#include "Layer.hpp" #include "BridgeDetector.hpp" #include "ClipperUtils.hpp" #include "PerimeterGenerator.hpp" #include "Print.hpp" #include "Surface.hpp" namespace Slic3r { LayerRegion::LayerRegion(Layer *layer, PrintRegion *region) : _layer(layer), _region(region) { } LayerRegion::~LayerRegion() { } Layer* LayerRegion::layer() { return this->_layer; } PrintRegion* LayerRegion::region() { return this->_region; } Flow LayerRegion::flow(FlowRole role, bool bridge, double width) const { return this->_region->flow( role, this->_layer->height, bridge, this->_layer->id() == 0, width, *this->_layer->object() ); } void LayerRegion::merge_slices() { ExPolygons expp; // without safety offset, artifacts are generated (GH #2494) union_(this->slices, &expp, true); this->slices.surfaces.clear(); this->slices.surfaces.reserve(expp.size()); for (ExPolygons::const_iterator expoly = expp.begin(); expoly != expp.end(); ++expoly) this->slices.surfaces.push_back(Surface(stInternal, *expoly)); } void LayerRegion::make_perimeters(const SurfaceCollection &slices, SurfaceCollection* fill_surfaces) { this->perimeters.clear(); this->thin_fills.clear(); PerimeterGenerator g( // input: &slices, this->layer()->height, this->flow(frPerimeter), &this->region()->config, &this->layer()->object()->config, &this->layer()->object()->print()->config, // output: &this->perimeters, &this->thin_fills, fill_surfaces ); if (this->layer()->lower_layer != NULL) // Cummulative sum of polygons over all the regions. g.lower_slices = &this->layer()->lower_layer->slices; g.layer_id = this->layer()->id(); g.ext_perimeter_flow = this->flow(frExternalPerimeter); g.overhang_flow = this->region()->flow(frPerimeter, -1, true, false, -1, *this->layer()->object()); g.solid_infill_flow = this->flow(frSolidInfill); g.process(); } void LayerRegion::process_external_surfaces(const Layer* lower_layer) { const Surfaces &surfaces = this->fill_surfaces.surfaces; const double margin = scale_(EXTERNAL_INFILL_MARGIN); SurfaceCollection bottom; for (Surfaces::const_iterator surface = surfaces.begin(); surface != surfaces.end(); ++surface) { if (!surface->is_bottom()) continue; ExPolygons grown = offset_ex(surface->expolygon, +margin); /* detect bridge direction before merging grown surfaces otherwise adjacent bridges would get merged into a single one while they need different directions also, supply the original expolygon instead of the grown one, because in case of very thin (but still working) anchors, the grown expolygon would go beyond them */ double angle = -1; if (lower_layer != NULL) { BridgeDetector bd( surface->expolygon, lower_layer->slices, this->flow(frInfill, this->layer()->height, true).scaled_width() ); #ifdef SLIC3R_DEBUG printf("Processing bridge at layer %zu:\n", this->layer()->id()); #endif if (bd.detect_angle()) { angle = bd.angle; if (this->layer()->object()->config.support_material) { Polygons coverage = bd.coverage(); this->bridged.insert(this->bridged.end(), coverage.begin(), coverage.end()); this->unsupported_bridge_edges.append(bd.unsupported_edges()); } } } for (ExPolygons::const_iterator it = grown.begin(); it != grown.end(); ++it) { Surface s = *surface; s.expolygon = *it; s.bridge_angle = angle; bottom.surfaces.push_back(s); } } SurfaceCollection top; for (Surfaces::const_iterator surface = surfaces.begin(); surface != surfaces.end(); ++surface) { if (surface->surface_type != stTop) continue; // give priority to bottom surfaces ExPolygons grown = diff_ex( offset(surface->expolygon, +margin), (Polygons)bottom ); for (ExPolygons::const_iterator it = grown.begin(); it != grown.end(); ++it) { Surface s = *surface; s.expolygon = *it; top.surfaces.push_back(s); } } /* if we're