package Slic3r::Fill::Rectilinear; use Moose; use constant epsilon => 1E-10; use constant PI => 4 * atan2(1, 1); use constant X1 => 0; use constant Y1 => 1; use constant X2 => 2; use constant Y2 => 3; use Math::Geometry::Planar; use XXX; sub make_fill { my $self = shift; my ($print, $layer) = @_; printf "Filling layer %d:\n", $layer->id; # let's alternate fill direction my @axes = $layer->id % 2 == 0 ? (0,1) : (1,0); printf " primary axis: %d\n", $axes[0]; foreach my $surface (@{ $layer->fill_surfaces }) { printf " Processing surface %s:\n", $surface->id; my $polygon = $surface->mgp_polygon; # rotate surface as needed if ($axes[0] == 1) { $polygon = $polygon->rotate(PI/2)->move($print->x_length, $print->y_length); } # force 100% density for external surfaces my $density = $surface->surface_type eq 'internal' ? $Slic3r::fill_density : 1; my $distance_between_lines = $Slic3r::flow_width / $Slic3r::resolution / $density; my $number_of_lines = ($axes[0] == 0 ? $print->x_length : $print->y_length) / $distance_between_lines; #printf "distance_between_lines = %f\n", $distance_between_lines; #printf "number_of_lines = %d\n", $number_of_lines; #printf "axes = %d, %d\n", @axes; # this arrayref will hold intersection points of the fill grid with surface segments my $points = [ map [], 0..$number_of_lines-1 ]; foreach my $line (map $self->_lines_from_mgp_points($_), @{ $polygon->polygons }) { # for a possible implementation of "infill in direction of bridges" # we should rotate $line so that primary axis is in detected direction; # then, generated extrusion paths should be rotated back to the original # coordinate system # find out the coordinates my @coordinates = map @$_, @$line; printf "Segment %d,%d - %d,%d\n", @coordinates; # get the extents of the segment along the primary axis my @line_c = sort ($coordinates[X1], $coordinates[X2]); for (my $c = $line_c[0]; $c <= $line_c[1]; $c += $distance_between_lines) { my $i = sprintf('%.0f', $c / $distance_between_lines) - 1; # if the segment is parallel to our ray, there will be two intersection points if ($line_c[0] == $line_c[1]) { printf " Segment is parallel!\n"; push @{ $points->[$i] }, $coordinates[Y1], $coordinates[Y2]; printf " intersections at %f (%d) = %f, %f\n", $c, $i, $points->[$i][-2], $points->[$i][-1]; } else { printf " Segment NOT parallel!\n"; # one point of intersection push @{ $points->[$i] }, $coordinates[Y1] + ($coordinates[Y2] - $coordinates[Y1]) * ($c - $coordinates[X1]) / ($coordinates[X2] - $coordinates[X1]); printf " intersection at %f (%d) = %f\n", $c, $i, $points->[$i][-1]; } } } # sort and remove duplicates $points = [ map { my %h = map { sprintf("%.0f", $_) => 1 } @$_; [ sort keys %h ]; } @$points ]; # generate extrusion paths my (@paths, @path_points) = (); my $direction = 0; my $stop_path = sub { # defensive programming if (@path_points == 1) { YYY \@path_points; die "There shouldn't be only one point in the current path"; } # if we were constructing a path, stop it push @paths, [ @path_points ] if @path_points; @path_points = (); }; # loop until we have spare points while (map @$_, @$points) { # loop through rows ROW: for (my $i = 0; $i < $number_of_lines; $i++) { my $row = $points->[$i]; printf "Processing row %d...\n", $i; if (!@$row) { printf " no points\n"; $stop_path->(); next ROW; } printf " points = %s\n", join ', ', @$row; # coordinate of current row my $c = ($i + 1) * $distance_between_lines; # need to start a path? if (!@path_points) { push @path_points, [ $c, shift @$row ]; } my @connectable_points = $self->find_connectable_points($polygon, $path_points[-1], $c, $row); @connectable_points = reverse @connectable_points if $direction == 1; printf " found %d connectable points = %s\n", scalar(@connectable_points), join ', ', @connectable_points; if (!@connectable_points && @path_points && $path_points[-1][0] != $c) { # no connectable in this row $stop_path->(); } foreach my $p (@connectable_points) { push @path_points, [ $c, $p ]; @$row = grep $_ != $p, @$row; # remove point from row } # invert direction $direction = $direction ? 0 : 1; } $stop_path->() if @path_points; } # paths must be rotated back if ($axes[0] == 1) { @paths = map $self->_mgp_from_points_ref($_)->move(-$print->x_length, -$print->y_length)->rotate(-PI()/2)->points, @paths; } # save into layer push @{ $layer->fills }, map Slic3r::ExtrusionPath->new_from_points(@$_), @paths; } } # this function will select the first contiguous block of # points connectable to a given one sub find_connectable_points { my $self = shift; my ($polygon, $point, $c, $points) = @_; my @connectable_points = (); foreach my $p (@$points) { push @connectable_points, $p if $self->can_connect($polygon, $point, [ $c, $p ]); } return @connectable_points; } # this subroutine tries to determine whether two points in a surface # are connectable without crossing contour or holes sub can_connect { my $self = shift; my ($polygon, $p1, $p2) = @_; # there's room for optimization here # this is not needed since we assume that $p1 and $p2 belong to $polygon ###for ($p1, $p2) { ###return 0 unless $polygon->isinside($_); ###} # check whether the $p1-$p2 segment doesn't intersect any segment # of the contour or of holes foreach my $points (@{ $polygon->polygons }) { foreach my $line ($self->_lines_from_mgp_points($points)) { my $point = SegmentIntersection([$p1, $p2, @$line]); if ($point && !$self->points_coincide($point, $p1) && !$self->points_coincide($point, $p2)) { return 0; } } } return 1; } sub points_coincide { my $self = shift; my ($p1, $p2) = @_; return 0 if $p2->[0] - $p1->[0] < epsilon && $p2->[1] - $p1->[1] < epsilon; return 1; } sub _lines_from_mgp_points { my $self = shift; my ($points) = @_; my @lines = (); my $last_point = $points->[-1]; foreach my $point (@$points) { push @lines, [ $last_point, $point ]; $last_point = $point; } return @lines; } sub _mgp_from_points_ref { my $self = shift; my ($points) = @_; my $p = Math::Geometry::Planar->new; $p->points($points); return $p; } 1;