#include "sla_test_utils.hpp" #include "libslic3r/TriangleMeshSlicer.hpp" #include "libslic3r/SLA/AGGRaster.hpp" #include "libslic3r/SLA/DefaultSupportTree.hpp" #include "libslic3r/SLA/BranchingTreeSLA.hpp" #include void test_support_model_collision( const std::string &obj_filename, const sla::SupportTreeConfig &input_supportcfg, const sla::HollowingConfig &hollowingcfg, const sla::DrainHoles &drainholes) { SupportByproducts byproducts; sla::SupportTreeConfig supportcfg = input_supportcfg; // Set head penetration to a small negative value which should ensure that // the supports will not touch the model body. supportcfg.head_penetration_mm = -0.2; test_supports(obj_filename, supportcfg, hollowingcfg, drainholes, byproducts); // Slice the support mesh given the slice grid of the model. std::vector support_slices = sla::slice(byproducts.suptree_builder.retrieve_mesh(sla::MeshType::Support), byproducts.suptree_builder.retrieve_mesh(sla::MeshType::Pad), byproducts.slicegrid, CLOSING_RADIUS, {}); // The slices originate from the same slice grid so the numbers must match bool support_mesh_is_empty = byproducts.suptree_builder.retrieve_mesh(sla::MeshType::Pad).empty() && byproducts.suptree_builder.retrieve_mesh(sla::MeshType::Support).empty(); if (support_mesh_is_empty) REQUIRE(support_slices.empty()); else REQUIRE(support_slices.size() == byproducts.model_slices.size()); bool notouch = true; for (size_t n = 0; notouch && n < support_slices.size(); ++n) { const ExPolygons &sup_slice = support_slices[n]; const ExPolygons &mod_slice = byproducts.model_slices[n]; Polygons intersections = intersection(sup_slice, mod_slice); double pinhead_r = scaled(input_supportcfg.head_front_radius_mm); // TODO:: make it strict without a threshold of PI * pihead_radius ^ 2 notouch = notouch && area(intersections) < PI * pinhead_r * pinhead_r; } if (!notouch) export_failed_case(support_slices, byproducts); REQUIRE(notouch); } void export_failed_case(const std::vector &support_slices, const SupportByproducts &byproducts) { bool do_export_stl = false; for (size_t n = 0; n < support_slices.size(); ++n) { const ExPolygons &sup_slice = support_slices[n]; const ExPolygons &mod_slice = byproducts.model_slices[n]; Polygons intersections = intersection(sup_slice, mod_slice); std::stringstream ss; if (!intersections.empty()) { ss << byproducts.obj_fname << std::setprecision(4) << n << ".svg"; SVG svg(ss.str()); svg.draw(sup_slice, "green"); svg.draw(mod_slice, "blue"); svg.draw(intersections, "red"); svg.Close(); } do_export_stl = do_export_stl || !intersections.empty(); } if (do_export_stl) { indexed_triangle_set its; byproducts.suptree_builder.retrieve_full_mesh(its); TriangleMesh m{its}; m.merge(byproducts.input_mesh); m.WriteOBJFile((Catch::getResultCapture().getCurrentTestName() + "_" + byproducts.obj_fname).c_str()); } } void test_supports(const std::string &obj_filename, const sla::SupportTreeConfig &supportcfg, const sla::HollowingConfig &hollowingcfg, const sla::DrainHoles &drainholes, SupportByproducts &out) { using namespace Slic3r; TriangleMesh mesh = load_model(obj_filename); REQUIRE_FALSE(mesh.empty()); if (hollowingcfg.enabled) { sla::InteriorPtr interior = sla::generate_interior(mesh.its, hollowingcfg); REQUIRE(interior); mesh.merge(TriangleMesh{sla::get_mesh(*interior)}); } auto bb = mesh.bounding_box(); double zmin = bb.min.z(); double zmax = bb.max.z(); double gnd = zmin - supportcfg.object_elevation_mm; auto layer_h = 0.05f; out.slicegrid = grid(float(gnd), float(zmax), layer_h); out.model_slices = slice_mesh_ex(mesh.its, out.slicegrid, CLOSING_RADIUS); sla::cut_drainholes(out.model_slices, out.slicegrid, CLOSING_RADIUS, drainholes, []{}); // Create the special index-triangle mesh with spatial indexing which // is the input of the support point and support mesh generators sla::SupportableMesh sm{mesh.its, {}, supportcfg}; #ifdef SLIC3R_HOLE_RAYCASTER if (hollowingcfg.enabled) emesh.load_holes(drainholes); #endif // TODO: do the cgal hole cutting... // Create the support point generator sla::SupportPointGenerator::Config autogencfg; autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm); sla::SupportPointGenerator point_gen{sm.emesh, autogencfg, [] {}, [](int) {}}; point_gen.seed(0); // Make the test repeatable point_gen.execute(out.model_slices, out.slicegrid); // Get the calculated support points. sm.pts = point_gen.output(); int validityflags = ASSUME_NO_REPAIR; // If there is no elevation, support points shall be removed from the // bottom of the object. if (std::abs(supportcfg.object_elevation_mm) < EPSILON) { sla::remove_bottom_points(sm.pts, zmin + supportcfg.base_height_mm); } else { // Should be support points at least on the bottom of the model REQUIRE_FALSE(sm.pts.empty()); // Also the support mesh should not be empty. validityflags |= ASSUME_NO_EMPTY; } // Generate the actual support tree sla::SupportTreeBuilder treebuilder; switch (sm.cfg.tree_type) { case sla::SupportTreeType::Default: { sla::DefaultSupportTree::execute(treebuilder, sm); check_support_tree_integrity(treebuilder, supportcfg, sla::ground_level(sm)); break; } case sla::SupportTreeType::Branching: { create_branching_tree(treebuilder, sm); // TODO: check_support_tree_integrity(treebuilder, supportcfg); break; } default:; } TriangleMesh output_mesh{treebuilder.retrieve_mesh(sla::MeshType::Support)}; check_validity(output_mesh, validityflags); // Quick check if the dimensions and placement of supports are correct auto obb = output_mesh.bounding_box(); double allowed_zmin = zmin - supportcfg.object_elevation_mm; if (std::abs(supportcfg.object_elevation_mm) < EPSILON) allowed_zmin = zmin - 2 * supportcfg.head_back_radius_mm; #ifndef NDEBUG if (!(obb.min.z() >= Approx(allowed_zmin)) || !(obb.max.z() <= Approx(zmax))) { indexed_triangle_set its; treebuilder.retrieve_full_mesh(its); TriangleMesh m{its}; m.merge(mesh); m.WriteOBJFile((Catch::getResultCapture().getCurrentTestName() + "_" + obj_filename).c_str()); } #endif REQUIRE(obb.min.z() >= Approx(allowed_zmin)); REQUIRE(obb.max.z() <= Approx(zmax)); // Move out the support tree into the byproducts, we can examine it further // in various tests. out.obj_fname = std::move(obj_filename); out.suptree_builder = std::move(treebuilder); out.input_mesh = std::move(mesh); } void check_support_tree_integrity(const sla::SupportTreeBuilder &stree, const sla::SupportTreeConfig &cfg, double gnd) { double H1 = cfg.max_solo_pillar_height_mm; double H2 = cfg.max_dual_pillar_height_mm; for (const sla::Head &head : stree.heads()) { REQUIRE((!head.is_valid() || head.pillar_id != sla::SupportTreeNode::ID_UNSET || head.bridge_id != sla::SupportTreeNode::ID_UNSET)); } for (const sla::Pillar &pillar : stree.pillars()) { if (std::abs(pillar.endpoint().z() - gnd) < EPSILON) { double h = pillar.height; if (h > H1) REQUIRE(pillar.links >= 1); else if(h > H2) { REQUIRE(pillar.links >= 2); } } REQUIRE(pillar.links <= cfg.pillar_cascade_neighbors); REQUIRE(pillar.bridges <= cfg.max_bridges_on_pillar); } double max_bridgelen = 0.; auto chck_bridge = [&cfg](const sla::Bridge &bridge, double &max_brlen) { Vec3d n = bridge.endp - bridge.startp; double d = sla::distance(n); max_brlen = std::max(d, max_brlen); double z = n.z(); double polar = std::acos(z / d); double slope = -polar + PI / 2.; REQUIRE(std::abs(slope) >= cfg.bridge_slope - EPSILON); }; for (auto &bridge : stree.bridges()) chck_bridge(bridge, max_bridgelen); REQUIRE(max_bridgelen <= Approx(cfg.max_bridge_length_mm)); max_bridgelen = 0; for (auto &bridge : stree.crossbridges()) chck_bridge(bridge, max_bridgelen); double md = cfg.max_pillar_link_distance_mm / std::cos(-cfg.bridge_slope); REQUIRE(max_bridgelen <= md); } void test_pad(const std::string &obj_filename, const sla::PadConfig &padcfg, PadByproducts &out) { REQUIRE(padcfg.validate().empty()); TriangleMesh mesh = load_model(obj_filename); REQUIRE_FALSE(mesh.empty()); // Create pad skeleton only from the model Slic3r::sla::pad_blueprint(mesh.its, out.model_contours); test_concave_hull(out.model_contours); REQUIRE_FALSE(out.model_contours.empty()); // Create the pad geometry for the model contours only indexed_triangle_set out_its; Slic3r::sla::create_pad({}, out.model_contours, out_its, padcfg); out.mesh = TriangleMesh{out_its}; check_validity(out.mesh); auto bb = out.mesh.bounding_box(); REQUIRE(bb.max.z() - bb.min.z() == Approx(padcfg.full_height())); } static void _test_concave_hull(const Polygons &hull, const ExPolygons &polys) { REQUIRE(polys.size() >=hull.size()); double polys_area = 0; for (const ExPolygon &p : polys) polys_area += p.area(); double cchull_area = 0; for (const Slic3r::Polygon &p : hull) cchull_area += p.area(); REQUIRE(cchull_area >= Approx(polys_area)); size_t cchull_holes = 0; for (const Slic3r::Polygon &p : hull) cchull_holes += p.is_clockwise() ? 1 : 0; REQUIRE(cchull_holes == 0); Polygons diff_poly = diff(to_polygons(polys), hull); if (!diff_poly.empty()) { BOOST_LOG_TRIVIAL(warning) << "Concave hull diff with original shape is not completely empty." << "See pad_chull.svg for details."; SVG svg("pad_chull.svg"); svg.draw(polys, "green"); svg.draw(hull, "red"); svg.draw(diff_poly, "blue"); } double diff_area = area(diff_poly); REQUIRE(std::abs(diff_area) < std::pow(scaled(2 * EPSILON), 2)); } void test_concave_hull(const ExPolygons &polys) { sla::PadConfig pcfg; Slic3r::sla::ConcaveHull cchull{polys, pcfg.max_merge_dist_mm, []{}}; _test_concave_hull(cchull.polygons(), polys); coord_t delta = scaled(pcfg.brim_size_mm + pcfg.wing_distance()); ExPolygons wafflex = sla::offset_waffle_style_ex(cchull, delta); Polygons waffl = sla::offset_waffle_style(cchull, delta); _test_concave_hull(to_polygons(wafflex), polys); _test_concave_hull(waffl, polys); } //FIXME this functionality is gone after TriangleMesh refactoring to get rid of admesh. void check_validity(const TriangleMesh &input_mesh, int flags) { /* TriangleMesh mesh{input_mesh}; if (flags & ASSUME_NO_EMPTY) { REQUIRE_FALSE(mesh.empty()); } else if (mesh.empty()) return; // If it can be empty and it is, there is nothing left to do. bool do_update_shared_vertices = false; mesh.repair(do_update_shared_vertices); if (flags & ASSUME_NO_REPAIR) { REQUIRE_FALSE(mesh.repaired()); } if (flags & ASSUME_MANIFOLD) { if (!mesh.is_manifold()) mesh.WriteOBJFile("non_manifold.obj"); REQUIRE(mesh.is_manifold()); } */ } void check_raster_transformations(sla::RasterBase::Orientation o, sla::RasterBase::TMirroring