#include "Geometry.hpp" #include "ClipperUtils.hpp" #include "ExPolygon.hpp" #include "Line.hpp" #include "PolylineCollection.hpp" #include "clipper.hpp" #include #include #include #include #include #include #include #include #ifdef SLIC3R_DEBUG #include "SVG.hpp" #endif using namespace boost::polygon; // provides also high() and low() namespace Slic3r { namespace Geometry { static bool sort_points (Point a, Point b) { return (a.x < b.x) || (a.x == b.x && a.y < b.y); } /* This implementation is based on Andrew's monotone chain 2D convex hull algorithm */ Polygon convex_hull(Points points) { assert(points.size() >= 3); // sort input points std::sort(points.begin(), points.end(), sort_points); int n = points.size(), k = 0; Polygon hull; hull.points.resize(2*n); // Build lower hull for (int i = 0; i < n; i++) { while (k >= 2 && points[i].ccw(hull.points[k-2], hull.points[k-1]) <= 0) k--; hull.points[k++] = points[i]; } // Build upper hull for (int i = n-2, t = k+1; i >= 0; i--) { while (k >= t && points[i].ccw(hull.points[k-2], hull.points[k-1]) <= 0) k--; hull.points[k++] = points[i]; } hull.points.resize(k); assert( hull.points.front().coincides_with(hull.points.back()) ); hull.points.pop_back(); return hull; } Polygon convex_hull(const Polygons &polygons) { Points pp; for (Polygons::const_iterator p = polygons.begin(); p != polygons.end(); ++p) { pp.insert(pp.end(), p->points.begin(), p->points.end()); } return convex_hull(pp); } /* accepts an arrayref of points and returns a list of indices according to a nearest-neighbor walk */ void chained_path(const Points &points, std::vector &retval, Point start_near) { PointConstPtrs my_points; std::map indices; my_points.reserve(points.size()); for (Points::const_iterator it = points.begin(); it != points.end(); ++it) { my_points.push_back(&*it); indices[&*it] = it - points.begin(); } retval.reserve(points.size()); while (!my_points.empty()) { Points::size_type idx = start_near.nearest_point_index(my_points); start_near = *my_points[idx]; retval.push_back(indices[ my_points[idx] ]); my_points.erase(my_points.begin() + idx); } } void chained_path(const Points &points, std::vector &retval) { if (points.empty()) return; // can't call front() on empty vector chained_path(points, retval, points.front()); } /* retval and items must be different containers */ template void chained_path_items(Points &points, T &items, T &retval) { std::vector indices; chained_path(points, indices); for (std::vector::const_iterator it = indices.begin(); it != indices.end(); ++it) retval.push_back(items[*it]); } template void chained_path_items(Points &points, ClipperLib::PolyNodes &items, ClipperLib::PolyNodes &retval); bool directions_parallel(double angle1, double angle2, double max_diff) { double diff = fabs(angle1 - angle2); max_diff += EPSILON; return diff < max_diff || fabs(diff - PI) < max_diff; } template bool contains(const std::vector &vector, const Point &point) { for (typename std::vector::const_iterator it = vector.begin(); it != vector.end(); ++it) { if (it->contains(point)) return true; } return false; } template bool contains(const ExPolygons &vector, const Point &point); double rad2deg(double angle) { return angle / PI * 180.0; } double rad2deg_dir(double angle) { angle = (angle < PI) ? (-angle + PI/2.0) : (angle + PI/2.0); if (angle < 0) angle += PI; return rad2deg(angle); } double deg2rad(double angle) { return PI * angle / 180.0; } void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval) { Polygons pp; for (Polygons::const_iterator it = polygons.begin(); it != polygons.end(); ++it) { Polygon p = *it; p.points.push_back(p.points.front()); p.points = MultiPoint::_douglas_peucker(p.points, tolerance); p.points.pop_back(); pp.push_back(p); } Slic3r::simplify_polygons(pp, retval); } double linint(double value, double oldmin, double oldmax, double newmin, double newmax) { return (value - oldmin) * (newmax - newmin) / (oldmax - oldmin) + newmin; } Pointfs arrange(size_t total_parts, Pointf part, coordf_t dist, const BoundingBoxf* bb) { // use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm part.x += dist; part.y += dist; Pointf area; if (bb != NULL && bb->defined) { area = bb->size(); } else { // bogus area size, large enough not to trigger the error below area.x = part.x * total_parts; area.y = part.y * total_parts; } // this is how many cells we have available into which to put parts size_t cellw = floor((area.x + dist) / part.x); size_t cellh = floor((area.y + dist) / part.y); if (total_parts > (cellw * cellh)) CONFESS("%zu parts won't fit in your print area!