package Slic3r::Layer::Region; use Moo; use Slic3r::ExtrusionPath ':roles'; use Slic3r::Geometry qw(PI scale chained_path_items points_coincide); use Slic3r::Geometry::Clipper qw(safety_offset union_ex diff_ex intersection_ex); use Slic3r::Surface ':types'; has 'layer' => ( is => 'ro', weak_ref => 1, required => 1, trigger => 1, handles => [qw(id slice_z print_z height flow)], ); has 'region' => (is => 'ro', required => 1, handles => [qw(extruders)]); has 'perimeter_flow' => (is => 'rw'); has 'infill_flow' => (is => 'rw'); has 'top_infill_flow' => (is => 'rw'); has 'infill_area_threshold' => (is => 'lazy'); has 'overhang_width' => (is => 'lazy'); # collection of spare segments generated by slicing the original geometry; # these need to be merged in continuos (closed) polylines has 'lines' => (is => 'rw', default => sub { [] }); # collection of surfaces generated by slicing the original geometry has 'slices' => (is => 'rw', default => sub { [] }); # collection of polygons or polylines representing thin walls contained # in the original geometry has 'thin_walls' => (is => 'rw', default => sub { [] }); # collection of polygons or polylines representing thin infill regions that # need to be filled with a medial axis has 'thin_fills' => (is => 'rw', default => sub { [] }); # collection of surfaces for infill generation has 'fill_surfaces' => (is => 'rw', default => sub { [] }); # ordered collection of extrusion paths/loops to build all perimeters has 'perimeters' => (is => 'rw', default => sub { [] }); # ordered collection of extrusion paths to fill surfaces has 'fills' => (is => 'rw', default => sub { [] }); sub BUILD { my $self = shift; $self->_update_flows; } sub _trigger_layer { my $self = shift; $self->_update_flows; } sub _update_flows { my $self = shift; return if !$self->region; if ($self->id == 0) { $self->perimeter_flow ($self->region->first_layer_flows->{perimeter} || $self->region->flows->{perimeter}); $self->infill_flow ($self->region->first_layer_flows->{infill} || $self->region->flows->{infill}); $self->top_infill_flow ($self->region->first_layer_flows->{top_infill} || $self->region->flows->{top_infill}); } else { $self->perimeter_flow($self->region->flows->{perimeter}); $self->infill_flow($self->region->flows->{infill}); $self->top_infill_flow($self->region->flows->{top_infill}); } } sub _build_overhang_width { my $self = shift; my $threshold_rad = PI/2 - atan2($self->perimeter_flow->width / $self->height / 2, 1); return scale($self->height * ((cos $threshold_rad) / (sin $threshold_rad))); } sub _build_infill_area_threshold { my $self = shift; return $self->infill_flow->scaled_spacing ** 2; } # build polylines from lines sub make_surfaces { my $self = shift; my ($loops) = @_; return if !@$loops; $self->slices([ _merge_loops($loops) ]); # detect thin walls by offsetting slices by half extrusion inwards { my $width = $self->perimeter_flow->scaled_width; my $outgrown = union_ex([ Slic3r::Geometry::Clipper::offset( [Slic3r::Geometry::Clipper::offset([ map @$_, map $_->expolygon, @{$self->slices} ], -$width)], +$width, ), ]); my $diff = diff_ex( [ map $_->p, @{$self->slices} ], [ map @$_, @$outgrown ], 1, ); $self->thin_walls([]); if (@$diff) { my $area_threshold = $self->perimeter_flow->scaled_spacing ** 2; @$diff = grep $_->area > ($area_threshold), @$diff; @{$self->thin_walls} = map $_->medial_axis($self->perimeter_flow->scaled_width), @$diff; Slic3r::debugf " %d thin walls detected\n", scalar(@{$self->thin_walls}) if @{$self->thin_walls}; } } if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output("surfaces.svg", polygons => [ map $_->contour, @{$self->slices} ], red_polygons => [ map $_->p, map @{$_->holes}, @{$self->slices} ], ); } } sub _merge_loops { my ($loops, $safety_offset) = @_; # Input loops are not suitable for evenodd nor nonzero fill types, as we might get # two consecutive concentric loops having the same winding order - and we have to # respect such order. In that case, evenodd would create wrong inversions, and nonzero # would ignore holes inside two concentric contours. # So we're ordering loops and collapse consecutive concentric loops having the same # winding order. # TODO: find a faster algorithm for this. my @loops = sort { $a->encloses_point($b->[0]) ? 