/* TODO LIST --------- 1. cooling moves - DONE 2. priming extrusions - DONE (fixed wiping volume so far) 3. account for perimeter and finish_layer extrusions and subtract it from last wipe 4. Peter's wipe tower - layer's are not exactly square 5. Peter's wipe tower - variable width for higher levels 6. Peter's wipe tower - make sure it is not too sparse (apply max_bridge_distance and make last wipe longer) 7. Peter's wipe tower - enable enhanced first layer adhesion */ #include "WipeTowerPrusaMM.hpp" #include #include #include #include #include #include "Analyzer.hpp" #if defined(__linux) || defined(__GNUC__ ) #include #endif /* __linux */ #ifdef _MSC_VER #define strcasecmp _stricmp #endif const bool peters_wipe_tower = false; // sparse wipe tower inspired by Peter's post processor - not finished yet namespace Slic3r { namespace PrusaMultiMaterial { class Writer { public: Writer() : m_current_pos(std::numeric_limits::max(), std::numeric_limits::max()), m_current_z(0.f), m_current_feedrate(0.f), m_layer_height(0.f), m_extrusion_flow(0.f), m_preview_suppressed(false), m_elapsed_time(0.f) {} Writer& set_initial_position(const WipeTower::xy &pos) { m_start_pos = pos; m_current_pos = pos; return *this; } Writer& set_initial_tool(const unsigned int tool) { m_current_tool = tool; return *this; } Writer& set_z(float z) { m_current_z = z; return *this; } Writer& set_layer_height(float layer_height) { m_layer_height = layer_height; return *this; } Writer& set_extrusion_flow(float flow) { m_extrusion_flow = flow; return *this; } Writer& set_rotation(WipeTower::xy& pos, float width, float depth, float angle) { m_wipe_tower_pos = pos; m_wipe_tower_width = width; m_wipe_tower_depth=depth; m_angle_deg = angle; return (*this); } Writer& set_y_shift(float shift) { m_y_shift = shift; return (*this); } // Suppress / resume G-code preview in Slic3r. Slic3r will have difficulty to differentiate the various // filament loading and cooling moves from normal extrusion moves. Therefore the writer // is asked to suppres output of some lines, which look like extrusions. Writer& suppress_preview() { m_preview_suppressed = true; return *this; } Writer& resume_preview() { m_preview_suppressed = false; return *this; } Writer& feedrate(float f) { if (f != m_current_feedrate) m_gcode += "G1" + set_format_F(f) + "\n"; return *this; } const std::string& gcode() const { return m_gcode; } const std::vector& extrusions() const { return m_extrusions; } float x() const { return m_current_pos.x; } float y() const { return m_current_pos.y; } const WipeTower::xy& pos() const { return m_current_pos; } const WipeTower::xy start_pos_rotated() const { return m_start_pos.rotate(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_angle_deg); } const WipeTower::xy pos_rotated() const { return m_current_pos.rotate(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_angle_deg); } float elapsed_time() const { return m_elapsed_time; } // Extrude with an explicitely provided amount of extrusion. Writer& extrude_explicit(float x, float y, float e, float f = 0.f) { if (x == m_current_pos.x && y == m_current_pos.y && e == 0.f && (f == 0.f || f == m_current_feedrate)) // Neither extrusion nor a travel move. return *this; float dx = x - m_current_pos.x; float dy = y - m_current_pos.y; double len = sqrt(dx*dx+dy*dy); // For rotated wipe tower, transform position to printer coordinates WipeTower::xy rotated_current_pos(WipeTower::xy(m_current_pos,0.f,m_y_shift).rotate(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_angle_deg)); WipeTower::xy rot(WipeTower::xy(x,y+m_y_shift).rotate(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_angle_deg)); if (! m_preview_suppressed && e > 0.f && len > 0.) { // Width of a squished extrusion, corrected for the roundings of the squished extrusions. // This is left zero if it is a travel move. float width = float(double(e) * Filament_Area / (len * m_layer_height)); // Correct for the roundings of a squished extrusion. width += m_layer_height * float(1. - M_PI / 4.); if (m_extrusions.empty() || m_extrusions.back().pos != rotated_current_pos) m_extrusions.emplace_back(WipeTower::Extrusion(rotated_current_pos, 0, m_current_tool)); m_extrusions.emplace_back(WipeTower::Extrusion(WipeTower::xy(rot.x, rot.y), width, m_current_tool)); } m_gcode += "G1"; if (rot.x != rotated_current_pos.x) m_gcode += set_format_X(rot.x); if (rot.y != rotated_current_pos.y) m_gcode += set_format_Y(rot.y); // Transform current position back to wipe tower coordinates (was updated by set_format_X) m_current_pos.x = x; m_current_pos.y = y; if (e != 0.f) m_gcode += set_format_E(e); if (f != 0.f && f != m_current_feedrate) m_gcode += set_format_F(f); // Update the elapsed time with a rough estimate. m_elapsed_time += ((len == 0) ? std::abs(e) : len) / m_current_feedrate * 60.f; m_gcode += "\n"; return *this; } Writer& extrude_explicit(const