#ifndef slic3r_ExtrusionEntity_hpp_ #define slic3r_ExtrusionEntity_hpp_ #include "libslic3r.h" #include "Polygon.hpp" #include "Polyline.hpp" #include namespace Slic3r { class ExPolygonCollection; class ExtrusionEntityCollection; class Extruder; // Each ExtrusionRole value identifies a distinct set of { extruder, speed } enum ExtrusionRole : uint8_t { erNone, erPerimeter, erExternalPerimeter, erOverhangPerimeter, erInternalInfill, erSolidInfill, erTopSolidInfill, erBridgeInfill, erGapFill, erSkirt, erSupportMaterial, erSupportMaterialInterface, erWipeTower, erCustom, // Extrusion role for a collection with multiple extrusion roles. erMixed, erCount }; // Special flags describing loop enum ExtrusionLoopRole { elrDefault, elrContourInternalPerimeter, elrSkirt, }; inline bool is_perimeter(ExtrusionRole role) { return role == erPerimeter || role == erExternalPerimeter || role == erOverhangPerimeter; } inline bool is_infill(ExtrusionRole role) { return role == erBridgeInfill || role == erInternalInfill || role == erSolidInfill || role == erTopSolidInfill; } inline bool is_solid_infill(ExtrusionRole role) { return role == erBridgeInfill || role == erSolidInfill || role == erTopSolidInfill; } inline bool is_bridge(ExtrusionRole role) { return role == erBridgeInfill || role == erOverhangPerimeter; } class ExtrusionEntity { public: virtual ExtrusionRole role() const = 0; virtual bool is_collection() const { return false; } virtual bool is_loop() const { return false; } virtual bool can_reverse() const { return true; } virtual ExtrusionEntity* clone() const = 0; // Create a new object, initialize it with this object using the move semantics. virtual ExtrusionEntity* clone_move() = 0; virtual ~ExtrusionEntity() {} virtual void reverse() = 0; virtual const Point& first_point() const = 0; virtual const Point& last_point() const = 0; // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width. // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps. virtual void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const = 0; // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing. // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps. // Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill. virtual void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const = 0; Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const { Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; } Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const { Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; } // Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm. virtual double min_mm3_per_mm() const = 0; virtual Polyline as_polyline() const = 0; virtual void collect_polylines(Polylines &dst) const = 0; virtual Polylines as_polylines() const { Polylines dst; this->collect_polylines(dst); return dst; } virtual double length() const = 0; virtual double total_volume() const = 0; static std::string role_to_string(ExtrusionRole role); }; typedef std::vector ExtrusionEntitiesPtr; class ExtrusionPath : public ExtrusionEntity { public: Polyline polyline; // Volumetric velocity. mm^3 of plastic per mm of linear head motion. Used by the G-code generator. double mm3_per_mm; // Width of the extrusion, used for visualization purposes. float width; // Height of the extrusion, used for visualization purposes. float height; ExtrusionPath(ExtrusionRole role) : mm3_per_mm(-1), width(-1), height(-1), m_role(role) {}; ExtrusionPath(ExtrusionRole role, double mm3_per_mm, float width, float height) : mm3_per_mm(mm3_per_mm), width(width), height(height), m_role(role) {}; ExtrusionPath(const ExtrusionPath& rhs) : polyline(rhs.polyline), mm3_per_mm(rhs.mm3_per_mm), width(rhs.width), height(rhs.height), m_role(rhs.m_role) {} ExtrusionPath(ExtrusionPath&& rhs) : polyline(std::move(rhs.polyline)), mm3_per_mm(rhs.mm3_per_mm), width(rhs.width), height(rhs.height), m_role(rhs.m_role) {} ExtrusionPath(const Polyline &polyline, const ExtrusionPath &rhs) : polyline(polyline), mm3_per_mm(rhs.mm3_per_mm), width(rhs.width), height(rhs.height), m_role(rhs.m_role) {} ExtrusionPath(Polyline &&polyline, const ExtrusionPath &rhs) : polyline(std::move(polyline)), mm3_per_mm(rhs.mm3_per_mm), width(rhs.width), height(rhs.height), m_role(rhs.m_role) {} ExtrusionPath& operator=(const ExtrusionPath& rhs) { m_role = rhs.m_role; this->mm3_per_mm = rhs.mm3_per_mm; this->width = rhs.width; this->height = rhs.height; this->polyline = rhs.polyline; return *this; } ExtrusionPath& operator=(ExtrusionPath&& rhs) { m_role = rhs.m_role; this->mm3_per_mm = rhs.mm3_per_mm; this->width = rhs.width; this->height = rhs.height; this->polyline = std::move(rhs.polyline); return *this; } ExtrusionEntity* clone() const override { return new ExtrusionPath(*this); } // Create a new object, initialize it with this object using the move semantics. ExtrusionEntity* clone_move() override { return new ExtrusionPath(std::move(*this)); } void reverse() override { this->polyline.reverse(); } const Point& first_point() const override { return this->polyline.points.front(); } const Point& last_point() const override { return this->polyline.points.back(); } size_t