\n", total_parts); // total space used by cells Pointf cells(cellw * part.x, cellh * part.y); // bounding box of total space used by cells BoundingBoxf cells_bb; cells_bb.merge(Pointf(0,0)); // min cells_bb.merge(cells); // max // center bounding box to area cells_bb.translate( (area.x - cells.x) / 2, (area.y - cells.y) / 2 ); // list of cells, sorted by distance from center std::vector cellsorder; // work out distance for all cells, sort into list for (size_t i = 0; i <= cellw-1; ++i) { for (size_t j = 0; j <= cellh-1; ++j) { coordf_t cx = linint(i + 0.5, 0, cellw, cells_bb.min.x, cells_bb.max.x); coordf_t cy = linint(j + 0.5, 0, cellh, cells_bb.min.y, cells_bb.max.y); coordf_t xd = fabs((area.x / 2) - cx); coordf_t yd = fabs((area.y / 2) - cy); ArrangeItem c; c.pos.x = cx; c.pos.y = cy; c.index_x = i; c.index_y = j; c.dist = xd * xd + yd * yd - fabs((cellw / 2) - (i + 0.5)); // binary insertion sort { coordf_t index = c.dist; size_t low = 0; size_t high = cellsorder.size(); while (low < high) { size_t mid = (low + ((high - low) / 2)) | 0; coordf_t midval = cellsorder[mid].index; if (midval < index) { low = mid + 1; } else if (midval > index) { high = mid; } else { cellsorder.insert(cellsorder.begin() + mid, ArrangeItemIndex(index, c)); goto ENDSORT; } } cellsorder.insert(cellsorder.begin() + low, ArrangeItemIndex(index, c)); } ENDSORT: true; } } // the extents of cells actually used by objects coordf_t lx = 0; coordf_t ty = 0; coordf_t rx = 0; coordf_t by = 0; // now find cells actually used by objects, map out the extents so we can position correctly for (size_t i = 1; i <= total_parts; ++i) { ArrangeItemIndex c = cellsorder[i - 1]; coordf_t cx = c.item.index_x; coordf_t cy = c.item.index_y; if (i == 1) { lx = rx = cx; ty = by = cy; } else { if (cx > rx) rx = cx; if (cx < lx) lx = cx; if (cy > by) by = cy; if (cy < ty) ty = cy; } } // now we actually place objects into cells, positioned such that the left and bottom borders are at 0 Pointfs positions; for (size_t i = 1; i <= total_parts; ++i) { ArrangeItemIndex c = cellsorder.front(); cellsorder.erase(cellsorder.begin()); coordf_t cx = c.item.index_x - lx; coordf_t cy = c.item.index_y - ty; positions.push_back(Pointf(cx * part.x, cy * part.y)); } if (bb != NULL && bb->defined) { for (Pointfs::iterator p = positions.begin(); p != positions.end(); ++p) { p->x += bb->min.x; p->y += bb->min.y; } } return positions; } void MedialAxis::build(ThickPolylines* polylines) { construct_voronoi(this->lines.begin(), this->lines.end(), &this->vd); /* // DEBUG: dump all Voronoi edges { for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) { if (edge->is_infinite()) continue; ThickPolyline polyline; polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() )); polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() )); polylines->push_back(polyline); } return; } */ typedef const VD::vertex_type vert_t; typedef const VD::edge_type edge_t; // collect valid edges (i.e. prune those not belonging to MAT) // note: this keeps twins, so it inserts twice the number of the valid edges this->valid_edges.clear(); { std::set seen_edges; for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) { // if we only process segments representing closed loops, none if the // infinite edges (if any) would be part of our MAT anyway if (edge->is_secondary() || edge->is_infinite()) continue; // don't re-validate twins if (seen_edges.find(&*edge) != seen_edges.end()) continue; seen_edges.insert(&*edge); seen_edges.insert(edge->twin()); if (!this->validate_edge(&*edge)) continue; this->valid_edges.insert(&*edge); this->valid_edges.insert(edge->twin()); } } this->edges = this->valid_edges; // iterate through the valid edges to build polylines while (!this->edges.empty()) { const edge_t* edge = *this->edges.begin(); // start a polyline ThickPolyline polyline; polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() )); polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() )); polyline.width.push_back(this->thickness[edge].first); polyline.width.push_back(this->thickness[edge].second); // remove this edge and its twin from the available edges (void)this->edges.erase(edge); (void)this->edges.erase(edge->twin()); // get next points this->process_edge_neighbors(edge, &polyline); // get previous points { ThickPolyline rpolyline; this->process_edge_neighbors(edge->twin(), &rpolyline); polyline.points.insert(polyline.points.begin(), rpolyline.points.rbegin(), rpolyline.points.rend()); polyline.width.insert(polyline.width.begin(), rpolyline.width.rbegin(), rpolyline.width.rend()); polyline.endpoints.first = rpolyline.endpoints.second; } assert(polyline.width.size() == polyline.points.size()*2 - 2); // prevent loop endpoints from being extended if (polyline.first_point().coincides_with(polyline.last_point())) { polyline.endpoints.first = false; polyline.endpoints.second = false; } // append polyline to result polylines->push_back(polyline); } } void MedialAxis::build(Polylines* polylines) { ThickPolylines