WipeTower::xy &dest, float e, float f = 0.f) { return extrude_explicit(dest.x, dest.y, e, f); } // Travel to a new XY position. f=0 means use the current value. Writer& travel(float x, float y, float f = 0.f) { return extrude_explicit(x, y, 0.f, f); } Writer& travel(const WipeTower::xy &dest, float f = 0.f) { return extrude_explicit(dest.x, dest.y, 0.f, f); } // Extrude a line from current position to x, y with the extrusion amount given by m_extrusion_flow. Writer& extrude(float x, float y, float f = 0.f) { float dx = x - m_current_pos.x; float dy = y - m_current_pos.y; return extrude_explicit(x, y, sqrt(dx*dx+dy*dy) * m_extrusion_flow, f); } Writer& extrude(const WipeTower::xy &dest, const float f = 0.f) { return extrude(dest.x, dest.y, f); } Writer& load(float e, float f = 0.f) { if (e == 0.f && (f == 0.f || f == m_current_feedrate)) return *this; m_gcode += "G1"; if (e != 0.f) m_gcode += set_format_E(e); if (f != 0.f && f != m_current_feedrate) m_gcode += set_format_F(f); m_gcode += "\n"; return *this; } // Derectract while moving in the X direction. // If |x| > 0, the feed rate relates to the x distance, // otherwise the feed rate relates to the e distance. Writer& load_move_x(float x, float e, float f = 0.f) { return extrude_explicit(x, m_current_pos.y, e, f); } Writer& retract(float e, float f = 0.f) { return load(-e, f); } // Elevate the extruder head above the current print_z position. Writer& z_hop(float hop, float f = 0.f) { m_gcode += std::string("G1") + set_format_Z(m_current_z + hop); if (f != 0 && f != m_current_feedrate) m_gcode += set_format_F(f); m_gcode += "\n"; return *this; } // Lower the extruder head back to the current print_z position. Writer& z_hop_reset(float f = 0.f) { return z_hop(0, f); } // Move to x1, +y_increment, // extrude quickly amount e to x2 with feed f. Writer& ram(float x1, float x2, float dy, float e0, float e, float f) { extrude_explicit(x1, m_current_pos.y + dy, e0, f); extrude_explicit(x2, m_current_pos.y, e); return *this; } // Let the end of the pulled out filament cool down in the cooling tube // by moving up and down and moving the print head left / right // at the current Y position to spread the leaking material. Writer& cool(float x1, float x2, float e1, float e2, float f) { extrude_explicit(x1, m_current_pos.y, e1, f); extrude_explicit(x2, m_current_pos.y, e2); return *this; } Writer& set_tool(int tool) { char buf[64]; sprintf(buf, "T%d\n", tool); m_gcode += buf; m_current_tool = tool; return *this; } // Set extruder temperature, don't wait by default. Writer& set_extruder_temp(int temperature, bool wait = false) { char buf[128]; sprintf(buf, "M%d S%d\n", wait ? 109 : 104, temperature); m_gcode += buf; return *this; }; // Set speed factor override percentage. Writer& speed_override(int speed) { char buf[128]; sprintf(buf, "M220 S%d\n", speed); m_gcode += buf; return *this; }; // Set digital trimpot motor Writer& set_extruder_trimpot(int current) { char buf[128]; sprintf(buf, "M907 E%d\n", current); m_gcode += buf; return *this; }; Writer& flush_planner_queue() { m_gcode += "G4 S0\n"; return *this; } // Reset internal extruder counter. Writer& reset_extruder() { m_gcode += "G92 E0\n"; return *this; } Writer& comment_with_value(const char *comment, int value) { char strvalue[64]; sprintf(strvalue, "%d", value); m_gcode += std::string(";") + comment + strvalue + "\n"; return *this; }; Writer& set_fan(unsigned int speed) { if (speed == m_last_fan_speed) return *this; if (speed == 0) m_gcode += "M107\n"; else { m_gcode += "M106 S"; char buf[128]; sprintf(buf,"%u\n",(unsigned int)(255.0 * speed / 100.0)); m_gcode += buf; } m_last_fan_speed = speed; return *this; } Writer& comment_material(WipeTowerPrusaMM::material_type material) { m_gcode += "; material : "; switch (material) { case WipeTowerPrusaMM::PVA: m_gcode += "#8 (PVA)"; break; case WipeTowerPrusaMM::SCAFF: m_gcode += "#5 (Scaffold)"; break; case WipeTowerPrusaMM::FLEX: m_gcode += "#4 (Flex)"; break; default: m_gcode += "DEFAULT (PLA)"; break; } m_gcode += "\n"; return *this; }; Writer& append(const char *text) { m_gcode += text; return *this; } private: WipeTower::xy m_start_pos; WipeTower::xy m_current_pos; float m_current_z; float m_current_feedrate; unsigned int m_current_tool; float m_layer_height; float m_extrusion_flow; bool m_preview_suppressed; std::string m_gcode; std::vector m_extrusions; float m_elapsed_time; float m_angle_deg = 0.f; float m_y_shift = 0.f; WipeTower::xy m_wipe_tower_pos; float m_wipe_tower_width = 0.f; float m_wipe_tower_depth = 0.f; float m_last_fan_speed = 0.f; std::string set_format_X(float x) { char buf[64]; sprintf(buf, " X%.3f", x); m_current_pos.x = x; return buf; } std::string set_format_Y(float y) { char buf[64]; sprintf(buf, " Y%.3f", y); m_current_pos.y = y; return buf; } std::string set_format_Z(float z) { char