#include "libslic3r/libslic3r.h" #include "slic3r/GUI/Gizmos/GLGizmos.hpp" #include "GLCanvas3D.hpp" #include "admesh/stl.h" #include "polypartition.h" #include "libslic3r/ClipperUtils.hpp" #include "libslic3r/PrintConfig.hpp" #include "libslic3r/GCode/PreviewData.hpp" #include "libslic3r/GCode/ThumbnailData.hpp" #include "libslic3r/Geometry.hpp" #include "libslic3r/ExtrusionEntity.hpp" #include "libslic3r/Utils.hpp" #include "libslic3r/Technologies.hpp" #include "libslic3r/Tesselate.hpp" #include "slic3r/GUI/3DScene.hpp" #include "slic3r/GUI/BackgroundSlicingProcess.hpp" #include "slic3r/GUI/GLShader.hpp" #include "slic3r/GUI/GUI.hpp" #include "slic3r/GUI/PresetBundle.hpp" #include "slic3r/GUI/Tab.hpp" #include "slic3r/GUI/GUI_Preview.hpp" #if ENABLE_NON_STATIC_CANVAS_MANAGER #include "slic3r/GUI/GLCanvas3DManager.hpp" #endif // ENABLE_NON_STATIC_CANVAS_MANAGER #include "slic3r/GUI/3DBed.hpp" #include "slic3r/GUI/Camera.hpp" #include "GUI_App.hpp" #include "GUI_ObjectList.hpp" #include "GUI_ObjectManipulation.hpp" #include "Mouse3DController.hpp" #include "I18N.hpp" #if ENABLE_RETINA_GL #include "slic3r/Utils/RetinaHelper.hpp" #endif #include #include #include #include #include #include #include #include #include // Print now includes tbb, and tbb includes Windows. This breaks compilation of wxWidgets if included before wx. #include "libslic3r/Print.hpp" #include "libslic3r/SLAPrint.hpp" #include "wxExtensions.hpp" #include #include #include #include #include #include #include #include #include "DoubleSlider.hpp" #if !ENABLE_CANVAS_TOOLTIP_USING_IMGUI #if ENABLE_RENDER_STATISTICS #include #endif // ENABLE_RENDER_STATISTICS #endif // !ENABLE_CANVAS_TOOLTIP_USING_IMGUI #include static const float TRACKBALLSIZE = 0.8f; static const float DEFAULT_BG_DARK_COLOR[3] = { 0.478f, 0.478f, 0.478f }; static const float DEFAULT_BG_LIGHT_COLOR[3] = { 0.753f, 0.753f, 0.753f }; static const float ERROR_BG_DARK_COLOR[3] = { 0.478f, 0.192f, 0.039f }; static const float ERROR_BG_LIGHT_COLOR[3] = { 0.753f, 0.192f, 0.039f }; //static const float AXES_COLOR[3][3] = { { 1.0f, 0.0f, 0.0f }, { 0.0f, 1.0f, 0.0f }, { 0.0f, 0.0f, 1.0f } }; // Number of floats static const size_t MAX_VERTEX_BUFFER_SIZE = 131072 * 6; // 3.15MB // Reserve size in number of floats. static const size_t VERTEX_BUFFER_RESERVE_SIZE = 131072 * 2; // 1.05MB // Reserve size in number of floats, maximum sum of all preallocated buffers. static const size_t VERTEX_BUFFER_RESERVE_SIZE_SUM_MAX = 1024 * 1024 * 128 / 4; // 128MB namespace Slic3r { namespace GUI { Size::Size() : m_width(0) , m_height(0) { } Size::Size(int width, int height, float scale_factor) : m_width(width) , m_height(height) , m_scale_factor(scale_factor) { } int Size::get_width() const { return m_width; } void Size::set_width(int width) { m_width = width; } int Size::get_height() const { return m_height; } void Size::set_height(int height) { m_height = height; } int Size::get_scale_factor() const { return m_scale_factor; } void Size::set_scale_factor(int scale_factor) { m_scale_factor = scale_factor; } GLCanvas3D::LayersEditing::LayersEditing() : m_enabled(false) , m_z_texture_id(0) , m_model_object(nullptr) , m_object_max_z(0.f) , m_slicing_parameters(nullptr) , m_layer_height_profile_modified(false) , m_adaptive_quality(0.5f) , state(Unknown) , band_width(2.0f) , strength(0.005f) , last_object_id(-1) , last_z(0.0f) , last_action(LAYER_HEIGHT_EDIT_ACTION_INCREASE) { } GLCanvas3D::LayersEditing::~LayersEditing() { if (m_z_texture_id != 0) { glsafe(::glDeleteTextures(1, &m_z_texture_id)); m_z_texture_id = 0; } delete m_slicing_parameters; } const float GLCanvas3D::LayersEditing::THICKNESS_BAR_WIDTH = 70.0f; bool GLCanvas3D::LayersEditing::init(const std::string& vertex_shader_filename, const std::string& fragment_shader_filename) { if (!m_shader.init(vertex_shader_filename, fragment_shader_filename)) return false; glsafe(::glGenTextures(1, (GLuint*)&m_z_texture_id)); glsafe(::glBindTexture(GL_TEXTURE_2D, m_z_texture_id)); glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP)); glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP)); glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)); glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST)); glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1)); glsafe(::glBindTexture(GL_TEXTURE_2D, 