto &solid_infill_extrusion_width = *print_config.option("solid_infill_extrusion_width"); const auto &support_material_extrusion_width = *print_config.option("support_material_extrusion_width"); const auto &top_infill_extrusion_width = *print_config.option("top_infill_extrusion_width"); const auto &first_layer_speed = *print_config.option("first_layer_speed"); // Index of an extruder assigned to a feature. If set to 0, an active extruder will be used for a multi-material print. // If different from idx_extruder, it will not be taken into account for this hint. auto feature_extruder_active = [idx_extruder, num_extruders](int i) { return i <= 0 || i > num_extruders || idx_extruder == -1 || idx_extruder == i - 1; }; bool perimeter_extruder_active = feature_extruder_active(print_config.opt_int("perimeter_extruder")); bool infill_extruder_active = feature_extruder_active(print_config.opt_int("infill_extruder")); bool solid_infill_extruder_active = feature_extruder_active(print_config.opt_int("solid_infill_extruder")); bool support_material_extruder_active = feature_extruder_active(print_config.opt_int("support_material_extruder")); bool support_material_interface_extruder_active = feature_extruder_active(print_config.opt_int("support_material_interface_extruder")); // Current filament values double filament_diameter = filament_config.opt_float("filament_diameter", 0); double filament_crossection = M_PI * 0.25 * filament_diameter * filament_diameter; // double extrusion_multiplier = filament_config.opt_float("extrusion_multiplier", 0); // The following value will be annotated by this hint, so it does not take part in the calculation. // double filament_max_volumetric_speed = filament_config.opt_float("filament_max_volumetric_speed", 0); std::string out; for (size_t idx_type = (first_layer_extrusion_width.value == 0) ? 1 : 0; idx_type < 3; ++ idx_type) { // First test the maximum volumetric extrusion speed for non-bridging extrusions. bool first_layer = idx_type == 0; bool bridging = idx_type == 2; const ConfigOptionFloatOrPercent *first_layer_extrusion_width_ptr = (first_layer && first_layer_extrusion_width.value > 0) ? &first_layer_extrusion_width : nullptr; const float lh = float(first_layer ? first_layer_height : layer_height); const float bfr = bridging ? bridge_flow_ratio : 0.f; double max_flow = 0.; std::string max_flow_extrusion_type; auto limit_by_first_layer_speed = [&first_layer_speed, first_layer](double speed_normal, double speed_max) { if (first_layer && first_layer_speed.value > 0) // Apply the first layer limit. speed_normal = first_layer_speed.get_abs_value(speed_normal); return (speed_normal > 0.) ? speed_normal : speed_max; }; if (perimeter_extruder_active) { double external_perimeter_rate = Flow::new_from_config_width(frExternalPerimeter, first_positive(first_layer_extrusion_width_ptr, external_perimeter_extrusion_width, extrusion_width), nozzle_diameter, lh, bfr).mm3_per_mm() * (bridging ? bridge_speed : limit_by_first_layer_speed(std::max(external_perimeter_speed, small_perimeter_speed), max_print_speed)); if (max_flow < external_perimeter_rate) { max_flow = external_perimeter_rate; max_flow_extrusion_type = _utf8(L("external perimeters")); } double perimeter_rate = Flow::new_from_config_width(frPerimeter, first_positive(first_layer_extrusion_width_ptr, perimeter_extrusion_width, extrusion_width), nozzle_diameter, lh, bfr).mm3_per_mm() * (bridging ? bridge_speed : limit_by_first_layer_speed(std::max(perimeter_speed, small_perimeter_speed), max_print_speed)); if (max_flow < perimeter_rate) { max_flow = perimeter_rate; max_flow_extrusion_type = _utf8(L("perimeters")); } } if (! bridging && infill_extruder_active) { double infill_rate = Flow::new_from_config_width(frInfill, first_positive(first_layer_extrusion_width_ptr, infill_extrusion_width, extrusion_width), nozzle_diameter, lh, bfr).mm3_per_mm() * limit_by_first_layer_speed(infill_speed, max_print_speed); if (max_flow < infill_rate) { max_flow = infill_rate; max_flow_extrusion_type = _utf8(L("infill")); } } if (solid_infill_extruder_active) { double solid_infill_rate = Flow::new_from_config_width(frInfill, first_positive(first_layer_extrusion_width_ptr, solid_infill_extrusion_width, extrusion_width), nozzle_diameter, lh, 0).mm3_per_mm() * (bridging ? bridge_speed : limit_by_first_layer_speed(solid_infill_speed, max_print_speed)); if (max_flow < solid_infill_rate) { max_flow = solid_infill_rate; max_flow_extrusion_type = _utf8(L("solid infill")); } if (! bridging) { double top_solid_infill_rate = Flow::new_from_config_width(frInfill, first_positive(first_layer_extrusion_width_ptr, top_infill_extrusion_width, extrusion_width), nozzle_diameter, lh, bfr).mm3_per_mm() * limit_by_first_layer_speed(top_solid_infill_speed, max_print_speed); if (max_flow < top_solid_infill_rate) { max_flow = top_solid_infill_rate; max_flow_extrusion_type = _utf8(L("top solid infill")); } } } if (support_material_extruder_active) { double support_material_rate = Flow::new_from_config_width(frSupportMaterial, first_positive(first_layer_extrusion_width_ptr, support_material_extrusion_width, extrusion_width), nozzle_diameter, lh, bfr).mm3_per_mm() * (bridging ? bridge_speed : limit_by_first_layer_speed(support_material_speed, max_print_speed)); if (max_flow < support_material_rate) { max_flow = support_material_rate; max_flow_extrusion_type = _utf8(L("support")); } } if (support_material_interface_extruder_active) { double support_material_interface_rate = Flow::new_from_config_width(frSupportMaterialInterface, first_positive(first_layer_extrusion_width_ptr, support_material_extrusion_width, extrusion_width), nozzle_diameter, lh, bfr).mm3_per_mm() * (bridging ? bridge_speed : limit_by_first_layer_speed(support_material_interface_speed, max_print_speed)); if (max_flow < support_material_interface_rate) { max_flow = support_material_interface_rate; max_flow_extrusion_type = _utf8(L("support interface")); } } //FIXME handle gap_fill_speed if (! out.empty()) out += "\n"; out += (first_layer ? _utf8(L("First layer volumetric")) : (bridging ? _utf8(L("Bridging volumetric")) : _utf8(L("Volumetric")))); out += " " + _utf8(L("flow rate is maximized")) + " "; bool limited_by_max_volumetric_speed = max_volumetric_speed > 0 && max_volumetric_speed < max_flow; out += (limited_by_max_volumetric_speed ? _utf8(L("by the print profile maximum")) : (_utf8(L("when printing"))+ " " + max_flow_extrusion_type)) + " " + _utf8(L("with a volumetric rate"))+ " "; if (limited_by_max_volumetric_speed) max_flow = max_volumetric_speed; out += (boost::format(_utf8(L("%3.2f mm³/s at filament speed %3.2f mm/s."))) % max_flow % (max_flow / filament_crossection)).str(); } return out; } std::string PresetHints::recommended_thin_wall_thickness(const PresetBundle &preset_bundle) { const DynamicPrintConfig &print_config = preset_bundle.prints .get_edited_preset().config; const DynamicPrintConfig &printer_config = preset_bundle.printers .get_edited_preset().config; float layer_height = float(print_config.opt_float("layer_height")); int num_perimeters = print_config.opt_int("perimeters"); bool thin_walls = print_config.opt_bool("thin_walls"); float nozzle_diameter = float(printer_config.opt_float("nozzle_diameter", 0)); std::string out; if (layer_height <= 0.f) { out += _utf8(L("Recommended object thin wall thickness: Not available due to invalid layer height.")); return out; } Flow external_perimeter_flow = Flow::new_from_config_width( frExternalPerimeter, *print_config.opt("external_perimeter_extrusion_width"), nozzle_diameter, layer_height, false); Flow perimeter_flow = Flow::new_from_config_width( frPerimeter, *print_config.opt("perimeter_extrusion_width"), nozzle_diameter, layer_height, false); if (num_perimeters > 0) { int num_lines = std::min(num_perimeters * 2, 10); out += (boost::format(_utf8(L("Recommended object thin wall thickness for layer height %.2f and"))) % layer_height).str() + " "; // Start with the width of two closely spaced try { double width = external_perimeter_flow.width + external_perimeter_flow.spacing(); for (int i = 2; i <= num_lines; thin_walls ? ++ i : i += 2) { if (i > 2) out += ", "; out += (boost::format(_utf8(L("%d lines: %.2f mm"))) % i % width).str() + " "; width += perimeter_flow.spacing() * (thin_walls ? 