#include "Geometry.hpp" #include "ClipperUtils.hpp" #include "ExPolygon.hpp" #include "Line.hpp" #include "PolylineCollection.hpp" #include "clipper.hpp" #include #include #include #include #include #include #include #include #include #ifdef SLIC3R_DEBUG #include "SVG.hpp" #endif #ifdef SLIC3R_DEBUG namespace boost { namespace polygon { // The following code for the visualization of the boost Voronoi diagram is based on: // // Boost.Polygon library voronoi_graphic_utils.hpp header file // Copyright Andrii Sydorchuk 2010-2012. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) template class voronoi_visual_utils { public: // Discretize parabolic Voronoi edge. // Parabolic Voronoi edges are always formed by one point and one segment // from the initial input set. // // Args: // point: input point. // segment: input segment. // max_dist: maximum discretization distance. // discretization: point discretization of the given Voronoi edge. // // Template arguments: // InCT: coordinate type of the input geometries (usually integer). // Point: point type, should model point concept. // Segment: segment type, should model segment concept. // // Important: // discretization should contain both edge endpoints initially. template class Point, template class Segment> static typename enable_if< typename gtl_and< typename gtl_if< typename is_point_concept< typename geometry_concept< Point >::type >::type >::type, typename gtl_if< typename is_segment_concept< typename geometry_concept< Segment >::type >::type >::type >::type, void >::type discretize( const Point& point, const Segment& segment, const CT max_dist, std::vector< Point >* discretization) { // Apply the linear transformation to move start point of the segment to // the point with coordinates (0, 0) and the direction of the segment to // coincide the positive direction of the x-axis. CT segm_vec_x = cast(x(high(segment))) - cast(x(low(segment))); CT segm_vec_y = cast(y(high(segment))) - cast(y(low(segment))); CT sqr_segment_length = segm_vec_x * segm_vec_x + segm_vec_y * segm_vec_y; // Compute x-coordinates of the endpoints of the edge // in the transformed space. CT projection_start = sqr_segment_length * get_point_projection((*discretization)[0], segment); CT projection_end = sqr_segment_length * get_point_projection((*discretization)[1], segment); // Compute parabola parameters in the transformed space. // Parabola has next representation: // f(x) = ((x-rot_x)^2 + rot_y^2) / (2.0*rot_y). CT point_vec_x = cast(x(point)) - cast(x(low(segment))); CT point_vec_y = cast(y(point)) - cast(y(low(segment))); CT rot_x = segm_vec_x * point_vec_x + segm_vec_y * point_vec_y; CT rot_y = segm_vec_x * point_vec_y - segm_vec_y * point_vec_x; // Save the last point. Point last_point = (*discretization)[1]; discretization->pop_back(); // Use stack to avoid recursion. std::stack point_stack; point_stack.push(projection_end); CT cur_x = projection_start; CT cur_y = parabola_y(cur_x, rot_x, rot_y); // Adjust max_dist parameter in the transformed space. const CT max_dist_transformed = max_dist * max_dist * sqr_segment_length; while (!point_stack.empty()) { CT new_x = point_stack.top(); CT new_y = parabola_y(new_x, rot_x, rot_y); // Compute coordinates of the point of the parabola that is // furthest from the current line segment. CT mid_x = (new_y - cur_y) / (new_x - cur_x) * rot_y + rot_x; CT mid_y = parabola_y(mid_x, rot_x, rot_y); // Compute maximum distance between the given parabolic arc // and line segment that discretize it. CT dist = (new_y - cur_y) * (mid_x - cur_x) - (new_x - cur_x) * (mid_y - cur_y); dist = dist * dist / ((new_y - cur_y) * (new_y - cur_y) + (new_x - cur_x) * (new_x - cur_x)); if (dist <= max_dist_transformed) { // Distance between parabola and line segment is less than max_dist. point_stack.pop(); CT inter_x = (segm_vec_x * new_x - segm_vec_y * new_y) / sqr_segment_length + cast(x(low(segment))); CT inter_y = (segm_vec_x * new_y + segm_vec_y * new_x) / sqr_segment_length + cast(y(low(segment))); discretization->push_back(Point(inter_x, inter_y)); cur_x = new_x; cur_y = new_y; } else { point_stack.push(mid_x); } } // Update last point. discretization->back() = last_point; } private: // Compute y(x) = ((x - a) * (x - a) + b * b) / (2 * b). static CT parabola_y(CT x, CT a, CT b) { return ((x - a) * (x - a) + b * b) / (b + b); } // Get normalized length of the distance between: // 1) point projection onto the