#include "PointCloud.hpp" #include "libslic3r/Geometry.hpp" #include "libslic3r/Tesselate.hpp" #include namespace Slic3r { namespace branchingtree { std::optional find_merge_pt(const Vec3f &A, const Vec3f &B, float max_slope) { Vec3f Da = (B - A).normalized(), Db = -Da; auto [polar_da, azim_da] = Geometry::dir_to_spheric(Da); auto [polar_db, azim_db] = Geometry::dir_to_spheric(Db); polar_da = std::max(polar_da, float(PI) / 2.f + max_slope); polar_db = std::max(polar_db, float(PI) / 2.f + max_slope); Da = Geometry::spheric_to_dir(polar_da, azim_da); Db = Geometry::spheric_to_dir(polar_db, azim_db); // This formula is based on // https://stackoverflow.com/questions/27459080/given-two-points-and-two-direction-vectors-find-the-point-where-they-intersect double t1 = (A.z() * Db.x() + Db.z() * B.x() - B.z() * Db.x() - Db.z() * A.x()) / (Da.x() * Db.z() - Da.z() * Db.x()); if (std::isnan(t1) || std::abs(t1) < EPSILON) t1 = (A.z() * Db.y() + Db.z() * B.y() - B.z() * Db.y() - Db.z() * A.y()) / (Da.y() * Db.z() - Da.z() * Db.y()); Vec3f m1 = A + t1 * Da; double t2 = (m1.z() - B.z()) / Db.z(); return t1 >= 0. && t2 >= 0. ? m1 : std::optional{}; } void to_eigen_mesh(const indexed_triangle_set &its, Eigen::MatrixXd &V, Eigen::MatrixXi &F) { V.resize(its.vertices.size(), 3); F.resize(its.indices.size(), 3); for (unsigned int i = 0; i < its.indices.size(); ++i) F.row(i) = its.indices[i]; for (unsigned int i = 0; i < its.vertices.size(); ++i) V.row(i) = its.vertices[i].cast(); } std::vector sample_mesh(const indexed_triangle_set &its, double radius) { std::vector ret; double surface_area = 0.; for (const Vec3i &face : its.indices) { std::array tri = {its.vertices[face(0)], its.vertices[face(1)], its.vertices[face(2)]}; auto U = tri[1] - tri[0], V = tri[2] - tri[0]; surface_area += 0.5 * U.cross(V).norm(); } int N = surface_area / (PI * radius * radius); Eigen::MatrixXd B; Eigen::MatrixXi FI; Eigen::MatrixXd V; Eigen::MatrixXi F; to_eigen_mesh(its, V, F); igl::random_points_on_mesh(N, V, F, B, FI); ret.reserve(size_t(N)); for (int i = 0; i < FI.size(); i++) { int face_id = FI(i); if (face_id < 0 || face_id >= int(its.indices.size())) continue; Vec3i face = its.indices[face_id]; if (face(0) >= int(its.vertices.size()) || face(1) >= int(its.vertices.size()) || face(2) >= int(its.vertices.size())) continue; Vec3f c = B.row(i)(0) * its.vertices[face(0)] + B.row(i)(1) * its.vertices[face(1)] + B.row(i)(2) * its.vertices[face(2)]; ret.emplace_back(c); } return ret; } std::vector sample_bed(const ExPolygons &bed, float z, double radius) { std::vector ret; auto triangles = triangulate_expolygons_3d(bed, z); indexed_triangle_set its; its.vertices.reserve(triangles.size()); for (size_t i = 0; i < triangles.size(); i += 3) { its.vertices.emplace_back(triangles[i].cast()); its.vertices.emplace_back(triangles[i + 1].cast()); its.vertices.emplace_back(triangles[i + 2].cast()); its.indices.emplace_back(i, i + 1, i + 2); } return sample_mesh(its, radius); } PointCloud::PointCloud(const indexed_triangle_set &M, std::vector support_leafs, const Properties &props) : PointCloud{sample_mesh(M, props.sampling_radius()), sample_bed(props.bed_shape(), props.ground_level(), props.sampling_radius()), std::move(support_leafs), props} {} PointCloud::PointCloud(std::vector meshpts, std::vector bedpts, std::vector support_leafs, const Properties &props) : m_leafs{std::move(support_leafs)} , m_meshpoints{std::move(meshpts)} , m_bedpoints{std::move(bedpts)} , m_props{props} , cos2bridge_slope{std::cos(props.max_slope()) * std::abs(std::cos(props.max_slope()))} , MESHPTS_BEGIN{m_bedpoints.size()} , LEAFS_BEGIN{MESHPTS_BEGIN + m_meshpoints.size()} , JUNCTIONS_BEGIN{LEAFS_BEGIN + m_leafs.size()} , m_searchable_indices(JUNCTIONS_BEGIN, true) , m_queue_indices(JUNCTIONS_BEGIN, UNQUEUED) , m_reachable_cnt{JUNCTIONS_BEGIN} , m_ktree{CoordFn{this}, LEAFS_BEGIN} // Only for bed and mesh points { for (size_t i = 0; i < m_bedpoints.size(); ++i) m_bedpoints[i].id = int(i); for (size_t i = 0; i < m_meshpoints.size(); ++i) m_meshpoints[i].id = int(MESHPTS_BEGIN + i); for (size_t i = 0; i < m_leafs.size(); ++i) m_leafs[i].id = int(LEAFS_BEGIN + i); } float PointCloud::get_distance(const Vec3f &p, size_t node_id) const { auto t = get_type(node_id); auto ret = std::numeric_limits::infinity(); const auto &node = get(node_id); switch (t) { case MESH: case BED: { // Points of mesh or bed which are outside of the support cone of // 'pos' must be discarded. if (is_outside_support_cone(p, node.pos)) ret = std::numeric_limits::infinity(); else ret = (node.pos - p).norm(); break; } case LEAF: case JUNCTION:{ auto mergept = find_merge_pt(p, node.pos, m_props.max_slope()); double maxL2 = m_props.max_branch_length() * m_props.max_branch_length(); if (!mergept || mergept->z() < (m_props.ground_level() + 2 * node.Rmin)) ret = std::numeric_limits::infinity(); else if (double a = (node.pos - *mergept).squaredNorm(), b = (p - *mergept).squaredNorm(); a < maxL2 && b < maxL2) ret = std::sqrt(b); break; } case NONE: ; } // Setting the ret val to infinity will effectively discard this // connection of nodes. max_branch_length property is used here // to discard node=>node and node=>mesh connections longer than this // property. if (t != BED && ret > m_props.max_branch_length()) ret = std::numeric_limits::infinity(); return ret; } }} // namespace Slic3r::branchingtree