size() const { return this->polyline.size(); } bool empty() const { return this->polyline.empty(); } bool is_closed() const { return ! this->empty() && this->polyline.points.front() == this->polyline.points.back(); } // Produce a list of extrusion paths into retval by clipping this path by ExPolygonCollection. // Currently not used. void intersect_expolygons(const ExPolygonCollection &collection, ExtrusionEntityCollection* retval) const; // Produce a list of extrusion paths into retval by removing parts of this path by ExPolygonCollection. // Currently not used. void subtract_expolygons(const ExPolygonCollection &collection, ExtrusionEntityCollection* retval) const; void clip_end(double distance); void simplify(double tolerance); double length() const override; ExtrusionRole role() const override { return m_role; } // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width. // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps. void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const override; // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing. // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps. // Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill. void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const override; Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const { Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; } Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const { Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; } // Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm. double min_mm3_per_mm() const override { return this->mm3_per_mm; } Polyline as_polyline() const override { return this->polyline; } void collect_polylines(Polylines &dst) const override { if (! this->polyline.empty()) dst.emplace_back(this->polyline); } double total_volume() const override { return mm3_per_mm * unscale(length()); } private: void _inflate_collection(const Polylines &polylines, ExtrusionEntityCollection* collection) const; ExtrusionRole m_role; }; typedef std::vector ExtrusionPaths; // Single continuous extrusion path, possibly with varying extrusion thickness, extrusion height or bridging / non bridging. class ExtrusionMultiPath : public ExtrusionEntity { public: ExtrusionPaths paths; ExtrusionMultiPath() {} ExtrusionMultiPath(const ExtrusionMultiPath &rhs) : paths(rhs.paths) {} ExtrusionMultiPath(ExtrusionMultiPath &&rhs) : paths(std::move(rhs.paths)) {} ExtrusionMultiPath(const ExtrusionPaths &paths) : paths(paths) {} ExtrusionMultiPath(const ExtrusionPath &path) { this->paths.push_back(path); } ExtrusionMultiPath& operator=(const ExtrusionMultiPath &rhs) { this->paths = rhs.paths; return *this; } ExtrusionMultiPath& operator=(ExtrusionMultiPath &&rhs) { this->paths = std::move(rhs.paths); return *this; } bool is_loop() const override { return false; } bool can_reverse() const override { return true; } ExtrusionEntity* clone() const override { return new ExtrusionMultiPath(*this); } // Create a new object, initialize it with this object using the move semantics. ExtrusionEntity* clone_move() override { return new ExtrusionMultiPath(std::move(*this)); } void reverse() override; const Point& first_point() const override { return this->paths.front().polyline.points.front(); } const Point& last_point() const override { return this->paths.back().polyline.points.back(); } double length() const override; ExtrusionRole role() const override { return this->paths.empty() ? erNone : this->paths.front().role(); } // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width. // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps. void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const override; // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing. // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps. // Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill. void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const override; Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const { Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; } Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const { Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; } // Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm. double min_mm3_per_mm() const override; Polyline as_polyline() const override; void collect_polylines(Polylines &dst) const override { Polyline pl = this->as_polyline(); if (! pl.empty()) dst.emplace_back(std::move(pl)); } double total_volume() const override { double volume =0.; for (const auto& path : paths) volume += path.total_volume(); return volume; } }; // Single continuous extrusion loop, possibly with varying extrusion thickness, extrusion height or bridging / non bridging. class ExtrusionLoop : public ExtrusionEntity { public: ExtrusionPaths paths; ExtrusionLoop(ExtrusionLoopRole role = elrDefault) : m_loop_role(role) {} ExtrusionLoop(const ExtrusionPaths &paths, ExtrusionLoopRole role = elrDefault) : paths(paths), m_loop_role(role) {} ExtrusionLoop(ExtrusionPaths &&paths, ExtrusionLoopRole role = elrDefault) : paths(std::move(paths)), m_loop_role(role) {} ExtrusionLoop(const