segment // 2) start point of the segment // Return this length divided by the segment length. This is made to avoid // sqrt computation during transformation from the initial space to the // transformed one and vice versa. The assumption is made that projection of // the point lies between the start-point and endpoint of the segment. template class Point, template class Segment> static typename enable_if< typename gtl_and< typename gtl_if< typename is_point_concept< typename geometry_concept< Point >::type >::type >::type, typename gtl_if< typename is_segment_concept< typename geometry_concept< Segment >::type >::type >::type >::type, CT >::type get_point_projection( const Point& point, const Segment& segment) { CT segment_vec_x = cast(x(high(segment))) - cast(x(low(segment))); CT segment_vec_y = cast(y(high(segment))) - cast(y(low(segment))); CT point_vec_x = x(point) - cast(x(low(segment))); CT point_vec_y = y(point) - cast(y(low(segment))); CT sqr_segment_length = segment_vec_x * segment_vec_x + segment_vec_y * segment_vec_y; CT vec_dot = segment_vec_x * point_vec_x + segment_vec_y * point_vec_y; return vec_dot / sqr_segment_length; } template static CT cast(const InCT& value) { return static_cast(value); } }; } } // namespace boost::polygon #endif using namespace boost::polygon; // provides also high() and low() namespace Slic3r { namespace Geometry { static bool sort_points (Point a, Point b) { return (a.x < b.x) || (a.x == b.x && a.y < b.y); } /* This implementation is based on Andrew's monotone chain 2D convex hull algorithm */ Polygon convex_hull(Points points) { assert(points.size() >= 3); // sort input points std::sort(points.begin(), points.end(), sort_points); int n = points.size(), k = 0; Polygon hull; hull.points.resize(2*n); // Build lower hull for (int i = 0; i < n; i++) { while (k >= 2 && points[i].ccw(hull.points[k-2], hull.points[k-1]) <= 0) k--; hull.points[k++] = points[i]; } // Build upper hull for (int i = n-2, t = k+1; i >= 0; i--) { while (k >= t && points[i].ccw(hull.points[k-2], hull.points[k-1]) <= 0) k--; hull.points[k++] = points[i]; } hull.points.resize(k); assert( hull.points.front().coincides_with(hull.points.back()) ); hull.points.pop_back(); return hull; } Polygon convex_hull(const Polygons &polygons) { Points pp; for (Polygons::const_iterator p = polygons.begin(); p != polygons.end(); ++p) { pp.insert(pp.end(), p->points.begin(), p->points.end()); } return convex_hull(pp); } /* accepts an arrayref of points and returns a list of indices according to a nearest-neighbor walk */ void chained_path(const Points &points, std::vector &retval, Point start_near) { PointConstPtrs my_points; std::map indices; my_points.reserve(points.size()); for (Points::const_iterator it = points.begin(); it != points.end(); ++it) { my_points.push_back(&*it); indices[&*it] = it - points.begin(); } retval.reserve(points.size()); while (!my_points.empty()) { Points::size_type idx = start_near.nearest_point_index(my_points); start_near = *my_points[idx]; retval.push_back(indices[ my_points[idx] ]); my_points.erase(my_points.begin() + idx); } } void chained_path(const Points &points, std::vector &retval) { if (points.empty()) return; // can't call front() on empty vector chained_path(points, retval, points.front()); } /* retval and items must be different containers */ template void chained_path_items(Points &points, T &items, T &retval) { std::vector indices; chained_path(points, indices); for (std::vector::const_iterator it = indices.begin(); it != indices.end(); ++it) retval.push_back(items[*it]); } template void chained_path_items(Points &points, ClipperLib::PolyNodes &items, ClipperLib::PolyNodes &retval); bool directions_parallel(double angle1, double angle2, double max_diff) { double diff = fabs(angle1 - angle2); max_diff += EPSILON; return diff < max_diff || fabs(diff - PI) < max_diff; } template bool contains(const std::vector &vector, const Point &point) { for (typename std::vector::const_iterator it = vector.begin(); it != vector.end(); ++it) { if (it->contains(point)) return true; } return false; } template bool contains(const ExPolygons &vector, const Point &point); double rad2deg(double angle) { return angle / PI * 180.0; } double rad2deg_dir(double angle) { angle = (angle < PI) ? (-angle + PI/2.0) : (angle + PI/2.0); if (angle < 0) angle += PI; return rad2deg(angle); } double deg2rad(double angle) { return PI * angle / 