#include "ShortestPath.hpp" #include "KDTreeIndirect.hpp" #include "MutablePriorityQueue.hpp" #if 0 #undef NDEBUG #undef assert #endif #include #include namespace Slic3r { // Chain perimeters (always closed) and thin fills (closed or open) using a greedy algorithm. // Solving a Traveling Salesman Problem (TSP) with the modification, that the sites are not always points, but points and segments. // Solving using a greedy algorithm, where a shortest edge is added to the solution if it does not produce a bifurcation or a cycle. // Return index and "reversed" flag. // https://en.wikipedia.org/wiki/Multi-fragment_algorithm // The algorithm builds a tour for the traveling salesman one edge at a time and thus maintains multiple tour fragments, each of which // is a simple path in the complete graph of cities. At each stage, the algorithm selects the edge of minimal cost that either creates // a new fragment, extends one of the existing paths or creates a cycle of length equal to the number of cities. std::vector> chain_extrusion_entities(std::vector &entities, const Point *start_near) { std::vector> out; if (entities.empty()) { // Nothing to do. } else if (entities.size() == 1) { // Just sort the end points so that the first point visited is closest to start_near. ExtrusionEntity *extrusion_entity = entities.front(); out.emplace_back(0, extrusion_entity->can_reverse() && start_near != nullptr && (extrusion_entity->last_point() - *start_near).cast().squaredNorm() < (extrusion_entity->first_point() - *start_near).cast().squaredNorm()); } else { // End points of entities for the KD tree closest point search. // A single end point is inserted into the search structure for loops, two end points are entered for open paths. struct EndPoint { EndPoint(const Vec2d &pos) : pos(pos) {} Vec2d pos; // Identifier of the chain, to which this end point belongs. Zero means unassigned. size_t chain_id = 0; // Link to the closest currently valid end point. EndPoint *edge_out = nullptr; // Reverse of edge_out. As there may be multiple end points with the same edge_out, // these other edge_in points are chained using the on_circle_prev / on_circle_next cyclic loop. EndPoint *edge_in = nullptr; EndPoint* on_circle_prev = nullptr; EndPoint* on_circle_next = nullptr; void on_circle_merge(EndPoint *other) { EndPoint *a = this; EndPoint *b = other; assert(a->validate()); assert(b->validate()); if (a->on_circle_next == nullptr) std::swap(a, b); if (a->on_circle_next == nullptr) { a->on_circle_next = a->on_circle_prev = b; b->on_circle_next = b->on_circle_prev = a; } else if (b->on_circle_next == nullptr) { b->on_circle_next = a; b->on_circle_prev = a->on_circle_prev; a->on_circle_prev = b; b->on_circle_prev->on_circle_next = b; } else { EndPoint *next = a->on_circle_next; EndPoint *prev = b->on_circle_prev; a->on_circle_next = b; b->on_circle_prev = a; prev->on_circle_next = next; next->on_circle_prev = prev; } assert(this->validate()); } void on_circle_detach() { if (this->on_circle_next) { EndPoint *next = this->on_circle_next; EndPoint *prev = this->on_circle_prev; if (prev == next) { next->on_circle_next = nullptr; next->on_circle_prev = nullptr; } else { prev->on_circle_next = next; next->on_circle_prev = prev; } assert(prev->validate()); assert(next->validate()); this->on_circle_next = this->on_circle_prev = nullptr; } assert(this->validate()); } bool on_circle_empty() const { assert((this->on_circle_prev == nullptr) == (this->on_circle_next == nullptr)); assert(this->on_circle_prev == nullptr || (this->on_circle_prev != this && this->on_circle_next != this)); return this->on_circle_next == nullptr; } #ifndef NDEBUG bool validate() { assert((this->on_circle_prev == nullptr) == (this->on_circle_next == nullptr)); assert(this->on_circle_prev == nullptr || (this->on_circle_prev != this && this->on_circle_next != this)); assert(this->edge_out == nullptr || edge_out->edge_in != nullptr); assert(this->distance_out >= 0.); assert(this->edge_in == nullptr || this->edge_in->edge_out == this); // Point which is a member of path (chain_id > 0) must not be in circle of some edge_in. assert(this->chain_id == 0 || this->on_circle_empty()); if (! this->on_circle_empty()) { // Iterate over the cycle and validate the loop. std::set visited; const EndPoint *ep = this; bool edge_in_found = false; do { // This end point is visited for the first time. assert(visited.insert(ep).second); assert(ep->on_circle_next != ep); assert(ep->on_circle_prev != ep); assert(ep->on_circle_next->on_circle_prev == ep); assert(ep->on_circle_prev->on_circle_next == ep); assert(ep->edge_out != nullptr && ep->edge_out == this->edge_out); if (ep->edge_out->edge_in == ep) edge_in_found = true; ep = ep->on_circle_next; } while (ep != this); assert(edge_in_found); } return true; } #endif /* NDEBUG */ // Distance to the next end point following the link. // Zero value -> start of the final path. double distance_out = std::numeric_limits::max(); size_t heap_idx = std::numeric_limits::max(); }; std::vector end_points; end_points.reserve(entities.size() * 2); for (const ExtrusionEntity* const &entity : entities) { end_points.emplace_back(entity->first_point().cast()); end_points.emplace_back(entity->last_point().cast()); } // Construct the closest point KD tree over end points of extrusion entities. auto coordinate_fn = [&end_points](size_t idx, size_t dimension) -> double { return end_points[idx].pos[dimension]; }; KDTreeIndirect<2, double, decltype(coordinate_fn)> kdtree(coordinate_fn, end_points.size()); // Helper to detect loops in already connected paths. // Unique chain IDs are assigned to paths. If paths are connected, end points will not have their chain IDs updated, but the chain IDs // will remember an "equivalent" chain ID, which is the lowest ID of all the IDs in the path, and the lowest ID is equivalent to itself. class EquivalentChains { public: // Zero'th chain ID is invalid. EquivalentChains(size_t reserve) { m_equivalent_with.reserve(reserve); m_equivalent_with.emplace_back(0); } // Generate next equivalence class. size_t next() { m_equivalent_with.emplace_back(++ m_last_chain_id); return m_last_chain_id; } // Get equivalence class for chain ID. size_t operator()(size_t chain_id) { if (chain_id != 0) { for (size_t last = chain_id;;) { size_t lower = m_equivalent_with[last]; if (lower == last) { m_equivalent_with[chain_id] = lower; chain_id = lower; break; } last = lower; } } return chain_id; } size_t merge(size_t chain_id1, size_t chain_id2) { size_t chain_id = std::min((*this)(chain_id1), (*this)(chain_id2)); m_equivalent_with[chain_id1] = chain_id; m_equivalent_with[chain_id2] = chain_id; return chain_id; } #ifndef NDEBUG bool validate() { assert(m_last_chain_id > 0); assert(m_last_chain_id + 1 == m_equivalent_with.size()); for (size_t i = 0; i < m_equivalent_with.size(); ++ i) { for (size_t last = i;;) { size_t lower = m_equivalent_with[last]; assert(lower <= last); if (lower == last) break; last = lower; } } return true; } #endif /* NDEBUG */ private: // Unique chain ID assigned to chains of end points of entities. size_t m_last_chain_id = 0; std::vector m_equivalent_with; } equivalent_chain(entities.size()); // Find the first end point closest to start_near. EndPoint *first_point = nullptr; size_t first_point_idx = std::numeric_limits::max(); if (start_near != nullptr) { size_t idx = find_closest_point(kdtree, start_near->cast()); assert(idx != kdtree.npos); assert(idx < end_points.size()); first_point = &end_points[idx]; first_point->distance_out = 0.; first_point->chain_id = equivalent_chain.next(); first_point_idx = idx; } #ifndef NDEBUG auto validate_graph = [&end_points, &equivalent_chain]() -> bool { for (EndPoint& ep : end_points) ep.validate(); assert(equivalent_chain.validate()); return true; }; #endif /* NDEBUG */ // Assign the closest point and distance to the end points. assert(validate_graph()); for (EndPoint &end_point : end_points) { assert(end_point.edge_out == nullptr); if (&end_point != first_point) { size_t this_idx = &end_point - &end_points.front(); // Find the closest point to this end_point, which lies on a different extrusion path (filtered by the lambda). // Ignore the starting point as the starting point is considered to be occupied, no end point coud connect to it. size_t next_idx = find_closest_point(kdtree, end_point.pos, [this_idx, first_point_idx](size_t idx){ return idx != first_point_idx && (idx ^ this_idx) > 1; }); assert(next_idx != kdtree.npos); assert(next_idx < end_points.size()); EndPoint &end_point2 = end_points[next_idx]; end_point.edge_out = &end_point2; if (end_point2.edge_in == nullptr) end_point2.edge_in = &end_point; else { assert(end_point.on_circle_empty()); assert(end_point2.edge_in->edge_out == &end_point2); end_point.on_circle_merge(end_point2.edge_in); } end_point.distance_out = (end_point2.pos - end_point.pos).squaredNorm(); } assert(validate_graph()); } // Initialize a heap of end points sorted by the lowest distance to the next valid point of a path. auto queue = make_mutable_priority_queue( [](EndPoint *ep, size_t idx){ ep->heap_idx = idx; }, [](EndPoint *l, EndPoint *r){ return l->distance_out < r->distance_out; }); queue.reserve(end_points.size() * 2 - 1); for (EndPoint &ep : end_points) if (first_point != &ep) queue.push(&ep); #ifndef NDEBUG auto validate_graph_and_queue = [&validate_graph, &end_points, &queue, first_point]() -> bool { assert(validate_graph()); for (EndPoint &ep : end_points) { if (ep.heap_idx < queue.size()) { // End point is on the heap. assert(*(queue.cbegin() + ep.heap_idx) == &ep); assert(ep.chain_id == 0); // Point on the heap may only points to other points on the heap. assert(ep.edge_in == nullptr || ep.edge_in ->heap_idx < queue.size()); assert(ep.edge_out == nullptr || ep.edge_out->heap_idx < queue.size()); } else { // End point is NOT on the heap, therefore it is part of the output path. assert(ep.heap_idx == std::numeric_limits::max()); assert(ep.chain_id != 0); assert(ep.on_circle_empty()); if (&ep == first_point) { assert(ep.edge_in == nullptr); assert(ep.edge_out == nullptr); } else { assert(ep.edge_in != nullptr); assert(ep.edge_out != nullptr); assert(ep.edge_in != &ep); assert(ep.edge_in == ep.edge_out); assert(ep.edge_in->edge_out == &ep); assert(ep.edge_out->edge_in == &ep); assert(ep.edge_in->heap_idx == std::numeric_limits::max()); // Detect loops. for (EndPoint *pt = &ep; pt != nullptr;) { // Out of queue. It is a final point. assert(pt->heap_idx == std::numeric_limits::max()); EndPoint *pt_other = &end_points[(pt - &end_points.front()) ^ 1]; if (pt_other->heap_idx < queue.size()) // The other side of this segment is undecided yet. break; pt = pt_other->edge_out; } } } } for (EndPoint *ep : queue) // Points in the queue are not connected yet. assert(ep->chain_id == 0); return true; }; #endif /* NDEBUG */ // Chain the end points: find (entities.size() - 1) shortest links not forming bifurcations or loops. std::vector end_points_update; end_points_update.reserve(16); assert(entities.size() >= 2); for (int iter = int(entities.size()) - 2;; -- iter) { assert(validate_graph_and_queue()); // Take the first end point, for which the link points to the currently closest valid neighbor. EndPoint &end_point1 = *queue.top(); assert(end_point1.edge_out != nullptr); // No point on the queue may be connected yet. assert(end_point1.chain_id == 0); // Take the closest end point to the first end point, EndPoint &end_point2 = *end_point1.edge_out; // The closest point must not be connected yet. assert(end_point2.chain_id == 0); // If end_point1.edge_out == end_point2, then end_point2.edge_in == &end_point1, or end_point2.edge_in points to some point on loop of end_point1. assert(end_point2.edge_in != nullptr); // End points of the opposite ends of the segments. size_t end_point1_other_chain_id = equivalent_chain(end_points[(&end_point1 - &end_points.front()) ^ 1].chain_id); size_t end_point2_other_chain_id = equivalent_chain(end_points[(&end_point2 - &end_points.front()) ^ 1].chain_id); if (end_point1_other_chain_id == end_point2_other_chain_id && end_point1_other_chain_id != 0) { // This edge forms a loop. Update end_point1 and try another one. ++ iter; assert(end_point1.edge_out != nullptr); assert(end_point1.edge_out->edge_in != nullptr); assert(! end_point1.on_circle_empty() || end_point1.edge_out->edge_in == &end_point1); end_point1.edge_out->edge_in = end_point1.on_circle_empty() ? nullptr : end_point1.on_circle_next; end_point1.edge_out = nullptr; if (! end_point1.on_circle_empty()) end_point1.on_circle_detach(); assert(validate_graph_and_queue()); end_points_update.emplace_back(&end_point1); } else { // Remove the first and second point from the queue. queue.pop(); queue.remove(end_point2.heap_idx); #ifndef NDEBUG // Mark them as removed from the queue. end_point1.heap_idx = std::numeric_limits::max(); end_point2.heap_idx = std::numeric_limits::max(); #endif /* NDEBUG */ // Collect the other end points pointing to this one, detach them from the on_circle linked list. for (EndPoint *pt_first : { end_point1.edge_in, end_point2.edge_in }) if (pt_first != nullptr) { EndPoint *pt = pt_first; do { if (pt != &end_point1 && pt != &end_point2) { // Point is in the queue. assert(pt->heap_idx < queue.size()); // Point is not connected yet. assert(pt->chain_id == 0); end_points_update.emplace_back(pt); pt->edge_out = nullptr; } EndPoint *next = pt->on_circle_next; pt->on_circle_prev = nullptr; pt->on_circle_next = nullptr; pt = next; } while (pt != nullptr && pt != pt_first); } // If end_point1 was on a circle, the circle belonged to end_point2.edge_in, which was broken in the loop