buf[64]; sprintf(buf, " Z%.3f", z); return buf; } std::string set_format_E(float e) { char buf[64]; sprintf(buf, " E%.4f", e); return buf; } std::string set_format_F(float f) { char buf[64]; sprintf(buf, " F%d", int(floor(f + 0.5f))); m_current_feedrate = f; return buf; } Writer& operator=(const Writer &rhs); }; /* class Material { public: std::string name; std::string type; struct RammingStep { // float length; float extrusion_multiplier; // sirka linky float extrusion; float speed; }; std::vector ramming_sequence; // Number and speed of the cooling moves. std::vector cooling_moves; // Percentage of the speed overide, in pairs of std::vector> speed_override; }; */ }; // namespace PrusaMultiMaterial WipeTowerPrusaMM::material_type WipeTowerPrusaMM::parse_material(const char *name) { if (strcasecmp(name, "PLA") == 0) return PLA; if (strcasecmp(name, "ABS") == 0) return ABS; if (strcasecmp(name, "PET") == 0) return PET; if (strcasecmp(name, "HIPS") == 0) return HIPS; if (strcasecmp(name, "FLEX") == 0) return FLEX; if (strcasecmp(name, "SCAFF") == 0) return SCAFF; if (strcasecmp(name, "EDGE") == 0) return EDGE; if (strcasecmp(name, "NGEN") == 0) return NGEN; if (strcasecmp(name, "PVA") == 0) return PVA; return INVALID; } // Returns gcode to prime the nozzles at the front edge of the print bed. WipeTower::ToolChangeResult WipeTowerPrusaMM::prime( // print_z of the first layer. float first_layer_height, // Extruder indices, in the order to be primed. The last extruder will later print the wipe tower brim, print brim and the object. const std::vector &tools, // If true, the last priming are will be the same as the other priming areas, and the rest of the wipe will be performed inside the wipe tower. // If false, the last priming are will be large enough to wipe the last extruder sufficiently. bool last_wipe_inside_wipe_tower, // May be used by a stand alone post processor. Purpose purpose) { this->set_layer(first_layer_height, first_layer_height, tools.size(), true, false); // Calculate the amount of wipe over the wipe tower brim following the prime, decrease wipe_area // with the amount of material extruded over the brim. // DOESN'T MAKE SENSE NOW, wipe tower dimensions are still unknown at this point /*{ // Simulate the brim extrusions, summ the length of the extrusion. float e_length = this->tool_change(0, false, PURPOSE_EXTRUDE).total_extrusion_length_in_plane(); // Shrink wipe_area by the amount of extrusion extruded by the finish_layer(). // Y stepping of the wipe extrusions. float dy = m_line_width; // Number of whole wipe lines, that would be extruded to wipe as much material as the finish_layer(). // Minimum wipe area is 5mm wide. //FIXME calculate the purge_lines_width precisely. float purge_lines_width = 1.3f; wipe_area = std::max(5.f, m_wipe_area - float(floor(e_length / m_wipe_tower_width)) * dy - purge_lines_width); } this->set_layer(first_layer_height, first_layer_height, tools.size(), true, false);*/ this->m_num_layer_changes = 0; this->m_current_tool = tools.front(); // The Prusa i3 MK2 has a working space of [0, -2.2] to [250, 210]. // Due to the XYZ calibration, this working space may shrink slightly from all directions, // therefore the homing position is shifted inside the bed by 0.2 in the firmware to [0.2, -2.0]. // box_coordinates cleaning_box(xy(0.5f, - 1.5f), m_wipe_tower_width, wipe_area); //FIXME: set the width properly const float prime_section_width = 60.f; box_coordinates cleaning_box(xy(5.f, 0.f), prime_section_width, 15.f); PrusaMultiMaterial::Writer writer; writer.set_extrusion_flow(m_extrusion_flow) .set_z(m_z_pos) .set_layer_height(m_layer_height) .set_initial_tool(m_current_tool) .append(";--------------------\n" "; CP PRIMING START\n") .append(";--------------------\n") .speed_override(100); writer.set_initial_position(xy(0.f, 0.f)) // Always move to the starting position .travel(cleaning_box.ld, 7200) .set_extruder_trimpot(750); // Increase the extruder driver current to allow fast ramming. // adds tag for analyzer char buf[32]; sprintf(buf, ";%s%d\n", GCodeAnalyzer::Extrusion_Role_Tag.c_str(), erWipeTower); writer.append(buf); if (purpose == PURPOSE_EXTRUDE || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) { for (size_t idx_tool = 0; idx_tool < tools.size(); ++ idx_tool) { unsigned int tool = tools[idx_tool]; m_left_to_right = true; toolchange_Change(writer, tool, m_material[tool]); // Select the tool, set a speed override for soluble and flex materials. toolchange_Load(writer, cleaning_box); // Prime the tool. if (idx_tool + 1 == tools.size()) { // Last tool should not be unloaded, but it should be wiped enough to become of a pure color. toolchange_Wipe(writer, cleaning_box, 20.f); } else { // Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool. //writer.travel(writer.x(), writer.y() + m_perimeter_width, 7200); toolchange_Wipe(writer, cleaning_box , 5.f); box_coordinates