0)); return true; } void GLCanvas3D::LayersEditing::set_config(const DynamicPrintConfig* config) { m_config = config; delete m_slicing_parameters; m_slicing_parameters = nullptr; m_layers_texture.valid = false; } void GLCanvas3D::LayersEditing::select_object(const Model &model, int object_id) { const ModelObject *model_object_new = (object_id >= 0) ? model.objects[object_id] : nullptr; // Maximum height of an object changes when the object gets rotated or scaled. // Changing maximum height of an object will invalidate the layer heigth editing profile. // m_model_object->raw_bounding_box() is cached, therefore it is cheap even if this method is called frequently. float new_max_z = (model_object_new == nullptr) ? 0.f : model_object_new->raw_bounding_box().size().z(); if (m_model_object != model_object_new || this->last_object_id != object_id || m_object_max_z != new_max_z || (model_object_new != nullptr && m_model_object->id() != model_object_new->id())) { m_layer_height_profile.clear(); m_layer_height_profile_modified = false; delete m_slicing_parameters; m_slicing_parameters = nullptr; m_layers_texture.valid = false; this->last_object_id = object_id; m_model_object = model_object_new; m_object_max_z = new_max_z; } } bool GLCanvas3D::LayersEditing::is_allowed() const { return m_shader.is_initialized() && m_shader.get_shader()->shader_program_id > 0 && m_z_texture_id > 0; } bool GLCanvas3D::LayersEditing::is_enabled() const { return m_enabled; } void GLCanvas3D::LayersEditing::set_enabled(bool enabled) { m_enabled = is_allowed() && enabled; } void GLCanvas3D::LayersEditing::render_overlay(const GLCanvas3D& canvas) const { if (!m_enabled) return; static const ImVec4 ORANGE(1.0f, 0.49f, 0.22f, 1.0f); const Size& cnv_size = canvas.get_canvas_size(); float canvas_w = (float)cnv_size.get_width(); float canvas_h = (float)cnv_size.get_height(); ImGuiWrapper& imgui = *wxGetApp().imgui(); imgui.set_next_window_pos(canvas_w - imgui.get_style_scaling() * THICKNESS_BAR_WIDTH, canvas_h, ImGuiCond_Always, 1.0f, 1.0f); imgui.begin(_(L("Variable layer height")), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoMove | ImGuiWindowFlags_NoCollapse); ImGui::PushStyleColor(ImGuiCol_Text, ORANGE); imgui.text(_(L("Left mouse button:"))); ImGui::PopStyleColor(); ImGui::SameLine(); imgui.text(_(L("Add detail"))); ImGui::PushStyleColor(ImGuiCol_Text, ORANGE); imgui.text(_(L("Right mouse button:"))); ImGui::PopStyleColor(); ImGui::SameLine(); imgui.text(_(L("Remove detail"))); ImGui::PushStyleColor(ImGuiCol_Text, ORANGE); imgui.text(_(L("Shift + Left mouse button:"))); ImGui::PopStyleColor(); ImGui::SameLine(); imgui.text(_(L("Reset to base"))); ImGui::PushStyleColor(ImGuiCol_Text, ORANGE); imgui.text(_(L("Shift + Right mouse button:"))); ImGui::PopStyleColor(); ImGui::SameLine(); imgui.text(_(L("Smoothing"))); ImGui::PushStyleColor(ImGuiCol_Text, ORANGE); imgui.text(_(L("Mouse wheel:"))); ImGui::PopStyleColor(); ImGui::SameLine(); imgui.text(_(L("Increase/decrease edit area"))); ImGui::Separator(); if (imgui.button(_(L("Adaptive")))) wxPostEvent((wxEvtHandler*)canvas.get_wxglcanvas(), Event(EVT_GLCANVAS_ADAPTIVE_LAYER_HEIGHT_PROFILE, m_adaptive_quality)); ImGui::SameLine(); float text_align = ImGui::GetCursorPosX(); ImGui::AlignTextToFramePadding(); imgui.text(_(L("Quality / Speed"))); if (ImGui::IsItemHovered()) { ImGui::BeginTooltip(); ImGui::TextUnformatted(_(L("Higher print quality versus higher print speed.")).ToUTF8()); ImGui::EndTooltip(); } ImGui::SameLine(); float widget_align = ImGui::GetCursorPosX(); ImGui::PushItemWidth(imgui.get_style_scaling() * 120.0f); m_adaptive_quality = clamp(0.0f, 1.f, m_adaptive_quality); ImGui::SliderFloat("", &m_adaptive_quality, 0.0f, 1.f, "%.2f"); ImGui::Separator(); if (imgui.button(_(L("Smooth")))) wxPostEvent((wxEvtHandler*)canvas.get_wxglcanvas(), HeightProfileSmoothEvent(EVT_GLCANVAS_SMOOTH_LAYER_HEIGHT_PROFILE, m_smooth_params)); ImGui::SameLine(); ImGui::SetCursorPosX(text_align); ImGui::AlignTextToFramePadding(); imgui.text(_(L("Radius"))); ImGui::SameLine(); ImGui::SetCursorPosX(widget_align); ImGui::PushItemWidth(imgui.get_style_scaling() * 120.0f); int radius = (int)m_smooth_params.radius; if (ImGui::SliderInt("##1", &radius, 1, 10)) m_smooth_params.radius = (unsigned int)radius; ImGui::SetCursorPosX(text_align); ImGui::AlignTextToFramePadding(); imgui.text(_(L("Keep min"))); ImGui::SameLine(); if (ImGui::GetCursorPosX() < widget_align) // because of line lenght after localization ImGui::SetCursorPosX(widget_align); ImGui::PushItemWidth(imgui.get_style_scaling() * 120.0f); imgui.checkbox("##2", m_smooth_params.keep_min); ImGui::Separator(); if (imgui.button(_(L("Reset")))) wxPostEvent((wxEvtHandler*)canvas.get_wxglcanvas(), SimpleEvent(EVT_GLCANVAS_RESET_LAYER_HEIGHT_PROFILE)); imgui.end(); const Rect& bar_rect = get_bar_rect_viewport(canvas); render_active_object_annotations(canvas, bar_rect); render_profile(bar_rect); } float GLCanvas3D::LayersEditing::get_cursor_z_relative(const GLCanvas3D& canvas) { const Vec2d mouse_pos = canvas.get_local_mouse_position(); const Rect& rect = get_bar_rect_screen(canvas); float x = (float)mouse_pos(0); float y = (float)mouse_pos(1); float t = rect.get_top(); float b = rect.get_bottom(); return ((rect.get_left() <= x) && (x <= rect.get_right()) && (t <= y) && (y <= b)) ? // Inside the bar. (b - y - 1.0f) / (b - t - 1.0f) : // Outside the bar. -1000.0f; } bool GLCanvas3D::LayersEditing::bar_rect_contains(const GLCanvas3D& canvas, float x, float y) { const Rect& rect = get_bar_rect_screen(canvas); return (rect.get_left() <= x) && (x <= rect.get_right()) && (rect.get_top() <= y) && (y <= rect.get_bottom()); } Rect GLCanvas3D::LayersEditing::get_bar_rect_screen(const GLCanvas3D& canvas) { const Size& cnv_size = canvas.get_canvas_size(); float w = (float)cnv_size.get_width(); float h = (float)cnv_size.get_height(); return Rect(w - thickness_bar_width(canvas), 0.0f, w, h); } Rect GLCanvas3D::LayersEditing::get_bar_rect_viewport(const GLCanvas3D& canvas) { const Size& cnv_size = canvas.get_canvas_size(); float half_w = 0.5f * (float)cnv_size.get_width(); float half_h = 0.5f * (float)cnv_size.get_height(); #if ENABLE_NON_STATIC_CANVAS_MANAGER float inv_zoom = (float)wxGetApp().plater()->get_camera().get_inv_zoom(); #else float inv_zoom = (float)canvas.get_camera().get_inv_zoom(); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER return Rect((half_w - thickness_bar_width(canvas)) * inv_zoom, half_h * inv_zoom, half_w * inv_zoom, -half_h * inv_zoom); } bool GLCanvas3D::LayersEditing::is_initialized() const { return m_shader.is_initialized(); } std::string GLCanvas3D::LayersEditing::get_tooltip(const GLCanvas3D& canvas) const { std::string ret; if (m_enabled && (m_layer_height_profile.size() >= 4)) { float z = get_cursor_z_relative(canvas); if (z != -1000.0f) { z *= m_object_max_z; float h = 0.0f; for (size_t i = m_layer_height_profile.size() - 2; i >= 2; i -= 2) { float zi = m_layer_height_profile[i]; float zi_1 = m_layer_height_profile[i - 2]; if ((zi_1 <= z) && (z <= zi)) { float dz = zi - zi_1; h = (dz != 0.0f) ? lerp(m_layer_height_profile[i - 1], m_layer_height_profile[i + 1], (z - zi_1) / dz) : m_layer_height_profile[i + 1]; break; } } if (h > 0.0f) ret = std::to_string(h); } } return ret; } void GLCanvas3D::LayersEditing::render_active_object_annotations(const GLCanvas3D& canvas, const Rect& bar_rect) const { m_shader.start_using(); m_shader.set_uniform("z_to_texture_row", float(m_layers_texture.cells - 1) / (float(m_layers_texture.width) * m_object_max_z)); m_shader.set_uniform("z_texture_row_to_normalized", 1.0f / (float)m_layers_texture.height); m_shader.set_uniform("z_cursor", m_object_max_z * this->get_cursor_z_relative(canvas)); m_shader.set_uniform("z_cursor_band_width", band_width); m_shader.set_uniform("object_max_z", m_object_max_z); glsafe(::glPixelStorei(GL_UNPACK_ALIGNMENT, 1)); glsafe(::glBindTexture(GL_TEXTURE_2D, m_z_texture_id)); // Render the color bar float l = bar_rect.get_left(); float r = bar_rect.get_right(); float t = bar_rect.get_top(); float b = bar_rect.get_bottom(); ::glBegin(GL_QUADS); ::glNormal3f(0.0f, 0.0f, 1.0f); ::glTexCoord2f(0.0f, 0.0f); ::glVertex2f(l, b); ::glTexCoord2f(1.0f, 0.0f); ::glVertex2f(r, b); ::glTexCoord2f(1.0f, 1.0f); ::glVertex2f(r, t); ::glTexCoord2f(0.0f, 1.0f); ::glVertex2f(l, t); glsafe(::glEnd()); glsafe(::glBindTexture(GL_TEXTURE_2D, 0)); m_shader.stop_using(); } void GLCanvas3D::LayersEditing::render_profile(const Rect& bar_rect) const { //FIXME show some kind of legend. if (!m_slicing_parameters) return; // Make the vertical bar a bit wider so the layer height curve does not touch the edge of the bar region. float scale_x = bar_rect.get_width() / (float)(1.12 * m_slicing_parameters->max_layer_height); float scale_y = bar_rect.get_height() / m_object_max_z; float x = bar_rect.get_left() + (float)m_slicing_parameters->layer_height * scale_x; // Baseline glsafe(::glColor3f(0.0f, 0.0f, 0.0f)); ::glBegin(GL_LINE_STRIP); ::glVertex2f(x, bar_rect.get_bottom()); ::glVertex2f(x, bar_rect.get_top()); glsafe(::glEnd()); // Curve glsafe(::glColor3f(0.0f, 0.0f, 1.0f)); ::glBegin(GL_LINE_STRIP); for (unsigned int i = 0; i < m_layer_height_profile.size(); i += 2) ::glVertex2f(bar_rect.get_left() + (float)m_layer_height_profile[i + 1] * scale_x, bar_rect.get_bottom() + (float)m_layer_height_profile[i] * scale_y); glsafe(::glEnd()); } void GLCanvas3D::LayersEditing::render_volumes(const GLCanvas3D& canvas, const GLVolumeCollection &volumes) const { assert(this->is_allowed()); assert(this->last_object_id != -1); GLint shader_id = m_shader.get_shader()->shader_program_id; assert(shader_id > 0); GLint current_program_id; glsafe(::glGetIntegerv(GL_CURRENT_PROGRAM, ¤t_program_id)); if (shader_id > 0 && shader_id != current_program_id) // The layer editing shader is not yet active. Activate it. glsafe(::glUseProgram(shader_id)); else // The layer editing shader was already active. current_program_id = -1; GLint z_to_texture_row_id = ::glGetUniformLocation(shader_id, "z_to_texture_row"); GLint z_texture_row_to_normalized_id = ::glGetUniformLocation(shader_id, "z_texture_row_to_normalized"); GLint z_cursor_id = ::glGetUniformLocation(shader_id, "z_cursor"); GLint z_cursor_band_width_id = ::glGetUniformLocation(shader_id, "z_cursor_band_width"); GLint world_matrix_id = ::glGetUniformLocation(shader_id, "volume_world_matrix"); GLint object_max_z_id = ::glGetUniformLocation(shader_id, "object_max_z"); glcheck(); if (z_to_texture_row_id != -1 && z_texture_row_to_normalized_id != -1 && z_cursor_id != -1 && z_cursor_band_width_id != -1 && world_matrix_id != -1) { const_cast(this)->generate_layer_height_texture(); // Uniforms were resolved, go ahead using the layer editing shader. glsafe(::glUniform1f(z_to_texture_row_id, GLfloat(m_layers_texture.cells - 1) / (GLfloat(m_layers_texture.width) * GLfloat(m_object_max_z)))); glsafe(::glUniform1f(z_texture_row_to_normalized_id, GLfloat(1.0f / m_layers_texture.height))); glsafe(::glUniform1f(z_cursor_id, GLfloat(m_object_max_z) * GLfloat(this->get_cursor_z_relative(canvas)))); glsafe(::glUniform1f(z_cursor_band_width_id, GLfloat(this->band_width))); // Initialize the layer height texture mapping. GLsizei w = (GLsizei)m_layers_texture.width; GLsizei h = (GLsizei)m_layers_texture.height; GLsizei half_w = w / 2; GLsizei half_h = h / 2; glsafe(::glPixelStorei(GL_UNPACK_ALIGNMENT, 1)); glsafe(::glBindTexture(GL_TEXTURE_2D, m_z_texture_id)); glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0)); glsafe(::glTexImage2D(GL_TEXTURE_2D, 1, GL_RGBA, half_w, half_h, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0)); glsafe(::glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, m_layers_texture.data.data())); glsafe(::glTexSubImage2D(GL_TEXTURE_2D, 1, 0, 0, half_w, half_h, GL_RGBA, GL_UNSIGNED_BYTE, m_layers_texture.data.data() + m_layers_texture.width * m_layers_texture.height * 4)); for (const GLVolume* glvolume : volumes.volumes) { // Render the object using the layer editing shader and texture. if (! glvolume->is_active || glvolume->composite_id.object_id != this->last_object_id || glvolume->is_modifier) continue; if (world_matrix_id != -1) glsafe(::glUniformMatrix4fv(world_matrix_id, 1, GL_FALSE, (const GLfloat*)glvolume->world_matrix().cast().data())); if (object_max_z_id != -1) glsafe(::glUniform1f(object_max_z_id, GLfloat(0))); glvolume->render(); } // Revert back to the previous shader. glBindTexture(GL_TEXTURE_2D, 0); if (current_program_id > 0) glsafe(::glUseProgram(current_program_id)); } else { // Something went wrong. Just render the object. assert(false); for (const GLVolume* glvolume : volumes.volumes) { // Render the object using the layer editing shader and texture. if (!glvolume->is_active || glvolume->composite_id.object_id != this->last_object_id || glvolume->is_modifier) continue; glsafe(::glUniformMatrix4fv(world_matrix_id, 1, GL_FALSE, (const GLfloat*)glvolume->world_matrix().cast().data())); glvolume->render(); } } } void GLCanvas3D::LayersEditing::adjust_layer_height_profile() { this->update_slicing_parameters(); PrintObject::update_layer_height_profile(*m_model_object, *m_slicing_parameters, m_layer_height_profile); Slic3r::adjust_layer_height_profile(*m_slicing_parameters, m_layer_height_profile, this->last_z, this->strength, this->band_width, this->last_action); m_layer_height_profile_modified = true; m_layers_texture.valid = false; } void GLCanvas3D::LayersEditing::reset_layer_height_profile(GLCanvas3D& canvas) { const_cast(m_model_object)->layer_height_profile.clear(); m_layer_height_profile.clear(); m_layers_texture.valid = false; canvas.post_event(SimpleEvent(EVT_GLCANVAS_SCHEDULE_BACKGROUND_PROCESS)); } void GLCanvas3D::LayersEditing::adaptive_layer_height_profile(GLCanvas3D& canvas, float quality_factor) { this->update_slicing_parameters(); m_layer_height_profile = layer_height_profile_adaptive(*m_slicing_parameters, *m_model_object, quality_factor); const_cast(m_model_object)->layer_height_profile = m_layer_height_profile; m_layers_texture.valid = false; canvas.post_event(SimpleEvent(EVT_GLCANVAS_SCHEDULE_BACKGROUND_PROCESS)); } void GLCanvas3D::LayersEditing::smooth_layer_height_profile(GLCanvas3D& canvas, const HeightProfileSmoothingParams& smoothing_params) { this->update_slicing_parameters(); m_layer_height_profile = smooth_height_profile(m_layer_height_profile, *m_slicing_parameters, smoothing_params); const_cast(m_model_object)->layer_height_profile = m_layer_height_profile; m_layers_texture.valid = false; canvas.post_event(SimpleEvent(EVT_GLCANVAS_SCHEDULE_BACKGROUND_PROCESS)); } void GLCanvas3D::LayersEditing::generate_layer_height_texture() { this->update_slicing_parameters(); // Always try to update the layer height profile. bool update = ! m_layers_texture.valid; if (PrintObject::update_layer_height_profile(*m_model_object, *m_slicing_parameters, m_layer_height_profile)) { // Initialized to the default value. m_layer_height_profile_modified = false; update = true; } // Update if the layer height profile was changed, or when the texture is not valid. if (! update && ! m_layers_texture.data.empty() && m_layers_texture.cells > 0) // Texture is valid, don't update. return; if (m_layers_texture.data.empty()) { m_layers_texture.width = 1024; m_layers_texture.height = 1024; m_layers_texture.levels = 2; m_layers_texture.data.assign(m_layers_texture.width * m_layers_texture.height * 5, 0); } bool level_of_detail_2nd_level = true; m_layers_texture.cells = Slic3r::generate_layer_height_texture( *m_slicing_parameters, Slic3r::generate_object_layers(*m_slicing_parameters, m_layer_height_profile), m_layers_texture.data.data(), m_layers_texture.height, m_layers_texture.width, level_of_detail_2nd_level); m_layers_texture.valid = true; } void GLCanvas3D::LayersEditing::accept_changes(GLCanvas3D& canvas) { if (last_object_id >= 0) { if (m_layer_height_profile_modified) { wxGetApp().plater()->take_snapshot(_(L("Variable layer height - Manual edit"))); const_cast(m_model_object)->layer_height_profile = m_layer_height_profile; canvas.post_event(SimpleEvent(EVT_GLCANVAS_SCHEDULE_BACKGROUND_PROCESS)); } } m_layer_height_profile_modified = false; } void GLCanvas3D::LayersEditing::update_slicing_parameters() { if (m_slicing_parameters == nullptr) { m_slicing_parameters = new SlicingParameters(); *m_slicing_parameters = PrintObject::slicing_parameters(*m_config, *m_model_object, m_object_max_z); } } float GLCanvas3D::LayersEditing::thickness_bar_width(const GLCanvas3D &canvas) { return #if ENABLE_RETINA_GL canvas.get_canvas_size().get_scale_factor() #else canvas.get_wxglcanvas()->GetContentScaleFactor() #endif * THICKNESS_BAR_WIDTH; } const Point GLCanvas3D::Mouse::Drag::Invalid_2D_Point(INT_MAX, INT_MAX); const Vec3d GLCanvas3D::Mouse::Drag::Invalid_3D_Point(DBL_MAX, DBL_MAX, DBL_MAX); const int GLCanvas3D::Mouse::Drag::MoveThresholdPx = 5; GLCanvas3D::Mouse::Drag::Drag() : start_position_2D(Invalid_2D_Point) , start_position_3D(Invalid_3D_Point) , move_volume_idx(-1) , move_requires_threshold(false) , move_start_threshold_position_2D(Invalid_2D_Point) { } GLCanvas3D::Mouse::Mouse() : dragging(false) , position(DBL_MAX, DBL_MAX) , scene_position(DBL_MAX, DBL_MAX, DBL_MAX) , ignore_left_up(false) { } const