#include #include "libslic3r/GCodeReader.hpp" #include "test_data.hpp" // get access to init_print, etc using namespace Slic3r::Test; using namespace Slic3r; SCENARIO("Shells", "[Shells]") { GIVEN("20mm box") { auto test = [](const DynamicPrintConfig &config){ std::vector zs; std::set layers_with_solid_infill; std::set layers_with_bridge_infill; const double solid_infill_speed = config.opt_float("solid_infill_speed") * 60; const double bridge_speed = config.opt_float("bridge_speed") * 60; GCodeReader parser; parser.parse_buffer(Slic3r::Test::slice({ Slic3r::Test::TestMesh::cube_20x20x20 }, config), [&zs, &layers_with_solid_infill, &layers_with_bridge_infill, solid_infill_speed, bridge_speed] (Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line) { double z = line.new_Z(self); REQUIRE(z >= 0); if (z > 0) { coord_t scaled_z = scaled(z); zs.emplace_back(scaled_z); if (line.extruding(self) && line.dist_XY(self) > 0) { double f = line.new_F(self); if (std::abs(f - solid_infill_speed) < EPSILON) layers_with_solid_infill.insert(scaled_z); if (std::abs(f - bridge_speed) < EPSILON) layers_with_bridge_infill.insert(scaled_z); } } }); sort_remove_duplicates(zs); auto has_solid_infill = [&layers_with_solid_infill](coord_t z) { return layers_with_solid_infill.find(z) != layers_with_solid_infill.end(); }; auto has_bridge_infill = [&layers_with_bridge_infill](coord_t z) { return layers_with_bridge_infill.find(z) != layers_with_bridge_infill.end(); }; auto has_shells = [&has_solid_infill, &has_bridge_infill, &zs](int layer_idx) { coord_t z = zs[layer_idx]; return has_solid_infill(z) || has_bridge_infill(z); }; const int bottom_solid_layers = config.opt_int("bottom_solid_layers"); const int top_solid_layers = config.opt_int("top_solid_layers"); THEN("correct number of bottom solid layers") { for (int i = 0; i < bottom_solid_layers; ++ i) REQUIRE(has_shells(i)); for (int i = bottom_solid_layers; i < int(zs.size() / 2); ++ i) REQUIRE(! has_shells(i)); } THEN("correct number of top solid layers") { // NOTE: there is one additional layer with enusring line under the bridge layer, bridges would be otherwise anchored weakly to the perimeter. size_t additional_ensuring_anchors = top_solid_layers > 0 ? 1 : 0; for (int i = 0; i < top_solid_layers + additional_ensuring_anchors; ++ i) REQUIRE(has_shells(int(zs.size()) - i - 1)); for (int i = top_solid_layers + additional_ensuring_anchors; i < int(zs.size() / 2); ++ i) REQUIRE(! has_shells(int(zs.size()) - i - 1)); } if (top_solid_layers > 0) { THEN("solid infill speed is used on solid infill") { for (int i = 0; i < top_solid_layers - 1; ++ i) { auto z = zs[int(zs.size()) - i - 1]; REQUIRE(has_solid_infill(z)); REQUIRE(! has_bridge_infill(z)); } } THEN("bridge used in first solid layer over sparse infill") { auto z = zs[int(zs.size()) - top_solid_layers]; REQUIRE(! has_solid_infill(z)); REQUIRE(has_bridge_infill(z)); } } }; auto config = Slic3r::DynamicPrintConfig::full_print_config_with({ { "skirts", 0 }, { "perimeters", 0 }, { "solid_infill_speed", 99 }, { "top_solid_infill_speed", 99 }, { "bridge_speed", 72 }, { "first_layer_speed", "100%" }, { "cooling", "0" } }); WHEN("three top and bottom layers") { // proper number of shells is applied config.set_deserialize_strict({ { "top_solid_layers", 3 }, { "bottom_solid_layers", 3 } }); test(config); } WHEN("zero top and bottom layers") { // no shells are applied when both top and bottom are set to zero config.set_deserialize_strict({ { "top_solid_layers", 0 }, { "bottom_solid_layers", 0 } }); test(config); } WHEN("three top and bottom layers, zero infill") { // proper number of shells is applied even when fill density is none config.set_deserialize_strict({ { "perimeters", 1 }, { "top_solid_layers", 3 }, { "bottom_solid_layers", 3 } }); test(config); } } } static std::set layers_with_speed(const std::string &gcode, int speed) { std::set out; GCodeReader parser; parser.parse_buffer(gcode, [&out, speed](Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line) { if (line.extruding(self) && is_approx(line.new_F(self), speed * 60.)) out.insert(self.z()); }); return out; } SCENARIO("Shells (from Perl)", "[Shells]") { GIVEN("V shape, Slic3r GH #1161") { int solid_speed = 99; auto config = Slic3r::DynamicPrintConfig::full_print_config_with({ { "layer_height", 0.3 }, { "first_layer_height", 0.3 }, { "bottom_solid_layers", 0 }, { "top_solid_layers", 3 }, // to prevent speeds from being altered { "cooling", "0" }, { "bridge_speed", solid_speed }, { "solid_infill_speed", solid_speed }, { "top_solid_infill_speed", solid_speed }, // to prevent speeds from being altered { "first_layer_speed", "100%" }, // prevent speed alteration { "enable_dynamic_overhang_speeds", 0 } }); THEN("correct number of top solid shells is generated in V-shaped object") { size_t n = 0; for (auto z : layers_with_speed(Slic3r::Test::slice({TestMesh::V}, config), solid_speed)) if (z <= 7.2) ++ n; REQUIRE(n == 3 + 1/*one additional layer with ensuring for bridge anchors*/); } } //TODO CHECK AFTER REMOVAL OF "ensure_vertical_wall_thickness" // GIVEN("V shape") { // // we need to check against one perimeter because this test is calibrated // // (shape, extrusion_width) so that perimeters cover the bottom surfaces of // // their lower layer - the test checks that shells are not generated on the // // above layers (thus 'across' the shadow perimeter) // // the test is actually calibrated to leave a narrow bottom region for each // // layer - we test that in case of fill_density = 0 such narrow shells are // // discarded instead of grown // int bottom_solid_layers = 3; // auto config = Slic3r::DynamicPrintConfig::full_print_config_with({ // { "perimeters", 1 }, // { "fill_density", 0 }, // // to prevent speeds from being altered // { "cooling", "0" }, // // to prevent speeds from being altered // { "first_layer_speed", "100%" }, // // prevent speed alteration // { "enable_dynamic_overhang_speeds", 0 }, // { "layer_height", 0.4 }, // { "first_layer_height", 0.4 }, // { "extrusion_width", 0.55 }, // { "bottom_solid_layers", bottom_solid_layers }, // { "top_solid_layers", 0 }, // { "solid_infill_speed", 99 } // }); // THEN("shells are not propagated across perimeters of the neighbor layer") { // std::string gcode = Slic3r::Test::slice({TestMesh::V}, config); // REQUIRE(layers_with_speed(gcode, 99).size() == bottom_solid_layers); // } // } // GIVEN("sloping_hole") { // int bottom_solid_layers = 3; // int top_solid_layers = 3; // int solid_speed = 99; // auto config = Slic3r::DynamicPrintConfig::full_print_config_with({ // { "perimeters", 3 }, // // to prevent speeds from being altered // { "cooling", "0" }, // // to prevent speeds from being altered // { "first_layer_speed", "100%" }, // // prevent speed alteration // { "enable_dynamic_overhang_speeds", 0 }, // { "layer_height", 0.4 }, // { "first_layer_height", 0.4 }, // { "bottom_solid_layers", bottom_solid_layers }, // { "top_solid_layers", top_solid_layers }, // { "solid_infill_speed", solid_speed }, // { "top_solid_infill_speed", solid_speed }, // { "bridge_speed", solid_speed }, // { "filament_diameter", 3. }, // { "nozzle_diameter", 0.5 } // }); // THEN("no superfluous shells are generated") { // std::string gcode = Slic3r::Test::slice({TestMesh::sloping_hole}, config); // REQUIRE(layers_with_speed(gcode, solid_speed).size() == bottom_solid_layers + top_solid_layers); // } // } GIVEN("20mm_cube, spiral vase") { double layer_height = 0.3; auto config = Slic3r::DynamicPrintConfig::full_print_config_with({ { "perimeters", 1 }, { "fill_density", 0 }, { "layer_height", layer_height }, { "first_layer_height", layer_height }, { "top_solid_layers", 0 }, { "spiral_vase", 1 }, { "bottom_solid_layers", 0 }, { "skirts", 0 }, { "start_gcode", "" }, { "temperature", 200 }, { "first_layer_temperature", 205} }); // TODO: this needs to be tested with a model with sloping edges, where starting // points of each layer are not aligned - in that case we would test that no // travel moves are left to move to the new starting point - in a cube, end // points coincide with next layer starting points (provided there's no clipping) auto test = [layer_height](const DynamicPrintConfig &config) { size_t travel_moves_after_first_extrusion = 0; bool started_extruding = false; bool first_layer_temperature_set = false; bool temperature_set = false; std::vector z_steps; GCodeReader parser; parser.parse_buffer(Slic3r::Test::slice({TestMesh::cube_20x20x20}, config), [&](Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line) { if (line.cmd_is("G1")) { if (line.extruding(self)) started_extruding = true; if (started_extruding) { if (double dz = line.dist_Z(self); dz > 0) z_steps.emplace_back(dz); if (line.travel() && line.dist_XY(self) > 0 && ! line.has(Z)) ++ travel_moves_after_first_extrusion; } } else if (line.cmd_is("M104")) { int s; if (line.has_value('S', s)) { if (s == 205) first_layer_temperature_set = true; else if (s == 200) temperature_set = true; } } }); THEN("first layer temperature is set") { REQUIRE(first_layer_temperature_set); } THEN("temperature is set") { REQUIRE(temperature_set); } // we allow one travel move after first extrusion: i.e. when moving to the first // spiral point after moving to second layer (bottom layer had loop clipping, so // we're slightly distant from the starting point of the loop) THEN("no gaps in spiral vase") { REQUIRE(travel_moves_after_first_extrusion <= 1); } THEN("no gaps in Z") { REQUIRE(std::count_if(z_steps.begin(), z_steps.end(), [&layer_height](auto z_step) { return z_step > layer_height + EPSILON; }) == 0); } }; WHEN("solid model") { test(config); } WHEN("solid model with negative z-offset") { config.set_deserialize_strict("z_offset", "-10"); test(config); } // Disabled because the current unreliable medial axis code doesn't always produce valid loops. // $test->('40x10', 'hollow model with negative z-offset'); } GIVEN("20mm_cube, spiral vase") { double layer_height = 0.4; auto config = Slic3r::DynamicPrintConfig::full_print_config_with({ { "spiral_vase", 1 }, { "perimeters", 1 }, { "fill_density", 0 }, { "top_solid_layers", 0 }, { "bottom_solid_layers", 0 }, { "retract_layer_change", 0 }, { "skirts", 0 }, { "layer_height", layer_height }, { "first_layer_height", layer_height }, { "start_gcode", "" }, // { "use_relative_e_distances", 1} }); config.validate(); std::vector> this_layer; // [ dist_Z, dist_XY ], ... int z_moves = 0; bool bottom_layer_not_flat = false; bool null_z_moves_not_layer_changes = false; bool