box = cleaning_box; box.translate(0.f, writer.y() - cleaning_box.ld.y + m_perimeter_width); toolchange_Unload(writer, box , m_material[m_current_tool], m_first_layer_temperature[tools[idx_tool + 1]]); cleaning_box.translate(prime_section_width, 0.f); writer.travel(cleaning_box.ld, 7200); } ++ m_num_tool_changes; } } // Reset the extruder current to a normal value. writer.set_extruder_trimpot(550) .feedrate(6000) .flush_planner_queue() .reset_extruder() .append("; CP PRIMING END\n" ";------------------\n" "\n\n"); // Force m_idx_tool_change_in_layer to -1, so that tool_change() will know to extrude the wipe tower brim. ///m_idx_tool_change_in_layer = (unsigned int)(-1); m_print_brim = true; ToolChangeResult result; result.print_z = this->m_z_pos; result.layer_height = this->m_layer_height; result.gcode = writer.gcode(); result.elapsed_time = writer.elapsed_time(); result.extrusions = writer.extrusions(); result.start_pos = writer.start_pos_rotated(); result.end_pos = writer.pos_rotated(); return result; } WipeTower::ToolChangeResult WipeTowerPrusaMM::tool_change(unsigned int tool, bool last_in_layer, Purpose purpose) { // Either it is the last tool unload, // or there must be a nonzero wipe tower partitions available. // assert(tool < 0 || it_layer_tools->wipe_tower_partitions > 0); if ( m_print_brim ) { ///if (m_idx_tool_change_in_layer == (unsigned int)(-1)) { // First layer, prime the extruder. return toolchange_Brim(purpose); } float wipe_area = 0.f; {/*if (++ m_idx_tool_change_in_layer < (unsigned int)m_max_color_changes && last_in_layer) { // This tool_change() call will be followed by a finish_layer() call. // Try to shrink the wipe_area to save material, as less than usual wipe is required // if this step is foolowed by finish_layer() extrusions wiping the same extruder. for (size_t iter = 0; iter < 3; ++ iter) { // Simulate the finish_layer() extrusions, summ the length of the extrusion. float e_length = 0.f; { unsigned int old_idx_tool_change = m_idx_tool_change_in_layer; float old_wipe_start_y = m_current_wipe_start_y; m_current_wipe_start_y += wipe_area; e_length = this->finish_layer(PURPOSE_EXTRUDE).total_extrusion_length_in_plane(); m_idx_tool_change_in_layer = old_idx_tool_change; m_current_wipe_start_y = old_wipe_start_y; } // Shrink wipe_area by the amount of extrusion extruded by the finish_layer(). // Y stepping of the wipe extrusions. float dy = m_line_width; // Number of whole wipe lines, that would be extruded to wipe as much material as the finish_layer(). float num_lines_extruded = floor(e_length / m_wipe_tower_width); // Minimum wipe area is 5mm wide. wipe_area = m_wipe_area - num_lines_extruded * dy; if (wipe_area < 5.) { wipe_area = 5.; break; } } }*/} bool last_change_in_layer = false; float wipe_volume = 0.f; // Finds this toolchange info if (tool != (unsigned int)(-1)) { for (const auto &b : m_layer_info->tool_changes) if ( b.new_tool == tool ) { wipe_volume = m_par.wipe_volumes[b.old_tool][b.new_tool]; if (tool == m_layer_info->tool_changes.back().new_tool) last_change_in_layer = true; wipe_area = b.required_depth * m_layer_info->extra_spacing; break; } } else { // Otherwise we are going to Unload only. And m_layer_info would be invalid. } box_coordinates cleaning_box( m_wipe_tower_pos + xy(m_perimeter_width / 2.f, m_perimeter_width / 2.f), m_wipe_tower_width - m_perimeter_width, (tool != (unsigned int)(-1) ? m_layer_info->depth : m_wipe_tower_depth-m_perimeter_width)); PrusaMultiMaterial::Writer writer; writer.set_extrusion_flow(m_extrusion_flow) .set_z(m_z_pos) .set_layer_height(m_layer_height) .set_initial_tool(m_current_tool) .set_rotation(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_wipe_tower_rotation_angle) .set_y_shift(m_y_shift) .append(";--------------------\n" "; CP TOOLCHANGE START\n") .comment_with_value(" toolchange #", m_num_tool_changes) .comment_material(m_material[m_current_tool]) .append(";--------------------\n") .speed_override(100); xy initial_position = cleaning_box.ld + WipeTower::xy(0.f,m_depth_traversed); if (purpose == PURPOSE_MOVE_TO_TOWER || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) { // Scaffold leaks terribly, reduce leaking by a full retract when going to the wipe tower. float initial_retract = ((m_material[m_current_tool] == SCAFF) ? 