package Slic3r::Layer; use Moo; use List::Util qw(first); use Slic3r::Geometry qw(scale); use Slic3r::Geometry::Clipper qw(union_ex); has 'id' => (is => 'rw', required => 1, trigger => 1); # sequential number of layer, 0-based has 'object' => (is => 'ro', weak_ref => 1, required => 1); has 'regions' => (is => 'ro', default => sub { [] }); has 'slicing_errors' => (is => 'rw'); has 'slice_z' => (is => 'ro', required => 1); # Z used for slicing in scaled coordinates has 'print_z' => (is => 'ro', required => 1); # Z used for printing in scaled coordinates has 'height' => (is => 'ro', required => 1); # layer height in unscaled coordinates # collection of expolygons generated by slicing the original geometry; # also known as 'islands' (all regions are merged here) has 'slices' => (is => 'rw'); # ordered collection of extrusion paths to fill surfaces for support material has 'support_islands' => (is => 'rw'); has 'support_fills' => (is => 'rw'); has 'support_contact_fills' => (is => 'rw'); sub _trigger_id { my $self = shift; $_->_trigger_layer for @{$self->regions || []}; } # layer height of contact paths in unscaled coordinates sub support_material_contact_height { my $self = shift; return $self->height if $self->id == 0; # TODO: check what upper region applies instead of considering the first one my $upper_layer = $self->object->layers->[ $self->id + 1 ] // $self; my $h = ($self->height + $upper_layer->height) - $upper_layer->regions->[0]->extruders->{infill}->bridge_flow->width; # If layer height is less than half the bridge width then we'll get a negative height for contact area. # The optimal solution would be to skip some layers during support material generation, but for now # we'll apply a (dirty) workaround that should still work. if ($h <= 0) { $h = $self->height; } return $h; } # Z used for printing support material contact in scaled coordinates sub support_material_contact_z { my $self = shift; return $self->print_z - ($self->height - $self->support_material_contact_height) / &Slic3r::SCALING_FACTOR; } sub upper_layer_slices { my $self = shift; my $upper_layer = $self->object->layers->[ $self->id + 1 ] or return []; return $upper_layer->slices; } sub region { my $self = shift; my ($region_id) = @_; for (my $i = @{$self->regions}; $i <= $region_id; $i++) { $self->regions->[$i] //= Slic3r::Layer::Region->new( layer => $self, region => $self->object->print->regions->[$i], ); } return $self->regions->[$region_id]; } # merge all regions' slices to get islands sub make_slices { my $self = shift; # optimization for single-region layers my @regions_with_slices = grep { @{$_->slices} } @{$self->regions}; if (@regions_with_slices == 1) { $self->slices([ map $_->expolygon, @{$regions_with_slices[0]->slices} ]); return; } $self->slices(union_ex([ map $_->p, map @{$_->slices}, @{$self->regions} ])); } sub make_perimeters { my $self = shift; Slic3r::debugf "Making perimeters for layer %d\n", $self->id; $_->make_perimeters for @{$self->regions}; } sub support_islands_enclose_line { my $self = shift; my ($line) = @_; return 0 if !$self->support_islands; # why can we arrive here if there are no support islands? return (first { $_->encloses_line($line) } @{$self->support_islands}) ? 1 : 0; } 1;