mirroring) { double disp_w = 120., disp_h = 68.; sla::Resolution res{2560, 1440}; sla::PixelDim pixdim{disp_w / res.width_px, disp_h / res.height_px}; auto bb = BoundingBox({0, 0}, {scaled(disp_w), scaled(disp_h)}); sla::RasterBase::Trafo trafo{o, mirroring}; trafo.center_x = bb.center().x(); trafo.center_y = bb.center().y(); double gamma = 1.; sla::RasterGrayscaleAAGammaPower raster{res, pixdim, trafo, gamma}; // create box of size 32x32 pixels (not 1x1 to avoid antialiasing errors) coord_t pw = 32 * coord_t(std::ceil(scaled(pixdim.w_mm))); coord_t ph = 32 * coord_t(std::ceil(scaled(pixdim.h_mm))); ExPolygon box; box.contour.points = {{-pw, -ph}, {pw, -ph}, {pw, ph}, {-pw, ph}}; double tr_x = scaled(20.), tr_y = tr_x; box.translate(tr_x, tr_y); ExPolygon expected_box = box; // Now calculate the position of the translated box according to output // trafo. if (o == sla::RasterBase::Orientation::roPortrait) expected_box.rotate(PI / 2.); if (mirroring[X]) for (auto &p : expected_box.contour.points) p.x() = -p.x(); if (mirroring[Y]) for (auto &p : expected_box.contour.points) p.y() = -p.y(); raster.draw(box); Point expected_coords = expected_box.contour.bounding_box().center(); double rx = unscaled(expected_coords.x() + bb.center().x()) / pixdim.w_mm; double ry = unscaled(expected_coords.y() + bb.center().y()) / pixdim.h_mm; auto w = size_t(std::floor(rx)); auto h = res.height_px - size_t(std::floor(ry)); REQUIRE((w < res.width_px && h < res.height_px)); auto px = raster.read_pixel(w, h); if (px != FullWhite) { std::fstream outf("out.png", std::ios::out); outf << raster.encode(sla::PNGRasterEncoder()); } REQUIRE(px == FullWhite); } ExPolygon square_with_hole(double v) { ExPolygon poly; coord_t V = scaled(v / 2.); poly.contour.points = {{-V, -V}, {V, -V}, {V, V}, {-V, V}}; poly.holes.emplace_back(); V = V / 2; poly.holes.front().points = {{-V, V}, {V, V}, {V, -V}, {-V, -V}}; return poly; } long raster_pxsum(const sla::RasterGrayscaleAA &raster) { auto res = raster.resolution(); long a = 0; for (size_t x = 0; x < res.width_px; ++x) for (size_t y = 0; y < res.height_px; ++y) a += raster.read_pixel(x, y); return a; } double raster_white_area(const sla::RasterGrayscaleAA &raster) { if (raster.resolution().pixels() == 0) return NaNd; auto res = raster.resolution(); double a = 0; for (size_t x = 0; x < res.width_px; ++x) for (size_t y = 0; y < res.height_px; ++y) { auto px = raster.read_pixel(x, y); a += pixel_area(px, raster.pixel_dimensions()); } return a; } double predict_error(const ExPolygon &p, const sla::PixelDim &pd) { auto lines = p.lines(); double pix_err = pixel_area(FullWhite, pd) / 2.; // Worst case is when a line is parallel to the shorter axis of one pixel, // when the line will be composed of the max number of pixels double pix_l = std::min(pd.h_mm, pd.w_mm); double error = 0.; for (auto &l : lines) error += (unscaled(l.length()) / pix_l) * pix_err; return error; } sla::SupportPoints calc_support_pts( const TriangleMesh & mesh, const sla::SupportPointGenerator::Config &cfg) { // Prepare the slice grid and the slices auto bb = cast(mesh.bounding_box()); std::vector heights = grid(bb.min.z(), bb.max.z(), 0.1f); std::vector slices = slice_mesh_ex(mesh.its, heights, CLOSING_RADIUS); // Prepare the support point calculator AABBMesh emesh{mesh}; sla::SupportPointGenerator spgen{emesh, cfg, []{}, [](int){}}; // Calculate the support points spgen.seed(0); spgen.execute(slices, heights); return spgen.output(); }