// This is an excerpt of from the Clipper library by Angus Johnson, see the license below, // implementing a 64 x 64 -> 128bit multiply, and 128bit addition, subtraction and compare // operations, to be used with exact geometric predicates. // The code has been extended by Vojtech Bubnik to use 128 bit intrinsic types // and/or 64x64->128 intrinsic functions where possible. /******************************************************************************* * * * Author : Angus Johnson * * Version : 6.2.9 * * Date : 16 February 2015 * * Website : http://www.angusj.com * * Copyright : Angus Johnson 2010-2015 * * * * License: * * Use, modification & distribution is subject to Boost Software License Ver 1. * * http://www.boost.org/LICENSE_1_0.txt * * * * Attributions: * * The code in this library is an extension of Bala Vatti's clipping algorithm: * * "A generic solution to polygon clipping" * * Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. * * http://portal.acm.org/citation.cfm?id=129906 * * * * Computer graphics and geometric modeling: implementation and algorithms * * By Max K. Agoston * * Springer; 1 edition (January 4, 2005) * * http://books.google.com/books?q=vatti+clipping+agoston * * * * See also: * * "Polygon Offsetting by Computing Winding Numbers" * * Paper no. DETC2005-85513 pp. 565-575 * * ASME 2005 International Design Engineering Technical Conferences * * and Computers and Information in Engineering Conference (IDETC/CIE2005) * * September 24-28, 2005 , Long Beach, California, USA * * http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf * * * *******************************************************************************/ #ifndef SLIC3R_INT128_HPP #define SLIC3R_INT128_HPP // #define SLIC3R_DEBUG // Make assert active if SLIC3R_DEBUG #ifdef SLIC3R_DEBUG #undef NDEBUG #define DEBUG #define _DEBUG #undef assert #endif #include #include #include #if ! defined(_MSC_VER) && defined(__SIZEOF_INT128__) #define HAS_INTRINSIC_128_TYPE #endif #if defined(_MSC_VER) && defined(_WIN64) #include #pragma intrinsic(_mul128) #endif //------------------------------------------------------------------------------ // Int128 class (enables safe math on signed 64bit integers) // eg Int128 val1((int64_t)9223372036854775807); //ie 2^63 -1 // Int128 val2((int64_t)9223372036854775807); // Int128 val3 = val1 * val2; //------------------------------------------------------------------------------ class Int128 { #ifdef HAS_INTRINSIC_128_TYPE /******************************************** Using the intrinsic 128bit x 128bit multiply ************************************************/ public: __int128 value; Int128(int64_t lo = 0) : value(lo) {} Int128(const Int128 &v) : value(v.value) {} Int128& operator=(const int64_t &rhs) { value = rhs; return *this; } uint64_t lo() const { return uint64_t(value); } int64_t hi() const { return int64_t(value >> 64); } int sign() const { return (value > 0) - (value < 0); } bool operator==(const Int128 &rhs) const { return value == rhs.value; } bool operator!