1.f : 0.5f) * m_retract; writer // Lift for a Z hop. .z_hop(m_zhop, 7200) // Additional retract on move to tower. .retract(initial_retract, 3600) // Move to a starting position, one perimeter width inside the cleaning box. .travel(initial_position, 7200) // Unlift for a Z hop. .z_hop_reset(7200) // Additional retract on move to tower. .load(initial_retract, 3600) .load(m_retract, 1500); } else { // Already at the initial position. writer.set_initial_position(initial_position); } // adds tag for analyzer char buf[32]; sprintf(buf, ";%s%d\n", GCodeAnalyzer::Extrusion_Role_Tag.c_str(), erWipeTower); writer.append(buf); if (purpose == PURPOSE_EXTRUDE || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) { // Increase the extruder driver current to allow fast ramming. writer.set_extruder_trimpot(750); // Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool. if (tool != (unsigned int)-1){ // This is not the last change. toolchange_Unload(writer, cleaning_box, m_material[m_current_tool], m_is_first_layer ? m_first_layer_temperature[tool] : m_temperature[tool]); toolchange_Change(writer, tool, m_material[tool]); // Change the tool, set a speed override for soluble and flex materials. toolchange_Load(writer, cleaning_box); toolchange_Wipe(writer, cleaning_box, wipe_volume); // Wipe the newly loaded filament until the end of the assigned wipe area. // Always wipe the nozzle with a long wipe to reduce stringing when moving away from the wipe tower. /*box_coordinates box = cleaning_box; writer.travel(box.ru, 7200) .travel(box.lu);*/ } else toolchange_Unload(writer, cleaning_box, m_material[m_current_tool], m_temperature[m_current_tool]); if (last_change_in_layer) // draw perimeter line writer.travel(m_wipe_tower_pos, 7000) .extrude(m_wipe_tower_pos + xy(0, peters_wipe_tower ? m_wipe_tower_depth : m_layer_info->depth + m_perimeter_width), 3200) .extrude(m_wipe_tower_pos + xy(peters_wipe_tower ? m_layer_info->depth + 3*m_perimeter_width : m_wipe_tower_width, peters_wipe_tower ? m_wipe_tower_depth : m_layer_info->depth + m_perimeter_width)) .extrude(m_wipe_tower_pos + xy(peters_wipe_tower ? m_layer_info->depth + 3*m_perimeter_width : m_wipe_tower_width, 0)) .extrude(m_wipe_tower_pos); // Reset the extruder current to a normal value. writer.set_extruder_trimpot(550) .feedrate(6000) .flush_planner_queue() .reset_extruder() .append("; CP TOOLCHANGE END\n" ";------------------\n" "\n\n"); ++ m_num_tool_changes; //m_current_wipe_start_y += wipe_area; m_depth_traversed += wipe_area; } ToolChangeResult result; result.print_z = this->m_z_pos; result.layer_height = this->m_layer_height; result.gcode = writer.gcode(); result.elapsed_time = writer.elapsed_time(); result.extrusions = writer.extrusions(); result.start_pos = writer.start_pos_rotated(); result.end_pos = writer.pos_rotated(); return result; } WipeTower::ToolChangeResult WipeTowerPrusaMM::toolchange_Brim(Purpose purpose, bool sideOnly, float y_offset) { const box_coordinates wipeTower_box( m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth); PrusaMultiMaterial::Writer writer; writer.set_extrusion_flow(m_extrusion_flow * 1.1f) .set_z(m_z_pos) // Let the writer know the current Z position as a base for Z-hop. .set_layer_height(m_layer_height) .set_initial_tool(m_current_tool) .set_rotation(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_wipe_tower_rotation_angle) .append(";-------------------------------------\n" "; CP WIPE TOWER FIRST LAYER BRIM START\n"); xy initial_position = wipeTower_box.lu - xy(m_perimeter_width * 6.f, 0); if (purpose == PURPOSE_MOVE_TO_TOWER || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) // Move with Z hop. writer.z_hop(m_zhop, 7200) .travel(initial_position, 6000) .z_hop_reset(7200); else writer.set_initial_position(initial_position); // adds tag for analyzer char buf[32]; sprintf(buf, ";%s%d\n", GCodeAnalyzer::Extrusion_Role_Tag.c_str(), erWipeTower); writer.append(buf); if (purpose == PURPOSE_EXTRUDE || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) { writer.extrude_explicit(wipeTower_box.ld - xy(m_perimeter_width * 6.f, 0), // Prime the extruder left of the wipe tower. 1.5f * m_extrusion_flow * (wipeTower_box.lu.y - wipeTower_box.ld.y), 2400); // The tool is supposed to be active and primed at the time when the wipe tower brim is extruded. // toolchange_Change(writer, int(tool), m_material[tool]); // Extrude 4 rounds of a brim around the future wipe tower. box_coordinates box(wipeTower_box); box.expand(m_perimeter_width); for (size_t i = 0; i < 4; ++ i) { writer.travel (box.ld, 7000) .extrude(box.lu, 2100).extrude(box.ru) .extrude(box.rd ).extrude(box.ld); box.expand(m_perimeter_width); } writer.travel(wipeTower_box.ld, 7000); // Move to the front left corner. writer.travel(wipeTower_box.rd) // Always wipe the nozzle with a long wipe to reduce stringing when moving away from the wipe tower. .travel(wipeTower_box.ld); writer.append("; CP WIPE TOWER FIRST LAYER BRIM END\n" ";-----------------------------------\n"); // Mark the brim as extruded. m_print_brim = false; } ToolChangeResult result; result.print_z = this->m_z_pos; result.layer_height = this->m_layer_height; result.gcode = writer.gcode(); result.elapsed_time = writer.elapsed_time(); result.extrusions = writer.extrusions(); result.start_pos = writer.start_pos_rotated(); result.end_pos = writer.pos_rotated(); return result; } // Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool. void