slicing with no infill, we can't extend external surfaces over non-existent infill */ SurfaceCollection fill_boundaries; if (this->region()->config.fill_density.value > 0) { fill_boundaries = SurfaceCollection(surfaces); } else { for (Surfaces::const_iterator it = surfaces.begin(); it != surfaces.end(); ++it) { if (it->surface_type != stInternal) fill_boundaries.surfaces.push_back(*it); } } // intersect the grown surfaces with the actual fill boundaries SurfaceCollection new_surfaces; { // merge top and bottom in a single collection SurfaceCollection tb = top; tb.surfaces.insert(tb.surfaces.end(), bottom.surfaces.begin(), bottom.surfaces.end()); // group surfaces std::vector groups; tb.group(&groups); for (std::vector::const_iterator g = groups.begin(); g != groups.end(); ++g) { Polygons subject; for (SurfacesPtr::const_iterator s = g->begin(); s != g->end(); ++s) { Polygons pp = **s; subject.insert(subject.end(), pp.begin(), pp.end()); } ExPolygons expp = intersection_ex( subject, (Polygons)fill_boundaries, true // to ensure adjacent expolygons are unified ); for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) { Surface s = *g->front(); s.expolygon = *ex; new_surfaces.surfaces.push_back(s); } } } /* subtract the new top surfaces from the other non-top surfaces and re-add them */ { SurfaceCollection other; for (Surfaces::const_iterator s = surfaces.begin(); s != surfaces.end(); ++s) { if (s->surface_type != stTop && !s->is_bottom()) other.surfaces.push_back(*s); } // group surfaces std::vector groups; other.group(&groups); for (std::vector::const_iterator g = groups.begin(); g != groups.end(); ++g) { Polygons subject; for (SurfacesPtr::const_iterator s = g->begin(); s != g->end(); ++s) { Polygons pp = **s; subject.insert(subject.end(), pp.begin(), pp.end()); } ExPolygons expp = diff_ex( subject, (Polygons)new_surfaces ); for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) { Surface s = *g->front(); s.expolygon = *ex; new_surfaces.surfaces.push_back(s); } } } this->fill_surfaces = new_surfaces; } void LayerRegion::prepare_fill_surfaces() { /* Note: in order to make the psPrepareInfill step idempotent, we should never alter fill_surfaces boundaries on which our idempotency relies since that's the only meaningful information returned by psPerimeters. */ // if no solid layers are requested, turn top/bottom surfaces to internal if (this->region()->config.top_solid_layers == 0) { for (Surfaces::iterator surface = this->fill_surfaces.surfaces.begin(); surface != this->fill_surfaces.surfaces.end(); ++surface) { if (surface->surface_type == stTop) { if (this->layer()->object()->config.infill_only_where_needed) { surface->surface_type = stInternalVoid; } else { surface->surface_type = stInternal; } } } } if (this->region()->config.bottom_solid_layers == 0) { for (Surfaces::iterator surface = this->fill_surfaces.surfaces.begin(); surface != this->fill_surfaces.surfaces.end(); ++surface) { if (surface->surface_type == stBottom || surface->surface_type == stBottomBridge) surface->surface_type = stInternal; } } // turn too small internal regions into solid regions according to the user setting if (this->region()->config.fill_density.value > 0) { // scaling an area requires two calls! double min_area = scale_(scale_(this->region()->config.solid_infill_below_area.value)); for (Surfaces::iterator surface = this->fill_surfaces.surfaces.begin(); surface != this->fill_surfaces.surfaces.end(); ++surface) { if (surface->surface_type == stInternal && surface->area() <= min_area) surface->surface_type = stInternalSolid; } } } double LayerRegion::infill_area_threshold() const { double ss = this->flow(frSolidInfill).scaled_spacing(); return ss*ss; } }