tp; this->build(&tp); polylines->insert(polylines->end(), tp.begin(), tp.end()); } void MedialAxis::process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* polyline) { while (true) { // Since rot_next() works on the edge starting point but we want // to find neighbors on the ending point, we just swap edge with // its twin. const VD::edge_type* twin = edge->twin(); // count neighbors for this edge std::vector neighbors; for (const VD::edge_type* neighbor = twin->rot_next(); neighbor != twin; neighbor = neighbor->rot_next()) { if (this->valid_edges.count(neighbor) > 0) neighbors.push_back(neighbor); } // if we have a single neighbor then we can continue recursively if (neighbors.size() == 1) { const VD::edge_type* neighbor = neighbors.front(); // break if this is a closed loop if (this->edges.count(neighbor) == 0) return; Point new_point(neighbor->vertex1()->x(), neighbor->vertex1()->y()); polyline->points.push_back(new_point); polyline->width.push_back(this->thickness[neighbor].first); polyline->width.push_back(this->thickness[neighbor].second); (void)this->edges.erase(neighbor); (void)this->edges.erase(neighbor->twin()); edge = neighbor; } else if (neighbors.size() == 0) { polyline->endpoints.second = true; return; } else { // T-shaped or star-shaped joint return; } } } bool MedialAxis::validate_edge(const VD::edge_type* edge) { // construct the line representing this edge of the Voronoi diagram const Line line( Point( edge->vertex0()->x(), edge->vertex0()->y() ), Point( edge->vertex1()->x(), edge->vertex1()->y() ) ); // discard edge if it lies outside the supplied shape // this could maybe be optimized (checking inclusion of the endpoints // might give false positives as they might belong to the contour itself) if (this->expolygon != NULL) { if (line.a.coincides_with(line.b)) { // in this case, contains(line) returns a false positive if (!this->expolygon->contains(line.a)) return false; } else { if (!this->expolygon->contains(line)) return false; } } // retrieve the original line segments which generated the edge we're checking const VD::cell_type* cell1 = edge->cell(); const VD::cell_type* cell2 = edge->twin()->cell(); const Line &segment1 = this->retrieve_segment(cell1); const Line &segment2 = this->retrieve_segment(cell2); /* Calculate thickness of the section at both the endpoints of this edge. Our Voronoi edge is part of a CCW sequence going around its Voronoi cell (segment1). This edge's twin goes around segment2. Thus, segment2 is oriented in the same direction as our main edge, and segment1 is oriented in the same direction as our twin edge. We used to only consider the (half-)distances to segment2, and that works whenever segment1 and segment2 are almost specular and facing. However, at curves they are staggered and they only face for a very little length (such visibility actually coincides with our very short edge). This is why we calculate w0 and w1 this way. When cell1 or cell2 don't refer to the segment but only to an endpoint, we calculate the distance to that endpoint instead. */ coordf_t w0 = cell2->contains_segment() ? line.a.perp_distance_to(segment2)*2 : line.a.distance_to(this->retrieve_endpoint(cell2))*2; coordf_t w1 = cell1->contains_segment() ? line.b.perp_distance_to(segment1)*2 : line.b.distance_to(this->retrieve_endpoint(cell1))*2; // if this edge is the centerline for a very thin area, we might want to skip it // in case the area is too thin if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON) { if (cell1->contains_segment() && cell2->contains_segment()) { // calculate the relative angle between the two boundary segments double angle = fabs(segment2.orientation() - segment1.orientation()); // fabs(angle) ranges from 0 (collinear, same direction) to PI (collinear, opposite direction) // we're interested only in segments close to the second case (facing segments) // so we allow some tolerance. // this filter ensures that we're dealing with a narrow/oriented area (longer than thick) // we don't run it on edges not generated by two segments (thus generated by one segment // and the endpoint of another segment), since their orientation would not be meaningful if (fabs(angle - PI) > PI/5) return false; } else { return false; } } if (w0 < this->min_width && w1 < this->min_width) return false; if (w0 > this->max_width && w1 > this->max_width) return false; this->thickness[edge] = std::make_pair(w0, w1); this->thickness[edge->twin()] = std::make_pair(w1, w0); return true; } const Line& MedialAxis::retrieve_segment(const VD::cell_type* cell) const { return this->lines[cell->source_index()]; } const Point& MedialAxis::retrieve_endpoint(const VD::cell_type* cell) const { const Line& line = this->retrieve_segment(cell); if (cell->source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT) { return line.a; } else { return line.b; } } } }