unsigned char GLCanvas3D::WarningTexture::Background_Color[3] = { 120, 120, 120 };//{ 9, 91, 134 }; const unsigned char GLCanvas3D::WarningTexture::Opacity = 255; GLCanvas3D::WarningTexture::WarningTexture() : GUI::GLTexture() , m_original_width(0) , m_original_height(0) { } void GLCanvas3D::WarningTexture::activate(WarningTexture::Warning warning, bool state, const GLCanvas3D& canvas) { auto it = std::find(m_warnings.begin(), m_warnings.end(), warning); if (state) { if (it != m_warnings.end()) // this warning is already set to be shown return; m_warnings.emplace_back(warning); std::sort(m_warnings.begin(), m_warnings.end()); } else { if (it == m_warnings.end()) // deactivating something that is not active is an easy task return; m_warnings.erase(it); if (m_warnings.empty()) { // nothing remains to be shown reset(); m_msg_text = "";// save information for rescaling return; } } // Look at the end of our vector and generate proper texture. std::string text; bool red_colored = false; switch (m_warnings.back()) { case ObjectOutside : text = L("An object outside the print area was detected"); break; case ToolpathOutside : text = L("A toolpath outside the print area was detected"); break; case SlaSupportsOutside : text = L("SLA supports outside the print area were detected"); break; case SomethingNotShown : text = L("Some objects are not visible"); break; case ObjectClashed: { text = L("An object outside the print area was detected\n" "Resolve the current problem to continue slicing"); red_colored = true; break; } } generate(text, canvas, true, red_colored); // GUI::GLTexture::reset() is called at the beginning of generate(...) // save information for rescaling m_msg_text = text; m_is_colored_red = red_colored; } #ifdef __WXMSW__ static bool is_font_cleartype(const wxFont &font) { // Native font description: on MSW, it is a version number plus the content of LOGFONT, separated by semicolon. wxString font_desc = font.GetNativeFontInfoDesc(); // Find the quality field. wxString sep(";"); size_t startpos = 0; for (size_t i = 0; i < 12; ++ i) startpos = font_desc.find(sep, startpos + 1); ++ startpos; size_t endpos = font_desc.find(sep, startpos); int quality = wxAtoi(font_desc(startpos, endpos - startpos)); return quality == CLEARTYPE_QUALITY; } // ClearType produces renders, which are difficult to convert into an alpha blended OpenGL texture. // Therefore it is better to disable it, though Vojtech found out, that the font returned with ClearType // disabled is signifcantly thicker than the default ClearType font. // This function modifies the font provided. static void msw_disable_cleartype(wxFont &font) { // Native font description: on MSW, it is a version number plus the content of LOGFONT, separated by semicolon. wxString font_desc = font.GetNativeFontInfoDesc(); // Find the quality field. wxString sep(";"); size_t startpos_weight = 0; for (size_t i = 0; i < 5; ++ i) startpos_weight = font_desc.find(sep, startpos_weight + 1); ++ startpos_weight; size_t endpos_weight = font_desc.find(sep, startpos_weight); // Parse the weight field. unsigned int weight = wxAtoi(font_desc(startpos_weight, endpos_weight - startpos_weight)); size_t startpos = endpos_weight; for (size_t i = 0; i < 6; ++ i) startpos = font_desc.find(sep, startpos + 1); ++ startpos; size_t endpos = font_desc.find(sep, startpos); int quality = wxAtoi(font_desc(startpos, endpos - startpos)); if (quality == CLEARTYPE_QUALITY) { // Replace the weight with a smaller value to compensate the weight of non ClearType font. wxString sweight = std::to_string(weight * 2 / 4); size_t len_weight = endpos_weight - startpos_weight; wxString squality = std::to_string(ANTIALIASED_QUALITY); font_desc.replace(startpos_weight, len_weight, sweight); font_desc.replace(startpos + sweight.size() - len_weight, endpos - startpos, squality); font.SetNativeFontInfo(font_desc); wxString font_desc2 = font.GetNativeFontInfoDesc(); } wxString font_desc2 = font.GetNativeFontInfoDesc(); } #endif /* __WXMSW__ */ bool GLCanvas3D::WarningTexture::generate(const std::string& msg_utf8, const GLCanvas3D& canvas, bool compress, bool red_colored/* = false*/) { reset(); if (msg_utf8.empty()) return