=(const Int128 &rhs) const { return value != rhs.value; } bool operator> (const Int128 &rhs) const { return value > rhs.value; } bool operator< (const Int128 &rhs) const { return value < rhs.value; } bool operator>=(const Int128 &rhs) const { return value >= rhs.value; } bool operator<=(const Int128 &rhs) const { return value <= rhs.value; } Int128& operator+=(const Int128 &rhs) { value += rhs.value; return *this; } Int128 operator+ (const Int128 &rhs) const { return Int128(value + rhs.value); } Int128& operator-=(const Int128 &rhs) { value -= rhs.value; return *this; } Int128 operator -(const Int128 &rhs) const { return Int128(value - rhs.value); } Int128 operator -() const { return Int128(- value); } operator double() const { return double(value); } static inline Int128 multiply(int64_t lhs, int64_t rhs) { return Int128(__int128(lhs) * __int128(rhs)); } // Evaluate signum of a 2x2 determinant. static int sign_determinant_2x2(int64_t a11, int64_t a12, int64_t a21, int64_t a22) { __int128 det = __int128(a11) * __int128(a22) - __int128(a12) * __int128(a21); return (det > 0) - (det < 0); } // Compare two rational numbers. static int compare_rationals(int64_t p1, int64_t q1, int64_t p2, int64_t q2) { int invert = ((q1 < 0) == (q2 < 0)) ? 1 : -1; __int128 det = __int128(p1) * __int128(q2) - __int128(p2) * __int128(q1); return ((det > 0) - (det < 0)) * invert; } #else /* HAS_INTRINSIC_128_TYPE */ /******************************************** Splitting the 128bit number into two 64bit words *********************************************/ Int128(int64_t lo = 0) : m_lo((uint64_t)lo), m_hi((lo < 0) ? -1 : 0) {} Int128(const Int128 &val) : m_lo(val.m_lo), m_hi(val.m_hi) {} Int128(const int64_t& hi, const uint64_t& lo) : m_lo(lo), m_hi(hi) {} Int128& operator = (const int64_t &val) { m_lo = (uint64_t)val; m_hi = (val < 0) ? -1 : 0; return *this; } uint64_t lo() const { return m_lo; } int64_t hi() const { return m_hi; } int sign() const { return (m_hi == 0) ? (m_lo > 0) : (m_hi > 0) - (m_hi < 0); } bool operator == (const Int128 &val) const { return m_hi == val.m_hi && m_lo == val.m_lo; } bool operator != (const Int128 &val) const { return ! (*this == val); } bool operator > (const Int128 &val) const { return (m_hi == val.m_hi) ? m_lo > val.m_lo : m_hi > val.m_hi; } bool operator < (const Int128 &val) const { return (m_hi == val.m_hi) ? m_lo < val.m_lo : m_hi < val.m_hi; } bool operator >= (const Int128 &val) const { return ! (*this < val); } bool operator <= (const Int128 &val) const { return ! (*this > val); } Int128& operator += (const Int128 &rhs) { m_hi += rhs.m_hi; m_lo += rhs.m_lo; if (m_lo < rhs.m_lo) m_hi++; return *this; } Int128 operator + (const Int128 &rhs) const { Int128 result(*this); result+= rhs; return result; } Int128& operator -= (const Int128 &rhs) { *this += -rhs; return *this; } Int128 operator - (const Int128 &rhs) const { Int128 result(*this); result -= rhs; return result; } Int128 operator-() const { return (m_lo == 0) ? Int128(-m_hi, 0) : Int128(~m_hi, ~m_lo + 1); } operator double() const { const double shift64 = 18446744073709551616.0; //2^64 return (m_hi < 0) ? ((m_lo == 0) ? (double)m_hi * shift64 : -(double)(~m_lo + ~m_hi * shift64)) : (double)(m_lo + m_hi * shift64); } static inline Int128 multiply(int64_t lhs, int64_t rhs) { #if defined(_MSC_VER) && defined(_WIN64) // On Visual Studio 64bit, use the _mul128() intrinsic function. Int128 result; result.m_lo = (uint64_t)_mul128(lhs, rhs, &result.m_hi); return result; #else // This branch should only be executed in case there is neither __int16 type nor _mul128 intrinsic // function available. This is mostly on 32bit operating systems. // Use a pure C implementation of _mul128(). int negate = (lhs < 0) != (rhs < 