WipeTowerPrusaMM::toolchange_Unload( PrusaMultiMaterial::Writer &writer, const box_coordinates &cleaning_box, const material_type current_material, const int new_temperature) { float xl = cleaning_box.ld.x + 1.f * m_perimeter_width; float xr = cleaning_box.rd.x - 1.f * m_perimeter_width; writer.append("; CP TOOLCHANGE UNLOAD\n"); const float line_width = m_line_width * m_par.ramming_line_width_multiplicator[m_current_tool]; // desired ramming line thickness const float y_step = line_width * m_par.ramming_step_multiplicator[m_current_tool] * m_extra_spacing; // spacing between lines in mm unsigned i = 0; // iterates through ramming_speed m_left_to_right = true; // current direction of ramming float remaining = xr - xl ; // keeps track of distance to the next turnaround float e_done = 0; // measures E move done from each segment writer.travel(xl, cleaning_box.ld.y + m_depth_traversed + y_step/2.f ); // move to starting position while (i < m_par.ramming_speed[m_current_tool].size()) { const float x = volume_to_length(m_par.ramming_speed[m_current_tool][i] * 0.25f, line_width, m_layer_height); const float e = m_par.ramming_speed[m_current_tool][i] * 0.25f / Filament_Area; // transform volume per sec to E move; const float dist = std::min(x - e_done, remaining); // distance to travel for either the next 0.25s, or to the next turnaround const float actual_time = dist/x * 0.25; writer.ram(writer.x(), writer.x() + (m_left_to_right ? 1.f : -1.f) * dist, 0, 0, e * (dist / x), std::hypot(dist, e * (dist / x)) / (actual_time / 60.)); remaining -= dist; if (remaining < WT_EPSILON) { // we reached a turning point writer.travel(writer.x(), writer.y() + y_step, 7200); m_left_to_right = !m_left_to_right; remaining = xr - xl; } e_done += dist; // subtract what was actually done if (e_done > x - WT_EPSILON) { // current segment finished ++i; e_done = 0; } } WipeTower::xy end_of_ramming(writer.x(),writer.y()); // Alex's old ramming: { /*switch (current_material) { case ABS: // ramming start end y increment amount feedrate writer.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width, y_step * 0.2f, 0, 1.2f * e, 4000) .ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 1.2f, e0, 1.6f * e, 4600) .ram(xl + m_perimeter_width * 2, xr - m_perimeter_width * 2, y_step * 1.2f, e0, 1.8f * e, 5000) .ram(xr - m_perimeter_width * 2, xl + m_perimeter_width * 2, y_step * 1.2f, e0, 1.8f * e, 5000); break; case PVA: // Used for the PrimaSelect PVA writer.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width, y_step * 0.2f, 0, 1.75f * e, 4000) .ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 1.5f, 0, 1.75f * e, 4500) .ram(xl + m_perimeter_width * 2, xr - m_perimeter_width * 2, y_step * 1.5f, 0, 1.75f * e, 4800) .ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 1.5f, 0, 1.75f * e, 5000); break; case SCAFF: writer.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width, y_step * 2.f, 0, 1.75f * e, 4000) .ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 3.f, 0, 2.34f * e, 4600) .ram(xl + m_perimeter_width * 2, xr - m_perimeter_width * 2, y_step * 3.f, 0, 2.63f * e, 5200); break; default: // PLA, PLA/PHA and others // Used for the Verbatim BVOH, PET, NGEN, co-polyesters writer.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width, y_step * 0.2f, 0, 1.60f * e, 4000) .ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 1.2f, e0, 1.65f * e, 4600) .ram(xl + m_perimeter_width * 2, xr - m_perimeter_width * 2, y_step * 1.2f, e0, 1.74f * e, 5200); }*/ } // Pull the filament end into a cooling tube. writer.retract(15, 5000).retract(50, 5400).retract(15, 3000).retract(12, 2000); if (new_temperature != 0) // Set the extruder temperature, but don't wait. writer.set_extruder_temp(new_temperature, false); // cooling: writer.retract(2, 2000); writer.suppress_preview(); writer.travel(writer.x(), writer.y() + y_step); const float start_x = writer.x(); const float turning_point = ( xr-start_x > start_x-xl ? xr : xl ); const float max_x_dist = 2*std::abs(start_x-turning_point); const unsigned int N = 4 + std::max(0,(m_par.cooling_time[m_current_tool]-14)/3); float time = m_par.cooling_time[m_current_tool] / N; i = 0; while (i cleaning_box.lu.y - m_perimeter_width * 1.5f) : (writer.y() < cleaning_box.ld.y + m_perimeter_width * 1.5f)) break;*/ traversed_x -= writer.x(); x_to_wipe -= fabs(traversed_x); if (x_to_wipe < WT_EPSILON) { writer.travel(m_left_to_right ? xl + 1.5*m_perimeter_width : xr - 1.5*m_perimeter_width, writer.y(), 7200); break; } // stepping to the next line: writer.extrude(writer.x() + (i % 4 == 0 ? -1.f : (i % 4 == 1 ? 