false; wxString msg = _(msg_utf8); wxMemoryDC memDC; #ifdef __WXMSW__ // set scaled application normal font as default font wxFont font = wxGetApp().normal_font(); #else // select default font const float scale = canvas.get_canvas_size().get_scale_factor(); #if ENABLE_RETINA_GL // For non-visible or non-created window getBackingScaleFactor function return 0.0 value. // And using of the zero scale causes a crash, when we trying to draw text to the (0,0) rectangle // https://github.com/prusa3d/PrusaSlicer/issues/3916 if (scale <= 0.0f) return false; #endif wxFont font = wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT).Scale(scale); #endif font.MakeLarger(); font.MakeBold(); memDC.SetFont(font); // calculates texture size wxCoord w, h; memDC.GetMultiLineTextExtent(msg, &w, &h); m_original_width = (int)w; m_original_height = (int)h; m_width = (int)next_highest_power_of_2((uint32_t)w); m_height = (int)next_highest_power_of_2((uint32_t)h); // generates bitmap wxBitmap bitmap(m_width, m_height); memDC.SelectObject(bitmap); memDC.SetBackground(wxBrush(*wxBLACK)); memDC.Clear(); // draw message memDC.SetTextForeground(*wxRED); memDC.DrawLabel(msg, wxRect(0,0, m_original_width, m_original_height), wxALIGN_CENTER); memDC.SelectObject(wxNullBitmap); // Convert the bitmap into a linear data ready to be loaded into the GPU. wxImage image = bitmap.ConvertToImage(); // prepare buffer std::vector data(4 * m_width * m_height, 0); const unsigned char *src = image.GetData(); for (int h = 0; h < m_height; ++h) { unsigned char* dst = data.data() + 4 * h * m_width; for (int w = 0; w < m_width; ++w) { *dst++ = 255; if (red_colored) { *dst++ = 72; // 204 *dst++ = 65; // 204 } else { *dst++ = 255; *dst++ = 255; } *dst++ = (unsigned char)std::min(255, *src); src += 3; } } // sends buffer to gpu glsafe(::glPixelStorei(GL_UNPACK_ALIGNMENT, 1)); glsafe(::glGenTextures(1, &m_id)); glsafe(::glBindTexture(GL_TEXTURE_2D, (GLuint)m_id)); if (compress && GLEW_EXT_texture_compression_s3tc) glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, (GLsizei)m_width, (GLsizei)m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const void*)data.data())); else glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, (GLsizei)m_width, (GLsizei)m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const void*)data.data())); glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)); glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)); glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0)); glsafe(::glBindTexture(GL_TEXTURE_2D, 0)); return true; } void GLCanvas3D::WarningTexture::render(const GLCanvas3D& canvas) const { if (m_warnings.empty()) return; if ((m_id > 0) && (m_original_width > 0) && (m_original_height > 0) && (m_width > 0) && (m_height > 0)) { const Size& cnv_size = canvas.get_canvas_size(); #if ENABLE_NON_STATIC_CANVAS_MANAGER float inv_zoom = (float)wxGetApp().plater()->get_camera().get_inv_zoom(); #else float inv_zoom = (float)canvas.get_camera().get_inv_zoom(); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER float left = (-0.5f * (float)m_original_width) * inv_zoom; float top = (-0.5f * (float)cnv_size.get_height() + (float)m_original_height + 2.0f) * inv_zoom; float right = left + (float)m_original_width * inv_zoom; float bottom = top - (float)m_original_height * inv_zoom; float uv_left = 0.0f; float uv_top = 0.0f; float uv_right = (float)m_original_width / (float)m_width; float uv_bottom = (float)m_original_height / (float)m_height; GLTexture::Quad_UVs uvs; uvs.left_top = { uv_left, uv_top }; uvs.left_bottom = { uv_left, uv_bottom }; uvs.right_bottom = { uv_right, uv_bottom }; uvs.right_top = { uv_right, uv_top }; GLTexture::render_sub_texture(m_id, left, right, bottom, top, uvs); } } void GLCanvas3D::WarningTexture::msw_rescale(const GLCanvas3D& canvas) { if (m_msg_text.empty()) return; generate(m_msg_text, canvas, true, m_is_colored_red); } const unsigned char GLCanvas3D::LegendTexture::Squares_Border_Color[3] = { 64, 64, 64 }; const unsigned char GLCanvas3D::LegendTexture::Default_Background_Color[3] = { (unsigned char)(DEFAULT_BG_LIGHT_COLOR[0] * 255.0f), (unsigned char)(DEFAULT_BG_LIGHT_COLOR[1] * 255.0f), (unsigned char)(DEFAULT_BG_LIGHT_COLOR[2] * 255.0f) }; const unsigned char