above. assert(end_point1.on_circle_empty()); // If end_point2 pointed to end_point1, then end_point2 was on a circle that belonged to end_point1.edge_in, which was broken in the loop above. //assert(end_point2.on_circle_empty() == (end_point2.edge_out == &end_point1)); assert(end_point2.on_circle_empty() || end_point2.edge_out != nullptr); end_point2.edge_out->edge_in = end_point2.on_circle_empty() ? nullptr : end_point2.on_circle_next; // The end_point2.link may not necessarily point back to end_point1 due to numeric issues and points on circles. // Update the link back. end_point1.edge_out = &end_point2; end_point1.edge_in = &end_point2; end_point2.edge_out = &end_point1; end_point2.edge_in = &end_point1; end_point2.distance_out = end_point1.distance_out; // Assign chain IDs to the newly connected end points, set equivalent_chain if two chains were merged. size_t chain_id = (end_point1_other_chain_id == 0) ? ((end_point2_other_chain_id == 0) ? equivalent_chain.next() : end_point2_other_chain_id) : ((end_point2_other_chain_id == 0) ? end_point1_other_chain_id : (end_point1_other_chain_id == end_point2_other_chain_id) ? end_point1_other_chain_id : equivalent_chain.merge(end_point1_other_chain_id, end_point2_other_chain_id)); end_point1.chain_id = chain_id; end_point2.chain_id = chain_id; if (! end_point2.on_circle_empty()) end_point2.on_circle_detach(); assert(validate_graph_and_queue()); } #ifndef NDEBUG for (EndPoint *end_point : end_points_update) { assert(end_point->edge_out == nullptr); // Point is in the queue. assert(end_point->heap_idx < queue.size()); // Point is not connected yet. assert(end_point->chain_id == 0); } #endif /* NDEBUG */ if (iter == 0) { // Last iteration. There shall be exactly one or two end points waiting to be connected. if (first_point == nullptr) { // Two unconnected points are the end points of the constructed path. assert(end_points_update.size() == 2); first_point = end_points_update.front(); } else assert(end_points_update.size() == 1); // Mark both points as ends of the path. for (EndPoint *end_point : end_points_update) end_point->edge_in = end_point->edge_out = nullptr; break; } // Update links, distances and queue positions of all points that used to point to end_point1 or end_point2. for (EndPoint *end_point : end_points_update) { size_t this_idx = end_point - &end_points.front(); // Find the closest point to this end_point, which lies on a different extrusion path (filtered by the filter lambda). size_t next_idx = find_closest_point(kdtree, end_point->pos, [&end_points, &equivalent_chain, this_idx](size_t idx) { assert(end_points[this_idx].edge_out == nullptr); assert(end_points[this_idx].chain_id == 0); if ((idx ^ this_idx) <= 1 || end_points[idx].chain_id != 0) // Points of the same segment shall not be connected, // cannot connect to an already connected point (ideally those would be removed from the KD tree, but the update is difficult). return false; size_t chain1 = equivalent_chain(end_points[this_idx ^ 1].chain_id); size_t chain2 = equivalent_chain(end_points[idx ^ 1].chain_id); return chain1 != chain2 || chain1 == 0; }); assert(next_idx != kdtree.npos); assert(next_idx < end_points.size()); EndPoint &end_point2 = end_points[next_idx]; end_point->edge_out = &end_point2; if (end_point2.edge_in == nullptr) end_point2.edge_in = end_point; else { assert(end_point->on_circle_empty()); assert(end_point2.edge_in->edge_out == &end_point2); end_point->on_circle_merge(end_point2.edge_in); } end_point->distance_out = (end_points[next_idx].pos - end_point->pos).squaredNorm(); // Update position of this end point in the queue based on the distance calculated at the line above. queue.update(end_point->heap_idx); //FIXME Remove the other end point from the KD tree. // As the KD tree update is expensive, do it only after some larger number of points is removed from the queue. assert(validate_graph_and_queue()); } end_points_update.clear(); } assert(queue.size() == (first_point == nullptr) ? 1 : 2); // Now interconnect pairs of segments into a chain. assert(first_point != nullptr); do { size_t first_point_id = first_point - &end_points.front(); size_t extrusion_entity_id = first_point_id >> 1; EndPoint *second_point = &end_points[first_point_id ^ 1]; ExtrusionEntity *extrusion_entity = entities[extrusion_entity_id]; out.emplace_back(extrusion_entity_id, extrusion_entity->can_reverse() && (first_point_id & 1)); first_point = second_point->edge_out; } while (first_point != nullptr); } assert(out.size() == entities.size()); return out; } } // namespace Slic3r