180.0; } void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval) { Polygons pp; for (Polygons::const_iterator it = polygons.begin(); it != polygons.end(); ++it) { Polygon p = *it; p.points.push_back(p.points.front()); p.points = MultiPoint::_douglas_peucker(p.points, tolerance); p.points.pop_back(); pp.push_back(p); } Slic3r::simplify_polygons(pp, retval); } double linint(double value, double oldmin, double oldmax, double newmin, double newmax) { return (value - oldmin) * (newmax - newmin) / (oldmax - oldmin) + newmin; } #if 0 // Point with a weight, by which the points are sorted. // If the points have the same weight, sort them lexicographically by their positions. struct ArrangeItem { ArrangeItem() {} Pointf pos; coordf_t weight; bool operator<(const ArrangeItem &other) const { return weight < other.weight || ((weight == other.weight) && (pos.y < other.pos.y || (pos.y == other.pos.y && pos.x < other.pos.x))); } }; Pointfs arrange(size_t num_parts, const Pointf &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box) { // Use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm. const Pointf cell_size(part_size.x + gap, part_size.y + gap); const BoundingBoxf bed_bbox = (bed_bounding_box != NULL && bed_bounding_box->defined) ? *bed_bounding_box : // Bogus bed size, large enough not to trigger the unsufficient bed size error. BoundingBoxf( Pointf(0, 0), Pointf(cell_size.x * num_parts, cell_size.y * num_parts)); // This is how many cells we have available into which to put parts. size_t cellw = size_t(floor((bed_bbox.size().x + gap) / cell_size.x)); size_t cellh = size_t(floor((bed_bbox.size().y + gap) / cell_size.y)); if (num_parts > cellw * cellh) CONFESS(PRINTF_ZU " parts won't fit in your print area!\n", num_parts); // Get a bounding box of cellw x cellh cells, centered at the center of the bed. Pointf cells_size(cellw * cell_size.x - gap, cellh * cell_size.y - gap); Pointf cells_offset(bed_bbox.center() - 0.5 * cells_size); BoundingBoxf cells_bb(cells_offset, cells_size + cells_offset); // List of cells, sorted by distance from center. std::vector cellsorder(cellw * cellh, ArrangeItem()); for (size_t j = 0; j < cellh; ++ j) { // Center of the jth row on the bed. coordf_t cy = linint(j + 0.5, 0., double(cellh), cells_bb.min.y, cells_bb.max.y); // Offset from the bed center. coordf_t yd = cells_bb.center().y - cy; for (size_t i = 0; i < cellw; ++ i) { // Center of the ith column on the bed. coordf_t cx = linint(i + 0.5, 0., double(cellw), cells_bb.min.x, cells_bb.max.x); // Offset from the bed center. coordf_t xd = cells_bb.center().x - cx; // Cell with a distance from the bed center. ArrangeItem &ci = cellsorder[j * cellw + i]; // Cell center ci.pos.x = cx; ci.pos.y = cy; // Square distance of the cell center to the bed center. ci.weight = xd * xd + yd * yd; } } // Sort the cells lexicographically by their distances to the bed center and left to right / bttom to top. std::sort(cellsorder.begin(), cellsorder.end()); cellsorder.erase(cellsorder.begin() + num_parts, cellsorder.end()); // Return the (left,top) corners of the cells. Pointfs positions; positions.reserve(num_parts); for (std::vector::const_iterator it = cellsorder.begin(); it != cellsorder.end(); ++ it) positions.push_back(Pointf(it->pos.x - 0.5 * part_size.x, it->pos.y - 0.5 * part_size.y)); return positions; } #else class ArrangeItem { public: Pointf pos; size_t index_x, index_y; coordf_t dist; }; class ArrangeItemIndex { public: coordf_t index; ArrangeItem item; ArrangeItemIndex(coordf_t _index, ArrangeItem _item) : index(_index), item(_item) {}; }; bool arrange(size_t total_parts, const Pointf &part_size, coordf_t dist, const BoundingBoxf* bb, Pointfs &positions) { positions.clear(); Pointf part = part_size; // use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm part.x += dist; part.y += dist; Pointf area; if (bb != NULL && bb->defined) { area = bb->size(); } else { // bogus area size, large enough not to trigger the error below area.x = part.x * total_parts; area.y = part.y * total_parts; } // this is how many cells we have available into which to put parts size_t cellw = floor((area.x + dist) / part.x); size_t cellh = floor((area.y + dist) / part.y); if (total_parts > (cellw * cellh)) return false; // total space used by cells Pointf cells(cellw * part.x, cellh * part.y); // bounding box of total space used by cells BoundingBoxf cells_bb; cells_bb.merge(Pointf(0,0)); // min cells_bb.merge(cells); // max // center bounding box to area cells_bb.translate( (area.x - cells.x) / 2, (area.y - cells.y) / 2 ); // list of cells, sorted by distance from center std::vector cellsorder; // work out distance for all cells, sort into list for (size_t i = 0; i <= cellw-1; ++i) { for (size_t j = 0; j <= cellh-1; ++j) { coordf_t cx = linint(i + 0.5, 0, cellw, cells_bb.min.x, cells_bb.max.x); coordf_t cy = linint(j + 0.5, 0, cellh, cells_bb.min.y, cells_bb.max.y); coordf_t xd = fabs((area.x / 2) - cx); coordf_t yd = fabs((area.y / 2) - cy); ArrangeItem c; c.pos.x = cx; c.pos.y = cy; c.index_x = i; c.index_y = j; c.dist = xd * xd + yd * yd - fabs((cellw / 2) - (i + 0.5)); // binary insertion sort { coordf_t index = c.dist; size_t low = 0; size_t high = cellsorder.size(); while (low < high) { size_t mid = (low + ((high - low) / 2)) | 0; coordf_t midval = cellsorder[mid].index; if (midval < index) { low = mid + 1; } else if (midval > index) { high = mid; } else { cellsorder.insert(cellsorder.begin() + mid, ArrangeItemIndex(index, c)); goto ENDSORT; } } cellsorder.insert(cellsorder.begin() + low, ArrangeItemIndex(index, c)); } ENDSORT: true; } } // the extents of cells actually used by objects coordf_t lx = 0; coordf_t ty = 0; coordf_t rx = 0; coordf_t by = 0; // now find cells actually used by objects, map out the extents so we can position correctly for (size_t i = 1; i <= total_parts; ++i) { ArrangeItemIndex c = cellsorder[i - 1]; coordf_t cx = c.item.index_x; coordf_t cy = c.item.index_y; if (i == 1) { lx = rx = cx; ty = by = cy; } else { if (cx > rx) rx = cx; if (cx < lx) lx = cx; if (cy > by) by = cy; if (cy < ty) ty = cy; } } // now we actually place objects into cells, positioned such that the left and bottom borders are at 0 for (size_t i = 1; i <= total_parts; ++i) { ArrangeItemIndex c = cellsorder.front(); cellsorder.erase(cellsorder.begin()); coordf_t cx = c.item.index_x - lx; coordf_t cy = c.item.index_y - ty; positions.push_back(Pointf(cx * part.x, cy * part.y)); } if (bb != NULL && bb->defined) { for (Pointfs::iterator p = positions.begin(); p != positions.end(); ++p) { p->x += bb->min.x; p->y += bb->min.y; } } return true; } #endif #ifdef SLIC3R_DEBUG // The following code for the visualization of the boost Voronoi diagram is based on: // // Boost.Polygon library voronoi_visualizer.cpp file // Copyright Andrii Sydorchuk 2010-2012. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) namespace Voronoi { namespace Internal { typedef double coordinate_type; typedef boost::polygon::point_data point_type; typedef boost::polygon::segment_data segment_type; typedef boost::polygon::rectangle_data rect_type; // typedef voronoi_builder VB; typedef boost::polygon::voronoi_diagram VD; typedef VD::cell_type cell_type; typedef VD::cell_type::source_index_type source_index_type; typedef VD::cell_type::source_category_type source_category_type; typedef VD::edge_type edge_type; typedef VD::cell_container_type cell_container_type; typedef VD::cell_container_type vertex_container_type; typedef VD::edge_container_type edge_container_type; typedef VD::const_cell_iterator const_cell_iterator; typedef VD::const_vertex_iterator const_vertex_iterator; typedef VD::const_edge_iterator const_edge_iterator; static const std::size_t EXTERNAL_COLOR = 1; inline void color_exterior(const VD::edge_type* edge) { if (edge->color() == EXTERNAL_COLOR) return; edge->color(EXTERNAL_COLOR); edge->twin()->color(EXTERNAL_COLOR); const VD::vertex_type* v = edge->vertex1(); if (v == NULL || !edge->is_primary()) return; v->color(EXTERNAL_COLOR); const VD::edge_type* e = v->incident_edge(); do { color_exterior(e); e = e->rot_next(); } while (e != v->incident_edge()); } inline point_type retrieve_point(const std::vector &segments, const cell_type& cell) { assert(cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT || cell.source_category() == SOURCE_CATEGORY_SEGMENT_END_POINT); return (cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT) ? low(segments[cell.source_index()]) : high(segments[cell.source_index()]); } inline void clip_infinite_edge(const std::vector &segments, const edge_type& edge, coordinate_type bbox_max_size, std::vector* clipped_edge) { const cell_type& cell1 = *edge.cell(); const cell_type& cell2 = *edge.twin()->cell(); point_type origin, direction; // Infinite edges could not be created by two segment sites. if (cell1.contains_point() && cell2.contains_point()) { point_type p1 = retrieve_point(segments, cell1); point_type p2 = retrieve_point(segments, cell2); origin.x((p1.x() + p2.x()) * 0.5); origin.y((p1.y() + p2.y()) * 0.5); direction.x(p1.y() - p2.y()); direction.y(p2.x() - p1.x()); } else { origin = cell1.contains_segment() ? retrieve_point(segments, cell2) : retrieve_point(segments, cell1); segment_type segment = cell1.contains_segment() ? segments[cell1.source_index()] : segments[cell2.source_index()]; coordinate_type dx = high(segment).x() - low(segment).x(); coordinate_type dy = high(segment).y() - low(segment).y(); if ((low(segment) == origin) ^ cell1.contains_point()) { direction.x(dy); direction.y(-dx); } else { direction.x(-dy); direction.y(dx); } } coordinate_type koef = bbox_max_size / (std::max)(fabs(direction.x()), fabs(direction.y())); if (edge.vertex0() == NULL) { clipped_edge->push_back(point_type( origin.x() - direction.x() * koef, origin.y() - direction.y() * koef)); } else { clipped_edge->push_back( point_type(edge.vertex0()->x(), edge.vertex0()->y())); } if (edge.vertex1() == NULL) { clipped_edge->push_back(point_type( origin.x() + direction.x() * koef, origin.y() + direction.y() * koef)); } else { clipped_edge->push_back( point_type(edge.vertex1()->x(), edge.vertex1()->y())); } } inline void sample_curved_edge(const std::vector &segments, const edge_type& edge, std::vector &sampled_edge, coordinate_type max_dist) { point_type point = edge.cell()->contains_point() ? retrieve_point(segments, *edge.cell()) : retrieve_point(segments, *edge.twin()->cell()); segment_type segment = edge.cell()->contains_point() ? segments[edge.twin()->cell()->source_index()] : segments[edge.cell()->source_index()]; ::boost::polygon::voronoi_visual_utils::discretize(point, segment, max_dist, &sampled_edge); } } /* namespace Internal */ } // namespace Voronoi static inline void dump_voronoi_to_svg(const Lines &lines, /* const */ voronoi_diagram &vd, const ThickPolylines *polylines, const char *path) { const double scale = 0.2; const std::string inputSegmentPointColor = "lightseagreen"; const coord_t inputSegmentPointRadius = coord_t(0.09 * scale / SCALING_FACTOR); const std::string inputSegmentColor = "lightseagreen"; const coord_t inputSegmentLineWidth = coord_t(0.03 * scale / SCALING_FACTOR); const std::string voronoiPointColor = "black"; const coord_t voronoiPointRadius = coord_t(0.06 * scale / SCALING_FACTOR); const std::string voronoiLineColorPrimary = "black"; const std::string voronoiLineColorSecondary = "green"; const std::string voronoiArcColor = "red"; const coord_t voronoiLineWidth = coord_t(0.02 * scale / SCALING_FACTOR); const bool internalEdgesOnly = false; const bool primaryEdgesOnly = false; BoundingBox bbox = BoundingBox(lines); bbox.min.x -= coord_t(1. / SCALING_FACTOR); bbox.min.y -= coord_t(1. / SCALING_FACTOR); bbox.max.x += coord_t(1. / SCALING_FACTOR); bbox.max.y += coord_t(1. / SCALING_FACTOR); ::Slic3r::SVG svg(path, bbox); if (polylines != NULL) svg.draw(*polylines, "lime", "lime", voronoiLineWidth); // bbox.scale(1.2); // For clipping of half-lines to some reasonable value. // The line will then be clipped by the SVG viewer anyway. const double bbox_dim_max = double(bbox.max.x - bbox.min.x) + double(bbox.max.y - bbox.min.y); // For the discretization of the Voronoi parabolic segments. const double discretization_step = 0.0005 * bbox_dim_max; // Make a copy of the input segments with the double type. std::vector segments; for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++ it) segments.push_back(Voronoi::Internal::segment_type( Voronoi::Internal::point_type(double(it->a.x), double(it->a.y)), Voronoi::Internal::point_type(double(it->b.x), double(it->b.y)))); // Color exterior edges. for (voronoi_diagram::const_edge_iterator it = vd.edges().begin(); it != vd.edges().end(); ++it) if (!it->is_finite()) Voronoi::Internal::color_exterior(&(*it)); // Draw the end points of the input polygon. for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it) { svg.draw(it->a, inputSegmentPointColor, inputSegmentPointRadius); svg.draw(it->b, inputSegmentPointColor, inputSegmentPointRadius); } // Draw the input polygon. for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it) svg.draw(Line(Point(coord_t(it->a.x), coord_t(it->a.y)), Point(coord_t(it->b.x), coord_t(it->b.y))), inputSegmentColor, inputSegmentLineWidth); #if 1 // Draw voronoi vertices. for (voronoi_diagram::const_vertex_iterator it = vd.vertices().begin(); it != vd.vertices().end(); ++it) if (! internalEdgesOnly || it->color() != Voronoi::Internal::EXTERNAL_COLOR) svg.draw(Point(coord_t(it->x()), coord_t(it->y())), voronoiPointColor, voronoiPointRadius); for (voronoi_diagram::const_edge_iterator it = vd.edges().begin(); it != vd.edges().end(); ++it) { if (primaryEdgesOnly && !it->is_primary()) continue; if (internalEdgesOnly && (it->color() == Voronoi::Internal::EXTERNAL_COLOR)) continue; std::vector samples; std::string color = voronoiLineColorPrimary; if (!it->is_finite()) { Voronoi::Internal::clip_infinite_edge(segments, *it, bbox_dim_max, &samples); if (! it->is_primary()) color = voronoiLineColorSecondary; } else { // Store both points of the segment into samples. sample_curved_edge will split the initial line // until the discretization_step is reached. samples.push_back(Voronoi::Internal::point_type(it->vertex0()->x(), it->vertex0()->y())); samples.push_back(Voronoi::Internal::point_type(it->vertex1()->x(), it->vertex1()->y())); if (it->is_curved()) { Voronoi::Internal::sample_curved_edge(segments, *it, samples, discretization_step); color = voronoiArcColor; } else if (! it->is_primary()) color = voronoiLineColorSecondary; } for (std::size_t i = 0; i + 1 < samples.size(); ++i) svg.draw(Line(Point(coord_t(samples[i].x()), coord_t(samples[i].y())), Point(coord_t(samples[i+1].x()), coord_t(samples[i+1].y()))), color, voronoiLineWidth); } #endif if (polylines != NULL) svg.draw(*polylines, "blue", voronoiLineWidth); svg.Close(); } #endif /* SLIC3R_DEBUG */ // Euclidian distance of two boost::polygon points. template T dist(const boost::polygon::point_data &p1,const boost::polygon::point_data &p2) { T dx = p2.x() - p1.x(); T dy = p2.y() - p1.y(); return sqrt(dx*dx+dy*dy); } // Find a foot point of "px" on a segment "seg". template inline point_type project_point_to_segment(segment_type &seg, point_type &px) { typedef typename point_type::coordinate_type T; const point_type &p0 = low(seg); const point_type &p1 = high(seg); const point_type dir(p1.x()-p0.x(), p1.y()-p0.y()); const point_type dproj(px.x()-p0.x(), px.y()-p0.y()); const T t = (dir.x()*dproj.x() + dir.y()*dproj.y()) / (dir.x()*dir.x() + dir.y()*dir.y()); assert(t >= T(-1e-6) && t <= T(1. + 1e-6)); return point_type(p0.x() + t*dir.x(), p0.y() + t*dir.y()); } template inline const typename VD::point_type retrieve_cell_point(const typename VD::cell_type& cell, const SEGMENTS &segments) { assert(cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT || cell.source_category() == SOURCE_CATEGORY_SEGMENT_END_POINT); return (cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT) ? low(segments[cell.source_index()]) : high(segments[cell.source_index()]); } template inline std::pair measure_edge_thickness(const VD &vd, const typename VD::edge_type& edge, const SEGMENTS &segments) { typedef typename VD::coord_type T; const typename VD::point_type pa(edge.vertex0()->x(), edge.vertex0()->y()); const typename VD::point_type pb(edge.vertex1()->x(), edge.vertex1()->y()); const typename VD::cell_type &cell1 = *edge.cell(); const typename VD::cell_type &cell2 = *edge.twin()->cell(); if (cell1.contains_segment()) { if (cell2.contains_segment()) { // Both cells contain a linear segment, the left / right cells are symmetric. // Project pa, pb to the left segment. const typename VD::segment_type segment1 = segments[cell1.source_index()]; const typename VD::point_type p1a = project_point_to_segment(segment1, pa); const typename VD::point_type p1b = project_point_to_segment(segment1, pb); return std::pair(T(2.)*dist(pa, p1a), T(2.)*dist(pb, p1b)); } else { // 1st cell contains a linear segment, 2nd cell contains a point. // The medial axis between the cells is a parabolic arc. // Project pa, pb to the left segment. const typename VD::point_type p2 = retrieve_cell_point(cell2, segments); return std::pair(T(2.)*dist(pa, p2), T(2.)*dist(pb, p2)); } } else if (cell2.contains_segment()) { // 1st cell contains a point, 2nd cell contains a linear segment. // The medial axis between the cells is a parabolic arc. const typename VD::point_type p1 = retrieve_cell_point(cell1, segments); return std::pair(T(2.)*dist(pa, p1), T(2.)*dist(pb, p1)); } else { // Both cells contain a point. The left / right regions are triangular and symmetric. const typename VD::point_type p1 = retrieve_cell_point(cell1, segments); return std::pair(T(2.)*dist(pa, p1), T(2.)