#include "Arrange.hpp" #include "BoundingBox.hpp" #include #include #include #include #include #include #include #include #if defined(_MSC_VER) && defined(__clang__) #define BOOST_NO_CXX17_HDR_STRING_VIEW #endif #include #include namespace libnest2d { #if !defined(_MSC_VER) && defined(__SIZEOF_INT128__) && !defined(__APPLE__) using LargeInt = __int128; #else using LargeInt = boost::multiprecision::int128_t; template<> struct _NumTag { using Type = ScalarTag; }; #endif template struct _NumTag> { using Type = RationalTag; }; namespace nfp { template struct NfpImpl { NfpResult operator()(const S &sh, const S &other) { return nfpConvexOnly>(sh, other); } }; } // namespace nfp } // namespace libnest2d namespace Slic3r { template, int...EigenArgs> inline constexpr Eigen::Matrix unscaled( const Slic3r::ClipperLib::IntPoint &v) noexcept { return Eigen::Matrix{unscaled(v.x()), unscaled(v.y())}; } namespace arrangement { using namespace libnest2d; // Get the libnest2d types for clipper backend using Item = _Item; using Box = _Box; using Circle = _Circle; using Segment = _Segment; using MultiPolygon = ExPolygons; // Summon the spatial indexing facilities from boost namespace bgi = boost::geometry::index; using SpatElement = std::pair; using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >; using ItemGroup = std::vector>; // A coefficient used in separating bigger items and smaller items. const double BIG_ITEM_TRESHOLD = 0.02; // Fill in the placer algorithm configuration with values carefully chosen for // Slic3r. template void fill_config(PConf& pcfg, const ArrangeParams ¶ms) { // Align the arranged pile into the center of the bin pcfg.alignment = PConf::Alignment::CENTER; // Start placing the items from the center of the print bed pcfg.starting_point = PConf::Alignment::CENTER; // TODO cannot use rotations until multiple objects of same geometry can // handle different rotations. if (params.allow_rotations) pcfg.rotations = {0., PI / 2., PI, 3. * PI / 2. }; else pcfg.rotations = {0.}; // The accuracy of optimization. // Goes from 0.0 to 1.0 and scales performance as well pcfg.accuracy = params.accuracy; // Allow parallel execution. pcfg.parallel = params.parallel; } // Apply penalty to object function result. This is used only when alignment // after arrange is explicitly disabled (PConfig::Alignment::DONT_ALIGN) // Also, this will only work well for Box shaped beds. static double fixed_overfit(const std::tuple& result, const Box &binbb) { double score = std::get<0>(result); Box pilebb = std::get<1>(result); Box fullbb = sl::boundingBox(pilebb, binbb); auto diff = double(fullbb.area()) - binbb.area(); if(diff > 0) score += diff; return score; } // A class encapsulating the libnest2d Nester class and extending it with other // management and spatial index structures for acceleration. template class AutoArranger { public: // Useful type shortcuts... using Placer = typename placers::_NofitPolyPlacer; using Selector = selections::_FirstFitSelection; using Packer = _Nester; using PConfig = typename Packer::PlacementConfig; using Distance = TCoord; protected: Packer m_pck; PConfig m_pconf; // Placement configuration TBin m_bin; double m_bin_area; #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable: 4244) #pragma warning(disable: 4267) #endif SpatIndex m_rtree; // spatial index for the normal (bigger) objects SpatIndex m_smallsrtree; // spatial index for only the smaller items #ifdef _MSC_VER #pragma warning(pop) #endif double m_norm; // A coefficient to scale distances MultiPolygon m_merged_pile; // The already merged pile (vector of items) Box m_pilebb; // The bounding box of the merged pile. ItemGroup m_remaining; // Remaining items ItemGroup m_items; // allready packed items size_t m_item_count = 0; // Number of all items to be packed template ArithmeticOnly norm(T val) { return double(val) / m_norm; } // This is "the" object function which is evaluated many times for each // vertex (decimated with the accuracy parameter) of each object. // Therefore it is upmost crucial for this function to be as efficient // as it possibly can be but at the same time, it has to provide // reasonable results. std::tuple objfunc(const Item &item, const Point &bincenter) { const double bin_area = m_bin_area; const SpatIndex& spatindex = m_rtree; const SpatIndex& smalls_spatindex = m_smallsrtree; // We will treat big items (compared to the print bed) differently auto isBig = [bin_area](double