null_z_moves_not_multiples_of_layer_height = false; bool sum_of_partial_z_equals_to_layer_height = false; bool all_layer_segments_have_same_slope = false; bool horizontal_extrusions = false; GCodeReader parser; parser.parse_buffer(Slic3r::Test::slice({TestMesh::cube_20x20x20}, config), [&](Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line) { if (line.cmd_is("G1")) { if (z_moves < 2) { // skip everything up to the second Z move // (i.e. start of second layer) if (line.has(Z)) { ++ z_moves; if (double dz = line.dist_Z(self); dz > 0 && ! is_approx(dz, layer_height)) bottom_layer_not_flat = true; } } else if (line.dist_Z(self) == 0 && line.has(Z)) { if (line.dist_XY(self) != 0) null_z_moves_not_layer_changes = true; double z = line.new_Z(self); if (fmod(z + EPSILON, layer_height) > 2 * EPSILON) null_z_moves_not_multiples_of_layer_height = true; double total_dist_XY = 0; double total_dist_Z = 0; for (auto &seg : this_layer) { total_dist_Z += seg.first; total_dist_XY += seg.second; } if (std::abs(total_dist_Z - layer_height) > // The first segment on the 2nd layer has extrusion interpolated from zero // and the 1st segment has such a low extrusion assigned, that it is effectively zero, thus the move // is considered non-extruding and a higher epsilon is required. (z_moves == 2 ? 0.0021 : EPSILON)) sum_of_partial_z_equals_to_layer_height = true; //printf("Total height: %f, layer height: %f, good: %d\n", sum(map $_->[0], @this_layer), $config->layer_height, $sum_of_partial_z_equals_to_layer_height); for (auto &seg : this_layer) // check that segment's dist_Z is proportioned to its dist_XY if (std::abs(seg.first * total_dist_XY / layer_height - seg.second) > 0.2) all_layer_segments_have_same_slope = true; this_layer.clear(); } else if (line.extruding(self) && line.dist_XY(self) > 0) { if (line.dist_Z(self) == 0) horizontal_extrusions = true; //printf("Pushing dist_z: %f, dist_xy: %f\n", $info->{dist_Z}, $info->{dist_XY}); this_layer.emplace_back(line.dist_Z(self), line.dist_XY(self)); } } }); THEN("bottom layer is flat when using spiral vase") { REQUIRE(! bottom_layer_not_flat); } THEN("null Z moves are layer changes") { REQUIRE(! null_z_moves_not_layer_changes); } THEN("null Z moves are multiples of layer height") { REQUIRE(! null_z_moves_not_multiples_of_layer_height); } THEN("sum of partial Z increments equals to a full layer height") { REQUIRE(! sum_of_partial_z_equals_to_layer_height); } THEN("all layer segments have the same slope") { REQUIRE(! all_layer_segments_have_same_slope); } THEN("no horizontal extrusions") { REQUIRE(! horizontal_extrusions); } } } #if 0 // The current Spiral Vase slicing code removes the holes and all but the largest contours from each slice, // therefore the following test is no more valid. { my $config = Slic3r::Config::new_from_defaults; $config->set('perimeters', 1); $config->set('fill_density', 0); $config->set('top_solid_layers', 0); $config->set('spiral_vase', 1); $config->set('bottom_solid_layers', 0); $config->set('skirts', 0); $config->set('first_layer_height', $config->layer_height); $config->set('start_gcode', ''); my $print = Slic3r::Test::init_print('two_hollow_squares', config => $config); my $diagonal_moves = 0; Slic3r::GCode::Reader->new->parse(Slic3r::Test::gcode($print), sub { my ($self, $cmd, $args, $info) = @_; if ($cmd eq 'G1') { if ($info->{extruding} && $info->{dist_XY} > 0) { if ($info->{dist_Z} > 0) { $diagonal_moves++; } } } }); is $diagonal_moves, 0, 'no spiral moves on two-island object'; } #endif