0); if (lhs < 0) lhs = -lhs; uint64_t int1Hi = uint64_t(lhs) >> 32; uint64_t int1Lo = uint64_t(lhs & 0xFFFFFFFF); if (rhs < 0) rhs = -rhs; uint64_t int2Hi = uint64_t(rhs) >> 32; uint64_t int2Lo = uint64_t(rhs & 0xFFFFFFFF); //because the high (sign) bits in both int1Hi & int2Hi have been zeroed, //there's no risk of 64 bit overflow in the following assignment //(ie: $7FFFFFFF*$FFFFFFFF + $7FFFFFFF*$FFFFFFFF < 64bits) uint64_t a = int1Hi * int2Hi; uint64_t b = int1Lo * int2Lo; //Result = A shl 64 + C shl 32 + B ... uint64_t c = int1Hi * int2Lo + int1Lo * int2Hi; Int128 tmp; tmp.m_hi = int64_t(a + (c >> 32)); tmp.m_lo = int64_t(c << 32); tmp.m_lo += int64_t(b); if (tmp.m_lo < b) ++ tmp.m_hi; if (negate) tmp = - tmp; return tmp; #endif } // Evaluate signum of a 2x2 determinant. static int sign_determinant_2x2(int64_t a11, int64_t a12, int64_t a21, int64_t a22) { return (Int128::multiply(a11, a22) - Int128::multiply(a12, a21)).sign(); } // Compare two rational numbers. static int compare_rationals(int64_t p1, int64_t q1, int64_t p2, int64_t q2) { int invert = ((q1 < 0) == (q2 < 0)) ? 1 : -1; Int128 det = Int128::multiply(p1, q2) - Int128::multiply(p2, q1); return det.sign() * invert; } private: uint64_t m_lo; int64_t m_hi; #endif /* HAS_INTRINSIC_128_TYPE */ /******************************************** Common methods ************************************************/ public: // Evaluate signum of a 2x2 determinant, use a numeric filter to avoid 128 bit multiply if possible. static int sign_determinant_2x2_filtered(int64_t a11, int64_t a12, int64_t a21, int64_t a22) { // First try to calculate the determinant over the upper 31 bits. // Round p1, p2, q1, q2 to 31 bits. int64_t a11s = (a11 + (1 << 31)) >> 32; int64_t a12s = (a12 + (1 << 31)) >> 32; int64_t a21s = (a21 + (1 << 31)) >> 32; int64_t a22s = (a22 + (1 << 31)) >> 32; // Result fits 63 bits, it is an approximate of the determinant divided by 2^64. int64_t det = a11s * a22s - a12s * a21s; // Maximum absolute of the remainder of the exact determinant, divided by 2^64. int64_t err = ((std::abs(a11s) + std::abs(a12s) + std::abs(a21s) + std::abs(a22s)) << 1) + 1; assert(std::abs(det) <= err || ((det > 0) ? 1 : -1) == sign_determinant_2x2(a11, a12, a21, a22)); return (std::abs(det) > err) ? ((det > 0) ? 1 : -1) : sign_determinant_2x2(a11, a12, a21, a22); } // Compare two rational numbers, use a numeric filter to avoid 128 bit multiply if possible. static int compare_rationals_filtered(int64_t p1, int64_t q1, int64_t p2, int64_t q2) { // First try to calculate the determinant over the upper 31 bits. // Round p1, p2, q1, q2 to 31 bits. int invert = ((q1 < 0) == (q2 < 0)) ? 1 : -1; int64_t q1s = (q1 + (1 << 31)) >> 32; int64_t q2s = (q2 + (1 << 31)) >> 32; if (q1s != 0 && q2s != 0) { int64_t p1s = (p1 + (1 << 31)) >> 32; int64_t p2s = (p2 + (1 << 31)) >> 32; // Result fits 63 bits, it is an approximate of the determinant divided by 2^64. int64_t det = p1s * q2s - p2s * q1s; // Maximum absolute of the remainder of the exact determinant, divided by 2^64. int64_t err = ((std::abs(p1s) + std::abs(q1s) + std::abs(p2s) + std::abs(q2s)) << 1) + 1; assert(std::abs(det) <= err || ((det > 0) ? 1 : -1) * invert == compare_rationals(p1, q1, p2, q2)); if (std::abs(det) > err) return ((det > 0) ? 1 : -1) * invert; } return sign_determinant_2x2(p1, q1, p2, q2) * invert; } }; #endif // SLIC3R_INT128_HPP