0 : 1 } @$loops; # outer first $safety_offset //= scale 0.1; @loops = @{ safety_offset(\@loops, $safety_offset) }; my $expolygons = []; while (my $loop = shift @loops) { bless $loop, 'Slic3r::Polygon'; if ($loop->is_counter_clockwise) { $expolygons = union_ex([ $loop, map @$_, @$expolygons ]); } else { $expolygons = diff_ex([ map @$_, @$expolygons ], [$loop]); } } $expolygons = [ map $_->offset_ex(-$safety_offset), @$expolygons ]; Slic3r::debugf " %d surface(s) having %d holes detected from %d polylines\n", scalar(@$expolygons), scalar(map $_->holes, @$expolygons), scalar(@$loops); return map Slic3r::Surface->new(expolygon => $_, surface_type => S_TYPE_INTERNAL), @$expolygons; } sub make_perimeters { my $self = shift; my $perimeter_spacing = $self->perimeter_flow->scaled_spacing; my $infill_spacing = $self->infill_flow->scaled_spacing; my $gap_area_threshold = $self->perimeter_flow->scaled_width ** 2; # this array will hold one arrayref per original surface (island); # each item of this arrayref is an arrayref representing a depth (from outer # perimeters to inner); each item of this arrayref is an ExPolygon: # @perimeters = ( # [ # first island # [ Slic3r::ExPolygon, Slic3r::ExPolygon... ], #depth 0: outer loop # [ Slic3r::ExPolygon, Slic3r::ExPolygon... ], #depth 1: inner loop # ], # [ # second island # ... # ] # ) my @perimeters = (); # one item per depth; each item # organize islands using a nearest-neighbor search my @surfaces = @{chained_path_items([ map [ $_->contour->[0], $_ ], @{$self->slices}, ])}; $self->perimeters([]); $self->fill_surfaces([]); $self->thin_fills([]); # for each island: foreach my $surface (@surfaces) { my @last_offsets = ($surface->expolygon); # experimental hole compensation (see ArcCompensation in the RepRap wiki) if (0) { foreach my $hole ($last_offsets[0]->holes) { my $circumference = abs($hole->length); next unless $circumference <= &Slic3r::SMALL_PERIMETER_LENGTH; # this compensation only works for circular holes, while it would # overcompensate for hexagons and other shapes having straight edges. # so we require a minimum number of vertices. next unless $circumference / @$hole >= 3 * $self->perimeter_flow->scaled_width; # revert the compensation done in make_surfaces() and get the actual radius # of the hole my $radius = ($circumference / PI / 2) - $self->perimeter_flow->scaled_spacing/2; my $new_radius = ($self->perimeter_flow->scaled_width + sqrt(($self->perimeter_flow->scaled_width ** 2) + (4*($radius**2)))) / 2; # holes are always turned to contours, so reverse point order before and after $hole->reverse; my @offsetted = $hole->offset(+ ($new_radius - $radius)); # skip arc compensation when hole is not round (thus leads to multiple offsets) @$hole = map Slic3r::Point->new($_), @{ $offsetted[0] } if @offsetted == 1; $hole->reverse; } } my @gaps = (); # generate perimeters inwards (loop 0 is the external one) my $loop_number = $Slic3r::Config->perimeters + ($surface->additional_inner_perimeters || 0); push @perimeters, [] if $loop_number > 0; # do one more loop (<= instead of <) so that we can detect gaps even after the desired # number of perimeters has been generated for (my $loop = 0; $loop <= $loop_number; $loop++) { my $spacing = $perimeter_spacing; $spacing /= 2 if $loop == 0; # offsetting a polygon can result in one or many offset polygons my @new_offsets = (); foreach my $expolygon (@last_offsets) { my @offsets = @{union_ex([ Slic3r::Geometry::Clipper::offset( [Slic3r::Geometry::Clipper::offset($expolygon, -1.5*$spacing)], +0.5*$spacing, ), ])}; push @new_offsets, @offsets; # where the above check collapses the expolygon, then there's no room for an inner loop # and we can extract the gap for later processing my $diff = diff_ex( [ map @$_, $expolygon->offset_ex(-0.5*$spacing) ], # +2 on the offset here makes sure that Clipper float truncation # won't shrink the clip polygon to be smaller than intended. [ Slic3r::Geometry::Clipper::offset([map @$_, @offsets], +0.5*$spacing + 2) ], ); push @gaps, grep $_->area >= $gap_area_threshold, @$diff; } last if !