#include #include #include #include "test_data.hpp" // get access to init_print, etc #include "libslic3r/Config.hpp" #include "libslic3r/GCodeReader.hpp" #include "libslic3r/Flow.hpp" #include "libslic3r/libslic3r.h" using namespace Slic3r::Test; using namespace Slic3r; SCENARIO("Extrusion width specifics", "[Flow]") { auto test = [](const DynamicPrintConfig &config) { Slic3r::GCodeReader parser; const double layer_height = config.opt_float("layer_height"); std::vector E_per_mm_bottom; parser.parse_buffer(Slic3r::Test::slice({ Slic3r::Test::TestMesh::cube_20x20x20 }, config), [&E_per_mm_bottom, layer_height] (Slic3r::GCodeReader& self, const Slic3r::GCodeReader::GCodeLine& line) { if (self.z() == Approx(layer_height).margin(0.01)) { // only consider first layer if (line.extruding(self) && line.dist_XY(self) > 0) E_per_mm_bottom.emplace_back(line.dist_E(self) / line.dist_XY(self)); } }); THEN("First layer width applies to everything on first layer.") { REQUIRE(E_per_mm_bottom.size() > 0); const double E_per_mm_avg = std::accumulate(E_per_mm_bottom.cbegin(), E_per_mm_bottom.cend(), 0.0) / static_cast(E_per_mm_bottom.size()); bool pass = (std::count_if(E_per_mm_bottom.cbegin(), E_per_mm_bottom.cend(), [E_per_mm_avg] (const double& v) { return v == Approx(E_per_mm_avg); }) == 0); REQUIRE(pass); } THEN("First layer width does not apply to upper layer.") { } }; GIVEN("A config with a skirt, brim, some fill density, 3 perimeters, and 1 bottom solid layer") { auto config = Slic3r::DynamicPrintConfig::full_print_config_with({ { "skirts", 1 }, { "brim_width", 2 }, { "perimeters", 3 }, { "fill_density", "40%" }, { "first_layer_height", 0.3 }, { "first_layer_extrusion_width", "2" }, }); WHEN("Slicing a 20mm cube") { test(config); } } GIVEN("A config with more options and a 20mm cube ") { auto config = Slic3r::DynamicPrintConfig::full_print_config_with({ { "skirts", 1 }, { "brim_width", 2 }, { "perimeters", 3 }, { "fill_density", "40%" }, { "layer_height", "0.35" }, { "first_layer_height", "0.35" }, { "bottom_solid_layers", 1 }, { "first_layer_extrusion_width", "2" }, { "filament_diameter", "3" }, { "nozzle_diameter", "0.5" } }); WHEN("Slicing a 20mm cube") { test(config); } } } SCENARIO(" Bridge flow specifics.", "[Flow]") { auto config = DynamicPrintConfig::full_print_config_with({ { "bridge_speed", 99 }, { "bridge_flow_ratio", 1 }, // to prevent speeds from being altered { "cooling", "0" }, // to prevent speeds from being altered { "first_layer_speed", "100%" } }); auto test = [](const DynamicPrintConfig &config) { GCodeReader parser; const double bridge_speed = config.opt_float("bridge_speed") * 60.; std::vector E_per_mm; parser.parse_buffer(Slic3r::Test::slice({ Slic3r::Test::TestMesh::overhang }, config), [&E_per_mm, bridge_speed](Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line) { if (line.extruding(self) && line.dist_XY(self) > 0) { if (is_approx(line.new_F(self), bridge_speed)) E_per_mm.emplace_back(line.dist_E(self) / line.dist_XY(self)); } }); const double nozzle_dmr = config.opt("nozzle_diameter")->get_at(0); const double filament_dmr = config.opt("filament_diameter")->get_at(0); const double bridge_mm_per_mm = sqr(nozzle_dmr / filament_dmr) * config.opt_float("bridge_flow_ratio"); size_t num_errors = std::count_if(E_per_mm.begin(), E_per_mm.end(), [bridge_mm_per_mm](double v){ return std::abs(v - bridge_mm_per_mm) > 0.01; }); return num_errors == 0; }; GIVEN("A default config with no cooling and a fixed bridge speed, flow ratio and an overhang mesh.") { WHEN("bridge_flow_ratio is set to 0.5 and extrusion width to default") { config.set_deserialize_strict({ { "bridge_flow_ratio", 0.5}, { "extrusion_width", "0" } }); THEN("Output flow is as expected.") { REQUIRE(test(config)); } } WHEN("bridge_flow_ratio is set to 2.0 and extrusion width to default") { config.set_deserialize_strict({ { "bridge_flow_ratio", 2.0}, { "extrusion_width", "0" } }); THEN("Output flow is as expected.") { REQUIRE(test(config)); } } WHEN("bridge_flow_ratio is set to 0.5 and extrusion_width to 0.4") { config.set_deserialize_strict({ { "bridge_flow_ratio", 0.5}, { "extrusion_width", 0.4 } }); THEN("Output flow is as expected.") { REQUIRE(test(config)); } } WHEN("bridge_flow_ratio is set to 1.0 and extrusion_width to 0.4") { config.set_deserialize_strict({ { "bridge_flow_ratio", 1.0}, { "extrusion_width", 0.4 } }); THEN("Output flow is as expected.") { REQUIRE(test(config)); } } WHEN("bridge_flow_ratio is set to 2 and extrusion_width to 0.4") { config.set_deserialize_strict({ { "bridge_flow_ratio", 2.