1.f : 0.f)) * 1.5*m_perimeter_width, writer.y() + dy); m_left_to_right = !m_left_to_right; } writer.set_extrusion_flow(m_extrusion_flow); // Reset the extrusion flow. // Wipe the nozzle } WipeTower::ToolChangeResult WipeTowerPrusaMM::finish_layer(Purpose purpose) { // This should only be called if the layer is not finished yet. // Otherwise the caller would likely travel to the wipe tower in vain. assert(! this->layer_finished()); PrusaMultiMaterial::Writer writer; writer.set_extrusion_flow(m_extrusion_flow) .set_z(m_z_pos) .set_layer_height(m_layer_height) .set_initial_tool(m_current_tool) .set_rotation(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_wipe_tower_rotation_angle) .set_y_shift(m_y_shift) .append(";--------------------\n" "; CP EMPTY GRID START\n") // m_num_layer_changes is incremented by set_z, so it is 1 based. .comment_with_value(" layer #", m_num_layer_changes - 1); // Slow down on the 1st layer. float speed_factor = m_is_first_layer ? 0.5f : 1.f; float current_depth = m_layer_info->depth - m_layer_info->toolchanges_depth(); box_coordinates fill_box(m_wipe_tower_pos + xy(m_perimeter_width, m_depth_traversed + m_perimeter_width), m_wipe_tower_width - 2 * m_perimeter_width, current_depth-m_perimeter_width); if (purpose == PURPOSE_MOVE_TO_TOWER || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) { if ( m_layer_info->tool_changes.size() == 0) { // There were no tool changes at all in this layer. writer.retract(m_retract * 1.5f, 3600) // Jump with retract to fill_box.ld + a random shift in +x. .z_hop(m_zhop, 7200) .travel(fill_box.ld + xy(5.f + 15.f * float(rand()) / RAND_MAX, 0.f), 7000) .z_hop_reset(7200) // Prime the extruder. .load_move_x(fill_box.ld.x, m_retract * 1.5f, 3600); } else { // Otherwise the extruder is already over the wipe tower. } } else { // The print head is inside the wipe tower. Rather move to the start of the following extrusion. writer.set_initial_position(fill_box.ld); } if (purpose == PURPOSE_EXTRUDE || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) { box_coordinates box = fill_box; for (int i=0;i<2;++i) { if (m_layer_info->toolchanges_depth() < WT_EPSILON) { // there were no toolchanges on this layer if (i==0) box.expand(m_perimeter_width); else box.expand(-m_perimeter_width); } else i=2; // only draw the inner perimeter writer.travel(box.ld,7200) .extrude(box.lu, 2400 * speed_factor) .extrude(box.ru) .extrude(box.rd) .extrude(box.ld); } if (m_is_first_layer && m_par.adhesion) { // Extrude a dense infill at the 1st layer to improve 1st layer adhesion of the wipe tower. box.expand(-m_perimeter_width/2.f); unsigned nsteps = int(floor((box.lu.y - box.ld.y) / (2*m_perimeter_width))); float step = (box.lu.y - box.ld.y) / nsteps; writer.travel(box.ld-xy(m_perimeter_width/2.f,m_perimeter_width/2.f)); if (nsteps >= 0) for (size_t i = 0; i < nsteps; ++i) { writer.extrude(box.ld.x+m_perimeter_width/2.f, writer.y() + 0.5f * step); writer.extrude(box.rd.x - m_perimeter_width / 2.f, writer.y()); writer.extrude(box.rd.x - m_perimeter_width / 2.f, writer.y() + 0.5f * step); writer.extrude(box.ld.x + m_perimeter_width / 2.f, writer.y()); } writer.travel(box.rd.x-m_perimeter_width/2.f,writer.y()); // wipe the nozzle } else { // Extrude a sparse infill to support the material to be printed above. const float dy = (fill_box.lu.y - fill_box.ld.y - m_perimeter_width); if (dy > m_perimeter_width) { // Extrude an inverse U at the left of the region. writer.travel(fill_box.ld + xy(m_perimeter_width * 2, 0.f)) .extrude(fill_box.lu + xy(m_perimeter_width * 2, 0.f), 2900 * speed_factor); const float left = fill_box.lu.x+2*m_perimeter_width; const float right = fill_box.ru.x - 2 * m_perimeter_width; const int n = 1+(right-left)/(m_par.bridging); const float dx = (right-left)/n; for (int i=1;i<=n;++i) { float x=left+dx*i; writer.travel(x,writer.y()); writer.extrude(x,i%2 ? fill_box.rd.y : fill_box.ru.y); } writer.travel(left,writer.y(),7200); // wipes the nozzle before moving away from the wipe tower } } /* // if (purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) if (true) // Wipe along the front side of the current wiping box. // Always wipe the nozzle with a long wipe to reduce stringing when moving away from the wipe tower. writer.travel(fill_box.ld + xy( m_perimeter_width, m_perimeter_width / 2), 7200) .travel(fill_box.rd + xy(- m_perimeter_width, m_perimeter_width / 2)); else writer.feedrate(7200); */ writer.append("; CP EMPTY GRID END\n" ";------------------\n\n\n\n\n\n\n"); // Indicate that this wipe tower layer is fully covered. m_depth_traversed = m_wipe_tower_depth-m_perimeter_width; ///m_idx_tool_change_in_layer = (unsigned int)m_max_color_changes; } ToolChangeResult result; result.print_z = this->m_z_pos; result.layer_height = this->m_layer_height; result.gcode = writer.gcode(); result.elapsed_time = writer.elapsed_time(); result.extrusions = writer.extrusions(); result.start_pos = writer.start_pos_rotated(); result.end_pos = writer.pos_rotated(); return result; } // Appends a toolchange into m_plan and calculates neccessary depth of the corresponding box void WipeTowerPrusaMM::plan_toolchange(float z_par, float