@new_offsets || $loop == $loop_number; @last_offsets = @new_offsets; # sort loops before storing them @last_offsets = @{chained_path_items([ map [ $_->contour->[0], $_ ], @last_offsets, ])}; push @{ $perimeters[-1] }, [@last_offsets]; } # create one more offset to be used as boundary for fill { # we offset by half the perimeter spacing (to get to the actual infill boundary) # and then we offset back and forth by the infill spacing to only consider the # non-collapsing regions my @fill_boundaries = @{union_ex([ Slic3r::Geometry::Clipper::offset( [Slic3r::Geometry::Clipper::offset([ map @$_, @last_offsets ], -($perimeter_spacing/2 + $infill_spacing))], +$infill_spacing, ), ])}; $_->simplify(&Slic3r::SCALED_RESOLUTION) for @fill_boundaries; push @{ $self->fill_surfaces }, @fill_boundaries; } # fill gaps if ($Slic3r::Config->gap_fill_speed > 0 && $Slic3r::Config->fill_density > 0) { my $filler = Slic3r::Fill::Rectilinear->new(layer_id => $self->layer->id); my $w = $self->perimeter_flow->width; my @widths = (1.5 * $w, $w, 0.5 * $w); # worth trying 0.2 too? foreach my $width (@widths) { my $flow = $self->perimeter_flow->clone(width => $width); # extract the gaps having this width my @this_width = map $_->offset_ex(+0.5*$flow->scaled_width), map $_->noncollapsing_offset_ex(-0.5*$flow->scaled_width), @gaps; if (0) { # remember to re-enable t/dynamic.t # fill gaps using dynamic extrusion width, by treating them like thin polygons, # thus generating the skeleton and using it to fill them my %path_args = ( role => EXTR_ROLE_SOLIDFILL, flow_spacing => $flow->spacing, ); push @{ $self->thin_fills }, map { $_->isa('Slic3r::Polygon') ? (map $_->pack, Slic3r::ExtrusionLoop->new(polygon => $_, %path_args)->split_at_first_point) # we should keep these as loops : Slic3r::ExtrusionPath->pack(polyline => $_, %path_args), } map $_->medial_axis($flow->scaled_width), @this_width; Slic3r::debugf " %d gaps filled with extrusion width = %s\n", scalar @this_width, $width if @{ $self->thin_fills }; } else { # fill gaps using zigzag infill # since this is infill, we have to offset by half-extrusion width inwards my @infill = map $_->offset_ex(-0.5*$flow->scaled_width), @this_width; foreach my $expolygon (@infill) { my @paths = $filler->fill_surface( Slic3r::Surface->new(expolygon => $expolygon), density => 1, flow_spacing => $flow->spacing, ); my $params = shift @paths; push @{ $self->thin_fills }, map { $_->polyline->simplify($flow->scaled_width / 3); $_->pack; } map Slic3r::ExtrusionPath->new( polyline => Slic3r::Polyline->new(@$_), role => EXTR_ROLE_GAPFILL, height => $self->height, flow_spacing => $params->{flow_spacing}, ), @paths; } } # check what's left @gaps = @{diff_ex( [ map @$_, @gaps ], [ map @$_, @this_width ], )}; } } } # process one island (original surface) at time # islands are already sorted with a nearest-neighbor search foreach my $island (@perimeters) { # do holes starting from innermost one my @holes = (); my %is_external = (); # each item of @$island contains the expolygons having the same depth; # for each depth we build an arrayref containing all the holes my @hole_depths = map [ map $_->holes, @$_ ], @$island; # organize the outermost hole loops using a nearest-neighbor search @{$hole_depths[0]} = @{chained_path_items([ map [ $_->[0], $_ ], @{$hole_depths[0]}, ])}; # loop while we have spare holes CYCLE: while (map @$_, @hole_depths) { # remove first depth container if it contains no holes anymore shift @hole_depths while !