*dist(pb, p1)); } } // Converts the Line instances of Lines vector to VD::segment_type. template class Lines2VDSegments { public: Lines2VDSegments(const Lines &alines) : lines(alines) {} typename VD::segment_type operator[](size_t idx) const { return typename VD::segment_type( typename VD::point_type(typename VD::coord_type(lines[idx].a.x), typename VD::coord_type(lines[idx].a.y)), typename VD::point_type(typename VD::coord_type(lines[idx].b.x), typename VD::coord_type(lines[idx].b.y))); } private: const Lines &lines; }; void MedialAxis::build(ThickPolylines* polylines) { construct_voronoi(this->lines.begin(), this->lines.end(), &this->vd); /* // DEBUG: dump all Voronoi edges { for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) { if (edge->is_infinite()) continue; ThickPolyline polyline; polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() )); polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() )); polylines->push_back(polyline); } return; } */ typedef const VD::vertex_type vert_t; typedef const VD::edge_type edge_t; // collect valid edges (i.e. prune those not belonging to MAT) // note: this keeps twins, so it inserts twice the number of the valid edges this->valid_edges.clear(); { std::set seen_edges; for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) { // if we only process segments representing closed loops, none if the // infinite edges (if any) would be part of our MAT anyway if (edge->is_secondary() || edge->is_infinite()) continue; // don't re-validate twins if (seen_edges.find(&*edge) != seen_edges.end()) continue; // TODO: is this needed? seen_edges.insert(&*edge); seen_edges.insert(edge->twin()); if (!this->validate_edge(&*edge)) continue; this->valid_edges.insert(&*edge); this->valid_edges.insert(edge->twin()); } } this->edges = this->valid_edges; // iterate through the valid edges to build polylines while (!this->edges.empty()) { const edge_t* edge = *this->edges.begin(); // start a polyline ThickPolyline polyline; polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() )); polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() )); polyline.width.push_back(this->thickness[edge].first); polyline.width.push_back(this->thickness[edge].second); // remove this edge and its twin from the available edges (void)this->edges.erase(edge); (void)this->edges.erase(edge->twin()); // get next points this->process_edge_neighbors(edge, &polyline); // get previous points { ThickPolyline rpolyline; this->process_edge_neighbors(edge->twin(), &rpolyline); polyline.points.insert(polyline.points.begin(), rpolyline.points.rbegin(), rpolyline.points.rend()); polyline.width.insert(polyline.width.begin(), rpolyline.width.rbegin(), rpolyline.width.rend()); polyline.endpoints.first = rpolyline.endpoints.second; } assert(polyline.width.size() == polyline.points.size()*2 - 2); // prevent loop endpoints from being extended if (polyline.first_point().coincides_with(polyline.last_point())) { polyline.endpoints.first = false; polyline.endpoints.second = false; } // append polyline to result polylines->push_back(polyline); } #ifdef SLIC3R_DEBUG { static int iRun = 0; dump_voronoi_to_svg(this->lines, this->vd, polylines, debug_out_path("MedialAxis-%d.svg", iRun ++).c_str()); printf("Thick lines: "); for (ThickPolylines::const_iterator it = polylines->begin(); it != polylines->end(); ++ it) { ThickLines lines = it->thicklines(); for (ThickLines::const_iterator it2 = lines.begin(); it2 != lines.end(); ++ it2) { printf("%f,%f ", it2->a_width, it2->b_width); } } printf("\n"); } #endif /* SLIC3R_DEBUG */ } void MedialAxis::build(Polylines* polylines) { ThickPolylines tp; this->build(&tp); polylines->insert(polylines->end(), tp.begin(), tp.end()); } void MedialAxis::process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* polyline) { while (true) { // Since rot_next() works on the edge starting point but we want // to find neighbors on the ending point, we just swap edge with // its twin. const VD::edge_type* twin = edge->twin(); // count neighbors for this edge std::vector neighbors; for (const VD::edge_type* neighbor = twin->rot_next(); neighbor != twin; neighbor = neighbor->rot_next()) { if (this->valid_edges.count(neighbor) > 0) neighbors.push_back(neighbor); } // if we have a single neighbor then we can continue recursively if (neighbors.size() == 1) { const VD::edge_type* neighbor = neighbors.front(); // break if this is a closed loop if (this->edges.count(neighbor) == 0) return; Point