}, { "extrusion_width", 0.4 } }); THEN("Output flow is as expected.") { REQUIRE(test(config)); } } } GIVEN("A default config with no cooling and a fixed bridge speed, flow ratio, fixed extrusion width of 0.4mm and an overhang mesh.") { WHEN("bridge_flow_ratio is set to 1.0") { THEN("Output flow is as expected.") { } } WHEN("bridge_flow_ratio is set to 0.5") { THEN("Output flow is as expected.") { } } WHEN("bridge_flow_ratio is set to 2.0") { THEN("Output flow is as expected.") { } } } } /// Test the expected behavior for auto-width, /// spacing, etc SCENARIO("Flow: Flow math for non-bridges", "[Flow]") { GIVEN("Nozzle Diameter of 0.4, a desired width of 1mm and layer height of 0.5") { ConfigOptionFloatOrPercent width(1.0, false); float nozzle_diameter = 0.4f; float layer_height = 0.4f; // Spacing for non-bridges is has some overlap THEN("External perimeter flow has spacing fixed to 1.125 * nozzle_diameter") { auto flow = Flow::new_from_config_width(frExternalPerimeter, ConfigOptionFloatOrPercent(0, false), nozzle_diameter, layer_height); REQUIRE(flow.spacing() == Approx(1.125 * nozzle_diameter - layer_height * (1.0 - PI / 4.0))); } THEN("Internal perimeter flow has spacing fixed to 1.125 * nozzle_diameter") { auto flow = Flow::new_from_config_width(frPerimeter, ConfigOptionFloatOrPercent(0, false), nozzle_diameter, layer_height); REQUIRE(flow.spacing() == Approx(1.125 *nozzle_diameter - layer_height * (1.0 - PI / 4.0))); } THEN("Spacing for supplied width is 0.8927f") { auto flow = Flow::new_from_config_width(frExternalPerimeter, width, nozzle_diameter, layer_height); REQUIRE(flow.spacing() == Approx(width.value - layer_height * (1.0 - PI / 4.0))); flow = Flow::new_from_config_width(frPerimeter, width, nozzle_diameter, layer_height); REQUIRE(flow.spacing() == Approx(width.value - layer_height * (1.0 - PI / 4.0))); } } /// Check the min/max GIVEN("Nozzle Diameter of 0.25") { float nozzle_diameter = 0.25f; float layer_height = 0.5f; WHEN("layer height is set to 0.2") { layer_height = 0.15f; THEN("Max width is set.") { auto flow = Flow::new_from_config_width(frPerimeter, ConfigOptionFloatOrPercent(0, false), nozzle_diameter, layer_height); REQUIRE(flow.width() == Approx(1.125 * nozzle_diameter)); } } WHEN("Layer height is set to 0.25") { layer_height = 0.25f; THEN("Min width is set.") { auto flow = Flow::new_from_config_width(frPerimeter, ConfigOptionFloatOrPercent(0, false), nozzle_diameter, layer_height); REQUIRE(flow.width() == Approx(1.125 * nozzle_diameter)); } } } #if 0 /// Check for an edge case in the maths where the spacing could be 0; original /// math is 0.99. Slic3r issue #4654 GIVEN("Input spacing of 0.414159 and a total width of 2") { double in_spacing = 0.414159; double total_width = 2.0; auto flow = Flow::new_from_spacing(1.0, 0.4, 0.3); WHEN("solid_spacing() is called") { double result = flow.solid_spacing(total_width, in_spacing); THEN("Yielded spacing is greater than 0") { REQUIRE(result > 0); } } } #endif } /// Spacing, width calculation for bridge extrusions SCENARIO("Flow: Flow math for bridges", "[Flow]") { GIVEN("Nozzle Diameter of 0.4, a desired width of 1mm and layer height of 0.5") { float nozzle_diameter = 0.4f; float bridge_flow = 1.0f; WHEN("Flow role is frExternalPerimeter") { auto flow = Flow::bridging_flow(nozzle_diameter * sqrt(bridge_flow), nozzle_diameter); THEN("Bridge width is same as nozzle diameter") { REQUIRE(flow.width() == Approx(nozzle_diameter)); } THEN("Bridge spacing is same as nozzle diameter + BRIDGE_EXTRA_SPACING") { REQUIRE(flow.spacing() == Approx(nozzle_diameter + BRIDGE_EXTRA_SPACING)); } } } }