ExtrusionPath &path, ExtrusionLoopRole role = elrDefault) : m_loop_role(role) { this->paths.push_back(path); } ExtrusionLoop(const ExtrusionPath &&path, ExtrusionLoopRole role = elrDefault) : m_loop_role(role) { this->paths.emplace_back(std::move(path)); } bool is_loop() const override{ return true; } bool can_reverse() const override { return false; } ExtrusionEntity* clone() const override{ return new ExtrusionLoop (*this); } // Create a new object, initialize it with this object using the move semantics. ExtrusionEntity* clone_move() override { return new ExtrusionLoop(std::move(*this)); } bool make_clockwise(); bool make_counter_clockwise(); void reverse() override; const Point& first_point() const override { return this->paths.front().polyline.points.front(); } const Point& last_point() const override { assert(this->first_point() == this->paths.back().polyline.points.back()); return this->first_point(); } Polygon polygon() const; double length() const override; bool split_at_vertex(const Point &point); void split_at(const Point &point, bool prefer_non_overhang); void clip_end(double distance, ExtrusionPaths* paths) const; // Test, whether the point is extruded by a bridging flow. // This used to be used to avoid placing seams on overhangs, but now the EdgeGrid is used instead. bool has_overhang_point(const Point &point) const; ExtrusionRole role() const override { return this->paths.empty() ? erNone : this->paths.front().role(); } ExtrusionLoopRole loop_role() const { return m_loop_role; } // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width. // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps. void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const override; // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing. // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps. // Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill. void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const override; Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const { Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; } Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const { Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; } // Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm. double min_mm3_per_mm() const override; Polyline as_polyline() const override { return this->polygon().split_at_first_point(); } void collect_polylines(Polylines &dst) const override { Polyline pl = this->as_polyline(); if (! pl.empty()) dst.emplace_back(std::move(pl)); } double total_volume() const override { double volume =0.; for (const auto& path : paths) volume += path.total_volume(); return volume; } //static inline std::string role_to_string(ExtrusionLoopRole role); #ifndef NDEBUG bool validate() const { assert(this->first_point() == this->paths.back().polyline.points.back()); for (size_t i = 1; i < paths.size(); ++ i) assert(this->paths[i - 1].polyline.points.back() == this->paths[i].polyline.points.front()); return true; } #endif /* NDEBUG */ private: ExtrusionLoopRole m_loop_role; }; inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &polylines, ExtrusionRole role, double mm3_per_mm, float width, float height) { dst.reserve(dst.size() + polylines.size()); for (Polyline &polyline : polylines) if (polyline.is_valid()) { dst.push_back(ExtrusionPath(role, mm3_per_mm, width, height)); dst.back().polyline = polyline; } } inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &&polylines, ExtrusionRole role, double mm3_per_mm, float width, float height) { dst.reserve(dst.size() + polylines.size()); for (Polyline &polyline : polylines) if (polyline.is_valid()) { dst.push_back(ExtrusionPath(role, mm3_per_mm, width, height)); dst.back().polyline = std::move(polyline); } polylines.clear(); } inline void extrusion_entities_append_paths(ExtrusionEntitiesPtr &dst, Polylines &polylines, ExtrusionRole role, double mm3_per_mm, float width, float height) { dst.reserve(dst.size() + polylines.size()); for (Polyline &polyline : polylines) if (polyline.is_valid()) { ExtrusionPath *extrusion_path = new ExtrusionPath(role, mm3_per_mm, width, height); dst.push_back(extrusion_path); extrusion_path->polyline = polyline; } } inline void extrusion_entities_append_paths(ExtrusionEntitiesPtr &dst, Polylines &&polylines, ExtrusionRole role, double mm3_per_mm, float width, float height) { dst.reserve(dst.size() + polylines.size()); for (Polyline &polyline : polylines) if (polyline.is_valid()) { ExtrusionPath *extrusion_path = new ExtrusionPath(role, mm3_per_mm, width, height); dst.push_back(extrusion_path); extrusion_path->polyline = std::move(polyline); } polylines.clear(); } inline void extrusion_entities_append_loops(ExtrusionEntitiesPtr &dst, Polygons &&loops, ExtrusionRole role, double mm3_per_mm, float width, float height) { dst.reserve(dst.size() + loops.size()); for (Polygon &poly : loops) { if (poly.is_valid()) { ExtrusionPath path(role, mm3_per_mm, width, height); path.polyline.points = std::move(poly.points); path.polyline.points.push_back(path.polyline.points.front()); dst.emplace_back(new ExtrusionLoop(std::move(path))); } } loops.clear(); } } #endif