layer_height_par, unsigned int old_tool, unsigned int new_tool,bool brim) { assert(m_plan.back().z <= z_par + WT_EPSILON ); // refuses to add a layer below the last one if (m_plan.empty() || m_plan.back().z + WT_EPSILON < z_par) // if we moved to a new layer, we'll add it to m_plan first m_plan.push_back(WipeTowerInfo(z_par, layer_height_par)); if (brim) { // this toolchange prints brim - we must add it to m_plan, but not to count its depth m_plan.back().tool_changes.push_back(WipeTowerInfo::ToolChange(old_tool, new_tool)); return; } if (old_tool==new_tool) // new layer without toolchanges - we are done return; // this is an actual toolchange - let's calculate depth to reserve on the wipe tower float depth = 0.f; float width = m_wipe_tower_width - 3*m_perimeter_width; float length_to_extrude = volume_to_length(0.25f * std::accumulate(m_par.ramming_speed[old_tool].begin(), m_par.ramming_speed[old_tool].end(), 0.f), m_line_width * m_par.ramming_line_width_multiplicator[old_tool], layer_height_par); depth = (int(length_to_extrude / width) + 1) * (m_line_width * m_par.ramming_line_width_multiplicator[old_tool] * m_par.ramming_step_multiplicator[old_tool]); length_to_extrude = width*((length_to_extrude / width)-int(length_to_extrude / width)) - width; length_to_extrude += volume_to_length(m_par.wipe_volumes[old_tool][new_tool], m_line_width, layer_height_par); length_to_extrude = std::max(length_to_extrude,0.f); depth += (int(length_to_extrude / width) + 1) * m_line_width; depth *= m_extra_spacing; m_plan.back().tool_changes.push_back(WipeTowerInfo::ToolChange(old_tool, new_tool, depth)); } void WipeTowerPrusaMM::plan_tower() { // Calculate m_wipe_tower_depth (maximum depth for all the layers) and propagate depths downwards m_wipe_tower_depth = 0.f; for (auto& layer : m_plan) layer.depth = 0.f; for (int layer_index = m_plan.size() - 1; layer_index >= 0; --layer_index) { float this_layer_depth = std::max(m_plan[layer_index].depth, m_plan[layer_index].toolchanges_depth()); m_plan[layer_index].depth = this_layer_depth; if (this_layer_depth > m_wipe_tower_depth - m_perimeter_width) m_wipe_tower_depth = this_layer_depth + m_perimeter_width; for (int i = layer_index - 1; i >= 0 /*&& m_plan[i].depth < this_layer_depth*/; i--) { if (m_plan[i].depth - this_layer_depth < 2*m_perimeter_width ) m_plan[i].depth = this_layer_depth; } } } void WipeTowerPrusaMM::make_wipe_tower_square() { const float width = m_wipe_tower_width - 3 * m_perimeter_width; const float depth = m_wipe_tower_depth - m_perimeter_width; // area that we actually print into is width*depth float side = sqrt(depth * width); m_wipe_tower_width = side + 3 * m_perimeter_width; m_wipe_tower_depth = side + 2 * m_perimeter_width; // For all layers, find how depth changed and update all toolchange depths for (auto &lay : m_plan) { side = sqrt(lay.depth * width); float width_ratio = width / side; //lay.extra_spacing = width_ratio; for (auto &tch : lay.tool_changes) tch.required_depth *= width_ratio; } plan_tower(); // propagates depth downwards again (width has changed) for (auto& lay : m_plan) // depths set, now the spacing lay.extra_spacing = lay.depth / lay.toolchanges_depth(); } // Processes vector m_plan and calls respective functions to generate G-code for the wipe tower // Resulting ToolChangeResults are appended into vector "result" void WipeTowerPrusaMM::generate(std::vector> &result) { if (m_plan.empty()) return; else m_layer_info = m_plan.begin(); m_extra_spacing = 1.f; plan_tower(); if (peters_wipe_tower) make_wipe_tower_square(); std::vector layer_result; for (auto layer : m_plan) { set_layer(layer.z,layer.height,0,layer.z == m_plan.front().z,layer.z == m_plan.back().z); if (peters_wipe_tower) m_wipe_tower_rotation_angle += 90.f; else m_wipe_tower_rotation_angle += 180.f; if (!peters_wipe_tower && m_layer_info->depth < m_wipe_tower_depth - m_perimeter_width) m_y_shift = (m_wipe_tower_depth-m_layer_info->depth-m_perimeter_width)/2.f; for (const auto &toolchange : layer.tool_changes) layer_result.emplace_back(tool_change(toolchange.new_tool, false, WipeTower::PURPOSE_EXTRUDE)); if (! layer_finished()) { layer_result.emplace_back(finish_layer(WipeTower::PURPOSE_EXTRUDE)); if (layer_result.size() > 1) { // Merge the two last tool changes into one. WipeTower::ToolChangeResult &tc1 = layer_result[layer_result.size() - 2]; WipeTower::ToolChangeResult &tc2 = layer_result.back(); if (tc1.end_pos != tc2.start_pos) { // Add a travel move from tc1.end_pos to tc2.start_pos. char buf[2048]; sprintf(buf, "G1 X%.3f Y%.3f F7200\n", tc2.start_pos.x, tc2.start_pos.y); tc1.gcode += buf; } tc1.gcode += tc2.gcode; tc1.extrusions.insert(tc1.extrusions.end(), tc2.extrusions.begin(), tc2.extrusions.end()); tc1.end_pos = tc2.end_pos; layer_result.pop_back(); } } result.emplace_back(std::move(layer_result)); m_is_first_layer = false; } } }; // namespace Slic3r