new_point(neighbor->vertex1()->x(), neighbor->vertex1()->y()); polyline->points.push_back(new_point); polyline->width.push_back(this->thickness[neighbor].first); polyline->width.push_back(this->thickness[neighbor].second); (void)this->edges.erase(neighbor); (void)this->edges.erase(neighbor->twin()); edge = neighbor; } else if (neighbors.size() == 0) { polyline->endpoints.second = true; return; } else { // T-shaped or star-shaped joint return; } } } bool MedialAxis::validate_edge(const VD::edge_type* edge) { // construct the line representing this edge of the Voronoi diagram const Line line( Point( edge->vertex0()->x(), edge->vertex0()->y() ), Point( edge->vertex1()->x(), edge->vertex1()->y() ) ); // discard edge if it lies outside the supplied shape // this could maybe be optimized (checking inclusion of the endpoints // might give false positives as they might belong to the contour itself) if (this->expolygon != NULL) { if (line.a.coincides_with(line.b)) { // in this case, contains(line) returns a false positive if (!this->expolygon->contains(line.a)) return false; } else { if (!this->expolygon->contains(line)) return false; } } // retrieve the original line segments which generated the edge we're checking const VD::cell_type* cell_l = edge->cell(); const VD::cell_type* cell_r = edge->twin()->cell(); const Line &segment_l = this->retrieve_segment(cell_l); const Line &segment_r = this->retrieve_segment(cell_r); /* SVG svg("edge.svg"); svg.draw(*this->expolygon); svg.draw(line); svg.draw(segment_l, "red"); svg.draw(segment_r, "blue"); svg.Close(); */ /* Calculate thickness of the cross-section at both the endpoints of this edge. Our Voronoi edge is part of a CCW sequence going around its Voronoi cell located on the left side. (segment_l). This edge's twin goes around segment_r. Thus, segment_r is oriented in the same direction as our main edge, and segment_l is oriented in the same direction as our twin edge. We used to only consider the (half-)distances to segment_r, and that works whenever segment_l and segment_r are almost specular and facing. However, at curves they are staggered and they only face for a very little length (our very short edge represents such visibility). Both w0 and w1 can be calculated either towards cell_l or cell_r with equal results by Voronoi definition. When cell_l or cell_r don't refer to the segment but only to an endpoint, we calculate the distance to that endpoint instead. */ coordf_t w0 = cell_r->contains_segment() ? line.a.distance_to(segment_r)*2 : line.a.distance_to(this->retrieve_endpoint(cell_r))*2; coordf_t w1 = cell_l->contains_segment() ? line.b.distance_to(segment_l)*2 : line.b.distance_to(this->retrieve_endpoint(cell_l))*2; if (cell_l->contains_segment() && cell_r->contains_segment()) { // calculate the relative angle between the two boundary segments double angle = fabs(segment_r.orientation() - segment_l.orientation()); if (angle > PI) angle = 2*PI - angle; assert(angle >= 0 && angle <= PI); // fabs(angle) ranges from 0 (collinear, same direction) to PI (collinear, opposite direction) // we're interested only in segments close to the second case (facing segments) // so we allow some tolerance. // this filter ensures that we're dealing with a narrow/oriented area (longer than thick) // we don't run it on edges not generated by two segments (thus generated by one segment // and the endpoint of another segment), since their orientation would not be meaningful if (PI - angle > PI/8) { // angle is not narrow enough // only apply this filter to segments that are not too short otherwise their // angle could possibly be not meaningful if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON || line.length() >= this->min_width) return false; } } else { if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON) return false; } if (w0 < this->min_width && w1 < this->min_width) return false; if (w0 > this->max_width && w1 > this->max_width) return false; this->thickness[edge] = std::make_pair(w0, w1); this->thickness[edge->twin()] = std::make_pair(w1, w0); return true; } const Line& MedialAxis::retrieve_segment(const VD::cell_type* cell) const { return this->lines[cell->source_index()]; } const Point& MedialAxis::retrieve_endpoint(const VD::cell_type* cell) const { const Line& line = this->retrieve_segment(cell); if (cell->source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT) { return line.a; } else { return line.b; } } } }