1.f : 2.f); } } catch (const FlowErrorNegativeSpacing &) { out = _utf8(L("Recommended object thin wall thickness: Not available due to excessively small extrusion width.")); } } return out; } // Produce a textual explanation of the combined effects of the top/bottom_solid_layers // versus top/bottom_min_shell_thickness. Which of the two values wins depends // on the active layer height. std::string PresetHints::top_bottom_shell_thickness_explanation(const PresetBundle &preset_bundle) { const DynamicPrintConfig &print_config = preset_bundle.prints .get_edited_preset().config; const DynamicPrintConfig &printer_config = preset_bundle.printers .get_edited_preset().config; std::string out; int top_solid_layers = print_config.opt_int("top_solid_layers"); int bottom_solid_layers = print_config.opt_int("bottom_solid_layers"); bool has_top_layers = top_solid_layers > 0; bool has_bottom_layers = bottom_solid_layers > 0; double top_solid_min_thickness = print_config.opt_float("top_solid_min_thickness"); double bottom_solid_min_thickness = print_config.opt_float("bottom_solid_min_thickness"); double layer_height = print_config.opt_float("layer_height"); bool variable_layer_height = printer_config.opt_bool("variable_layer_height"); //FIXME the following line takes into account the 1st extruder only. double min_layer_height = variable_layer_height ? Slicing::min_layer_height_from_nozzle(printer_config, 1) : layer_height; if (layer_height <= 0.f) { out += _utf8(L("Top / bottom shell thickness hint: Not available due to invalid layer height.")); return out; } if (has_top_layers) { double top_shell_thickness = top_solid_layers * layer_height; if (top_shell_thickness < top_solid_min_thickness) { // top_solid_min_shell_thickness triggers even in case of normal layer height. Round the top_shell_thickness up // to an integer multiply of layer_height. double n = ceil(top_solid_min_thickness / layer_height); top_shell_thickness = n * layer_height; } double top_shell_thickness_minimum = std::max(top_solid_min_thickness, top_solid_layers * min_layer_height); out += (boost::format(_utf8(L("Top shell is %1% mm thick for layer height %2% mm."))) % top_shell_thickness % layer_height).str(); if (variable_layer_height && top_shell_thickness_minimum < top_shell_thickness) { out += " "; out += (boost::format(_utf8(L("Minimum top shell thickness is %1% mm."))) % top_shell_thickness_minimum).str(); } } else out += _utf8(L("Top is open.")); out += "\n"; if (has_bottom_layers) { double bottom_shell_thickness = bottom_solid_layers * layer_height; if (bottom_shell_thickness < bottom_solid_min_thickness) { // bottom_solid_min_shell_thickness triggers even in case of normal layer height. Round the bottom_shell_thickness up // to an integer multiply of layer_height. double n = ceil(bottom_solid_min_thickness / layer_height); bottom_shell_thickness = n * layer_height; } double bottom_shell_thickness_minimum = std::max(bottom_solid_min_thickness, bottom_solid_layers * min_layer_height); out += (boost::format(_utf8(L("Bottom shell is %1% mm thick for layer height %2% mm."))) % bottom_shell_thickness % layer_height).str(); if (variable_layer_height && bottom_shell_thickness_minimum < bottom_shell_thickness) { out += " "; out += (boost::format(_utf8(L("Minimum bottom shell thickness is %1% mm."))) % bottom_shell_thickness_minimum).str(); } } else out += _utf8(L("Bottom is open.")); return out; } }; // namespace Slic3r