a) { return a/bin_area > BIG_ITEM_TRESHOLD ; }; // Candidate item bounding box auto ibb = item.boundingBox(); // Calculate the full bounding box of the pile with the candidate item auto fullbb = sl::boundingBox(m_pilebb, ibb); // The bounding box of the big items (they will accumulate in the center // of the pile Box bigbb; if(spatindex.empty()) bigbb = fullbb; else { auto boostbb = spatindex.bounds(); boost::geometry::convert(boostbb, bigbb); } // Will hold the resulting score double score = 0; // Density is the pack density: how big is the arranged pile double density = 0; // Distinction of cases for the arrangement scene enum e_cases { // This branch is for big items in a mixed (big and small) scene // OR for all items in a small-only scene. BIG_ITEM, // This branch is for the last big item in a mixed scene LAST_BIG_ITEM, // For small items in a mixed scene. SMALL_ITEM } compute_case; bool bigitems = isBig(item.area()) || spatindex.empty(); if(bigitems && !m_remaining.empty()) compute_case = BIG_ITEM; else if (bigitems && m_remaining.empty()) compute_case = LAST_BIG_ITEM; else compute_case = SMALL_ITEM; switch (compute_case) { case BIG_ITEM: { const Point& minc = ibb.minCorner(); // bottom left corner const Point& maxc = ibb.maxCorner(); // top right corner // top left and bottom right corners Point top_left{getX(minc), getY(maxc)}; Point bottom_right{getX(maxc), getY(minc)}; // Now the distance of the gravity center will be calculated to the // five anchor points and the smallest will be chosen. std::array dists; auto cc = fullbb.center(); // The gravity center dists[0] = pl::distance(minc, cc); dists[1] = pl::distance(maxc, cc); dists[2] = pl::distance(ibb.center(), cc); dists[3] = pl::distance(top_left, cc); dists[4] = pl::distance(bottom_right, cc); // The smalles distance from the arranged pile center: double dist = norm(*(std::min_element(dists.begin(), dists.end()))); double bindist = norm(pl::distance(ibb.center(), bincenter)); dist = 0.8 * dist + 0.2 * bindist; // Prepare a variable for the alignment score. // This will indicate: how well is the candidate item // aligned with its neighbors. We will check the alignment // with all neighbors and return the score for the best // alignment. So it is enough for the candidate to be // aligned with only one item. auto alignment_score = 1.0; auto query = bgi::intersects(ibb); auto& index = isBig(item.area()) ? spatindex : smalls_spatindex; // Query the spatial index for the neighbors std::vector result; result.reserve(index.size()); index.query(query, std::back_inserter(result)); // now get the score for the best alignment for(auto& e : result) { auto idx = e.second; Item& p = m_items[idx]; auto parea = p.area(); if(std::abs(1.0 - parea/item.area()) < 1e-6) { auto bb = sl::boundingBox(p.boundingBox(), ibb); auto bbarea = bb.area(); auto ascore = 1.0 - (item.area() + parea)/bbarea; if(ascore < alignment_score) alignment_score = ascore; } } density = std::sqrt(norm(fullbb.width()) * norm(fullbb.height())); double R = double(m_remaining.size()) / m_item_count; // The final mix of the score is the balance between the // distance from the full pile center, the pack density and // the alignment with the neighbors if (result.empty()) score = 0.50 * dist + 0.50 * density; else // Let the density matter more when fewer objects remain score = 0.50 * dist + (1.0 - R) * 0.20 * density + 0.30 * alignment_score; break; } case LAST_BIG_ITEM: { score = norm(pl::distance(ibb.center(), m_pilebb.center())); break; } case SMALL_ITEM: { // Here there are the small items that should be placed around the // already processed bigger items. // No need to play around with the anchor points, the center will be // just fine for small items score = norm(pl::distance(ibb.center(), bigbb.center())); break; } } return std::make_tuple(score, fullbb); } std::function get_objfn(); public: AutoArranger(const TBin & bin, const ArrangeParams ¶ms, std::function progressind, std::function stopcond) : m_pck(bin, params.min_obj_distance) , m_bin(bin) , m_bin_area(sl::area(bin)) , m_norm(std::sqrt(m_bin_area)) { fill_config(m_pconf, params); // Set up a callback that is called just before arranging starts // This functionality is provided by the Nester class (m_pack). m_pconf.before_packing = [this](const MultiPolygon& merged_pile, // merged pile const ItemGroup& items, // packed items const ItemGroup& remaining) // future items to be packed { m_items = items; m_merged_pile = merged_pile; m_remaining = remaining; m_pilebb = sl::boundingBox(merged_pile); m_rtree.clear(); m_smallsrtree.clear(); // We will treat big items (compared to the print bed) differently auto isBig = [this](double a) { return a / m_bin_area > BIG_ITEM_TRESHOLD ; }; for(unsigned idx = 0; idx < items.size(); ++idx) { Item& itm = items[idx]; if(isBig(itm.area())) m_rtree.insert({itm.boundingBox(), idx}); m_smallsrtree.insert({itm.boundingBox(), idx}); } }; m_pconf.object_function = get_objfn(); m_pconf.on_preload = [this](const ItemGroup &items, PConfig &cfg) { if (items.empty()) return; cfg.alignment = PConfig::Alignment::DONT_ALIGN; auto bb = sl::boundingBox(m_bin); auto bbcenter = bb.center(); cfg.object_function = [this, bb, bbcenter](const Item &item) { return fixed_overfit(objfunc(item, bbcenter), bb); }; }; auto on_packed = params.on_packed; if (progressind || on_packed) m_pck.progressIndicator([this, progressind, on_packed](unsigned rem) { if (progressind) progressind(rem); if (on_packed) { int last_bed = m_pck.lastPackedBinId(); if (last_bed >= 0) { Item &last_packed = m_pck.lastResult()[last_bed].back(); ArrangePolygon ap; ap.bed_idx = last_packed.binId(); ap.priority = last_packed.priority(); on_packed(ap); } } }); if (stopcond) m_pck.stopCondition(stopcond); m_pck.configure(m_pconf); } template inline void operator()(It from, It to) { m_rtree.clear(); m_item_count += size_t(to - from); m_pck.execute(from, to); m_item_count = 0; } PConfig& config() { return m_pconf; } const PConfig& config() const { return m_pconf; } inline void preload(std::vector& fixeditems) { for(unsigned idx = 0; idx < fixeditems.size(); ++idx) { Item& itm = fixeditems[idx]; itm.markAsFixedInBin(itm.binId()); } m_item_count += fixeditems.size(); } }; template<> std::function AutoArranger::get_objfn() { auto bincenter = m_bin.center(); return [this, bincenter](const Item &itm) { auto result = objfunc(itm, bincenter); double score = std::get<0>(result); auto& fullbb = std::get<1>(result); double miss = Placer::overfit(fullbb, m_bin); miss = miss > 0? miss : 0; score += miss * miss; return score; }; } template<> std::function AutoArranger::get_objfn() { auto bincenter = m_bin.center(); return [this, bincenter](const Item &item) { auto result = objfunc(item, bincenter); double score = std::get<0>(result); auto isBig = [this](const Item& itm) { return itm.area() / m_bin_area > BIG_ITEM_TRESHOLD ; }; if(isBig(item)) { auto mp = m_merged_pile; mp.push_back(item.transformedShape()); auto chull = sl::convexHull(mp); double miss = Placer::overfit(chull, m_bin); if(miss < 0) miss = 0; score += miss*miss; } return score; }; } // Specialization for a generalized polygon. // Warning: this is unfinished business. It may or may not work. template<> std::function AutoArranger::get_objfn() { auto bincenter = sl::boundingBox(m_bin).center(); return [this, bincenter](const Item &item) { return std::get<0>(objfunc(item, bincenter)); }; } template void remove_large_items(std::vector &items, Bin &&bin) { auto it = items.begin(); while (it != items.end()) sl::isInside(it->transformedShape(), bin) ? ++it : it = items.erase(it); } template Radians min_area_boundingbox_rotation(const S &sh) { return minAreaBoundingBox, boost::rational>(sh) .angleToX(); } template Radians fit_into_box_rotation(const S &sh, const _Box> &box) { return fitIntoBoxRotation, boost::rational>(sh, box); } template // Arrange for arbitrary bin type void _arrange( std::vector & shapes, std::vector & excludes, const BinT & bin, const ArrangeParams ¶ms, std::function progressfn, std::function stopfn) { // Integer ceiling the min distance from the bed perimeters coord_t md = params.min_obj_distance; md = md / 2 - params.min_bed_distance; auto corrected_bin = bin; sl::offset(corrected_bin, md); ArrangeParams mod_params = params; mod_params.min_obj_distance = 0; AutoArranger arranger{corrected_bin, mod_params, progressfn, stopfn}; auto infl = coord_t(std::ceil(params.min_obj_distance / 2.0)); for (Item& itm : shapes) itm.inflate(infl); for (Item& itm : excludes) itm.inflate(infl); remove_large_items(excludes, corrected_bin); // If there is something on the plate if (!excludes.empty()) arranger.preload(excludes); std::vector> inp; inp.reserve(shapes.size() + excludes.size()); for (auto &itm : shapes ) inp.emplace_back(itm); for (auto &itm : excludes) inp.emplace_back(itm); // Use the minimum bounding box rotation as a starting point. // TODO: This only works for convex hull. If we ever switch to concave // polygon nesting, a convex hull needs to be calculated. if (params.allow_rotations) { for (auto &itm : shapes) { itm.rotation(min_area_boundingbox_rotation(itm.rawShape())); // If the item is too big, try to find a rotation that makes it fit if constexpr (std::is_same_v) { auto bb = itm.boundingBox(); if (bb.width() >= bin.width() || bb.height() >= bin.height()) itm.rotate(fit_into_box_rotation(itm.transformedShape(), bin)); } } } if (sl::area(corrected_bin) > 0) arranger(inp.begin(), inp.end()); else { for (Item &itm : inp) itm.binId(BIN_ID_UNSET); } for (Item &itm : inp) itm.inflate(-infl); } inline Box to_nestbin(const BoundingBox &bb) { return Box{{bb.min(X), bb.min(Y)}, {bb.max(X), bb.max(Y)}};} inline Circle to_nestbin(const CircleBed &c) { return Circle({c.center()(0), c.center()(1)}, c.radius()); } inline ExPolygon to_nestbin(const Polygon &p) { return ExPolygon{p}; } inline Box to_nestbin(const InfiniteBed &bed) { return Box::infinite({bed.center.x(), bed.center.y()}); } inline coord_t width(const BoundingBox& box) { return box.max.x() - box.min.x(); } inline coord_t height(const BoundingBox& box) { return box.max.y() - box.min.y(); } inline double area(const BoundingBox& box) { return double(width(box)) * height(box); } inline double poly_area(const Points &pts) { return std::abs(Polygon::area(pts)); } inline double distance_to(const Point& p1, const Point& p2) { double dx = p2.x() - p1.x(); double dy = p2.y() - p1.y(); return std::sqrt(dx*dx + dy*dy); } static CircleBed to_circle(const Point ¢er, const Points& points) { std::vector vertex_distances; double avg_dist = 0; for (const Point& pt : points) { double distance = distance_to(center, pt); vertex_distances.push_back(distance); avg_dist += distance; } avg_dist /= vertex_distances.size(); CircleBed ret(center, avg_dist); for(auto el : vertex_distances) { if (std::abs(el - avg_dist) > 10 * SCALED_EPSILON) { ret = {}; break; } } return ret; } // Create Item from Arrangeable static void process_arrangeable(const ArrangePolygon &arrpoly, std::vector & outp) { Polygon p = arrpoly.poly.contour; const Vec2crd &offs = arrpoly.translation; double rotation = arrpoly.rotation; outp.emplace_back(std::move(p)); outp.back().rotation(rotation); outp.back().translation({offs.x(), offs.y()}); outp.back().binId(arrpoly.bed_idx); outp.back().priority(arrpoly.priority); } template auto call_with_bed(const Points &bed, Fn &&fn) { if (bed.empty()) return fn(InfiniteBed{}); else if (bed.size() == 1) return fn(InfiniteBed{bed.front()}); else { auto bb = BoundingBox(bed); CircleBed circ = to_circle(bb.center(), bed); auto parea = poly_area(bed); if ((1.0 - parea / area(bb)) < 1e-3) return fn(bb); else if (!std::isnan(circ.radius())) return fn(circ); else return fn(Polygon(bed)); } } template<> void arrange(ArrangePolygons & items, const ArrangePolygons &excludes, const Points & bed, const ArrangeParams & params) { call_with_bed(bed, [&](const auto &bin) { arrange(items, excludes, bin, params); }); } template void arrange(ArrangePolygons & arrangables, const ArrangePolygons &excludes, const BedT & bed, const ArrangeParams & params) { namespace clppr = Slic3r::ClipperLib; std::vector items, fixeditems; items.reserve(arrangables.size()); for (ArrangePolygon &arrangeable : arrangables) process_arrangeable(arrangeable, items); for (const ArrangePolygon &fixed: excludes) process_arrangeable(fixed, fixeditems); for (Item &itm : fixeditems) itm.inflate(scaled(-2. * EPSILON)); auto &cfn = params.stopcondition; auto &pri = params.progressind; _arrange(items, fixeditems, to_nestbin(bed), params, pri, cfn); for(size_t i = 0; i < items.size(); ++i) { Point tr = items[i].translation(); arrangables[i].translation = {coord_t(tr.x()), coord_t(tr.y())}; arrangables[i].rotation = items[i].rotation(); arrangables[i].bed_idx = items[i].binId(); } } template void arrange(ArrangePolygons &items, const ArrangePolygons &excludes, const BoundingBox &bed, const ArrangeParams ¶ms); template void arrange(ArrangePolygons &items, const ArrangePolygons &excludes, const CircleBed &bed, const ArrangeParams ¶ms); template void arrange(ArrangePolygons &items, const ArrangePolygons &excludes, const Polygon &bed, const ArrangeParams ¶ms); template void arrange(ArrangePolygons &items, const ArrangePolygons &excludes, const InfiniteBed &bed, const ArrangeParams ¶ms); } // namespace arr } // namespace Slic3r