@{$hole_depths[0]}; # take first available hole push @holes, shift @{$hole_depths[0]}; $is_external{$#holes} = 1; my $current_depth = 0; while (1) { $current_depth++; # look for the hole containing this one if any next CYCLE if !$hole_depths[$current_depth]; my $parent_hole; for (@{$hole_depths[$current_depth]}) { if ($_->encloses_point($holes[-1]->[0])) { $parent_hole = $_; last; } } next CYCLE if !$parent_hole; # look for other holes contained in such parent for (@{$hole_depths[$current_depth-1]}) { if ($parent_hole->encloses_point($_->[0])) { # we have a sibling, so let's move onto next iteration next CYCLE; } } push @holes, $parent_hole; @{$hole_depths[$current_depth]} = grep $_ ne $parent_hole, @{$hole_depths[$current_depth]}; } } # do holes, then contours starting from innermost one $self->_add_perimeter($holes[$_], $is_external{$_} ? EXTR_ROLE_EXTERNAL_PERIMETER : undef) for reverse 0 .. $#holes; for my $depth (reverse 0 .. $#$island) { my $role = $depth == $#$island ? EXTR_ROLE_CONTOUR_INTERNAL_PERIMETER : $depth == 0 ? EXTR_ROLE_EXTERNAL_PERIMETER : EXTR_ROLE_PERIMETER; $self->_add_perimeter($_, $role) for map $_->contour, @{$island->[$depth]}; } } # if brim will be printed, reverse the order of perimeters so that # we continue inwards after having finished the brim if ($self->layer->id == 0 && $Slic3r::Config->brim_width > 0) { @{$self->perimeters} = reverse @{$self->perimeters}; } # add thin walls as perimeters push @{ $self->perimeters }, Slic3r::ExtrusionPath::Collection->new(paths => [ map { Slic3r::ExtrusionPath->pack( polyline => ($_->isa('Slic3r::Polygon') ? $_->split_at_first_point : $_), role => EXTR_ROLE_EXTERNAL_PERIMETER, flow_spacing => $self->perimeter_flow->spacing, ); } @{ $self->thin_walls } ])->chained_path; } sub _add_perimeter { my $self = shift; my ($polygon, $role) = @_; return unless $polygon->is_printable($self->perimeter_flow->scaled_width); push @{ $self->perimeters }, Slic3r::ExtrusionLoop->pack( polygon => $polygon, role => ($role // EXTR_ROLE_PERIMETER), flow_spacing => $self->perimeter_flow->spacing, ); } sub prepare_fill_surfaces { my $self = shift; # if hollow object is requested, remove internal surfaces if ($Slic3r::Config->fill_density == 0) { @{$self->fill_surfaces} = grep $_->surface_type != S_TYPE_INTERNAL, @{$self->fill_surfaces}; } # if no solid layers are requested, turn top/bottom surfaces to internal if ($Slic3r::Config->top_solid_layers == 0) { $_->surface_type(S_TYPE_INTERNAL) for grep $_->surface_type == S_TYPE_TOP, @{$self->fill_surfaces}; } if ($Slic3r::Config->bottom_solid_layers == 0) { $_->surface_type(S_TYPE_INTERNAL) for grep $_->surface_type == S_TYPE_BOTTOM, @{$self->fill_surfaces}; } # turn too small internal regions into solid regions according to the user setting { my $min_area = scale scale $Slic3r::Config->solid_infill_below_area; # scaling an area requires two calls! my @small = grep $_->surface_type == S_TYPE_INTERNAL && $_->expolygon->contour->area <= $min_area, @{$self->fill_surfaces}; $_->surface_type(S_TYPE_INTERNALSOLID) for @small; Slic3r::debugf "identified %d small solid surfaces at layer %d\n", scalar(@small), $self->id if @small > 0; } } sub process_external_surfaces { my $self = shift; # enlarge top and bottom surfaces { # get all external surfaces my @top = grep $_->surface_type == S_TYPE_TOP, @{$self->fill_surfaces}; my @bottom = grep $_->surface_type == S_TYPE_BOTTOM, @{$self->fill_surfaces}; # offset them and intersect the results with the actual fill boundaries my $margin = scale 3; # TODO: ensure this is greater than the total thickness of the perimeters @top = @{intersection_ex( [ Slic3r::Geometry::Clipper::offset([ map $_->p, @top ], +$margin) ], [ map $_->p, @{$self->fill_surfaces} ], undef, 1, # to ensure adjacent expolygons are unified )}; @bottom = @{intersection_ex( [ Slic3r::Geometry::Clipper::offset([ map $_->p, @bottom ], +$margin) ], [ map $_->p, @{$self->fill_surfaces} ], undef, 1, # to ensure adjacent expolygons are unified )}; # give priority to bottom surfaces @top = @{diff_ex( [ map @$_, @top ], [ map @$_, @bottom ], )}; # generate new surfaces my @new_surfaces = (); push @new_surfaces, map Slic3r::Surface->new( expolygon => $_, surface_type => S_TYPE_TOP, ), @top; push @new_surfaces, map Slic3r::Surface->new( expolygon => $_, surface_type => S_TYPE_BOTTOM, ), @bottom; # subtract the new top surfaces from the other non-top surfaces and re-add them my @other = grep $_->surface_type != S_TYPE_TOP && $_->surface_type != S_TYPE_BOTTOM, @{$self->fill_surfaces}; foreach my $group (Slic3r::Surface->group(@other)) { push @new_surfaces, map Slic3r::Surface->new( expolygon => $_, surface_type => $group->[0]->surface_type, ), @{diff_ex( [ map $_->p, @$group ], [ map $_->p, @new_surfaces ], )}; } @{$self->fill_surfaces} = @new_surfaces; } # detect bridge direction (skip bottom layer) if ($self->id > 0) { my @bottom = grep $_->surface_type == S_TYPE_BOTTOM, @{$self->fill_surfaces}; # surfaces my @lower = @{$self->layer->object->layers->[ $self->id - 1 ]->slices}; # expolygons foreach my $surface (@bottom) { # detect what edges lie on lower slices my @edges = (); # polylines foreach my $lower (@lower) { # turn bridge contour and holes into polylines and then clip them # with each lower slice's contour my @clipped = map $_->split_at_first_point->clip_with_polygon($lower->contour), @{$surface->expolygon}; if (@clipped == 2) { # If the split_at_first_point() call above happens to split the polygon inside the clipping area # we would get two consecutive polylines instead of a single one, so we use this ugly hack to # recombine them back into a single one in order to trigger the @edges == 2 logic below. # This needs to be replaced with something way better. if (points_coincide($clipped[0][0], $clipped[-1][-1])) { @clipped = (Slic3r::Polyline->new(@{$clipped[-1]}, @{$clipped[0]})); } if (points_coincide($clipped[-1][0], $clipped[0][-1])) { @clipped = (Slic3r::Polyline->new(@{$clipped[0]}, @{$clipped[1]})); } } push @edges, @clipped; } Slic3r::debugf "Found bridge on layer %d with %d support(s)\n", $self->id, scalar(@edges); next if !@edges; my $bridge_angle = undef; if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output("bridge.svg", polygons => [ $surface->p ], red_polygons => [ map @$_, @lower ], polylines => [ @edges ], ); } if (@edges == 2) { my @chords = map Slic3r::Line->new($_->[0], $_->[-1]), @edges; my @midpoints = map $_->midpoint, @chords; my $line_between_midpoints = Slic3r::Line->new(@midpoints); $bridge_angle = Slic3r::Geometry::rad2deg_dir($line_between_midpoints->direction); } elsif (@edges == 1) { # TODO: this case includes both U-shaped bridges and plain overhangs; # we need a trapezoidation algorithm to detect the actual bridged area # and separate it from the overhang area. # in the mean time, we're treating as overhangs all cases where # our supporting edge is a straight line if (@{$edges[0]} > 2) { my $line = Slic3r::Line->new($edges[0]->[0], $edges[0]->[-1]); $bridge_angle = Slic3r::Geometry::rad2deg_dir($line->direction); } } elsif (@edges) { my $center = Slic3r::Geometry::bounding_box_center([ map @$_, @edges ]); my $x = my $y = 0; foreach my $point (map @$_, @edges) { my $line = Slic3r::Line->new($center, $point); my $dir = $line->direction; my $len = $line->length; $x += cos($dir) * $len; $y += sin($dir) * $len; } $bridge_angle = Slic3r::Geometry::rad2deg_dir(atan2($y, $x)); } Slic3r::debugf " Optimal infill angle of bridge on layer %d is %d degrees\n", $self->id, $bridge_angle if defined $bridge_angle; $surface->bridge_angle($bridge_angle); } } } 1;