GLCanvas3D::LegendTexture::Error_Background_Color[3] = { (unsigned char)(ERROR_BG_LIGHT_COLOR[0] * 255.0f), (unsigned char)(ERROR_BG_LIGHT_COLOR[1] * 255.0f), (unsigned char)(ERROR_BG_LIGHT_COLOR[2] * 255.0f) }; const unsigned char GLCanvas3D::LegendTexture::Opacity = 255; GLCanvas3D::LegendTexture::LegendTexture() : GUI::GLTexture() , m_original_width(0) , m_original_height(0) { } void GLCanvas3D::LegendTexture::fill_color_print_legend_items( const GLCanvas3D& canvas, const std::vector& colors_in, std::vector& colors, std::vector& cp_legend_items) { std::vector custom_gcode_per_print_z = wxGetApp().plater()->model().custom_gcode_per_print_z.gcodes; const int extruders_cnt = wxGetApp().extruders_edited_cnt(); if (extruders_cnt == 1) { if (custom_gcode_per_print_z.empty()) { cp_legend_items.emplace_back(I18N::translate_utf8(L("Default print color"))); colors = colors_in; return; } std::vector> cp_values; cp_values.reserve(custom_gcode_per_print_z.size()); std::vector print_zs = canvas.get_current_print_zs(true); for (auto custom_code : custom_gcode_per_print_z) { if (custom_code.gcode != ColorChangeCode) continue; auto lower_b = std::lower_bound(print_zs.begin(), print_zs.end(), custom_code.print_z - Slic3r::DoubleSlider::epsilon()); if (lower_b == print_zs.end()) continue; double current_z = *lower_b; double previous_z = lower_b == print_zs.begin() ? 0.0 : *(--lower_b); // to avoid duplicate values, check adding values if (cp_values.empty() || !(cp_values.back().first == previous_z && cp_values.back().second == current_z)) cp_values.emplace_back(std::pair(previous_z, current_z)); } const auto items_cnt = (int)cp_values.size(); if (items_cnt == 0) // There is no one color change, but there is/are some pause print or custom Gcode { cp_legend_items.emplace_back(I18N::translate_utf8(L("Default print color"))); cp_legend_items.emplace_back(I18N::translate_utf8(L("Pause print or custom G-code"))); colors = colors_in; return; } const int color_cnt = (int)colors_in.size() / 4; colors.resize(colors_in.size(), 0.0); ::memcpy((void*)(colors.data()), (const void*)(colors_in.data() + (color_cnt - 1) * 4), 4 * sizeof(float)); cp_legend_items.emplace_back(I18N::translate_utf8(L("Pause print or custom G-code"))); size_t color_pos = 4; for (int i = items_cnt; i >= 0; --i, color_pos+=4) { // update colors for color print item ::memcpy((void*)(colors.data() + color_pos), (const void*)(colors_in.data() + i * 4), 4 * sizeof(float)); // create label for color print item std::string id_str = std::to_string(i + 1) + ": "; if (i == 0) { cp_legend_items.emplace_back(id_str + (boost::format(I18N::translate_utf8(L("up to %.2f mm"))) % cp_values[0].first).str()); break; } if (i == items_cnt) { cp_legend_items.emplace_back(id_str + (boost::format(I18N::translate_utf8(L("above %.2f mm"))) % cp_values[i - 1].second).str()); continue; } cp_legend_items.emplace_back(id_str + (boost::format(I18N::translate_utf8(L("%.2f - %.2f mm"))) % cp_values[i - 1].second % cp_values[i].first).str()); } } else { // colors = colors_in; const int color_cnt = (int)colors_in.size() / 4; colors.resize(colors_in.size(), 0.0); ::memcpy((void*)(colors.data()), (const void*)(colors_in.data()), 4 * extruders_cnt * sizeof(float)); size_t color_pos = 4 * extruders_cnt; size_t color_in_pos = 4 * (color_cnt - 1); for (unsigned int i = 0; i < (unsigned int)extruders_cnt; ++i) cp_legend_items.emplace_back((boost::format(I18N::translate_utf8(L("Extruder %d"))) % (i + 1)).str()); ::memcpy((void*)(colors.data() + color_pos), (const void*)(colors_in.data() + color_in_pos), 4 * sizeof(float)); color_pos += 4; color_in_pos -= 4; cp_legend_items.emplace_back(I18N::translate_utf8(L("Pause print or custom G-code"))); int cnt = custom_gcode_per_print_z.size(); int color_change_idx = color_cnt - extruders_cnt; for (int i = cnt-1; i >= 0; --i) if (custom_gcode_per_print_z[i].gcode == ColorChangeCode) { ::memcpy((void*)(colors.data() + color_pos), (const void*)(colors_in.data() + color_in_pos), 4 * sizeof(float)); color_pos += 4; color_in_pos -= 4; // create label for color change item std::string id_str = std::to_string(color_change_idx--) + ": "; cp_legend_items.emplace_back(id_str + (boost::format(I18N::translate_utf8(L("Color change for Extruder %d at %.2f mm"))) % custom_gcode_per_print_z[i].extruder % custom_gcode_per_print_z[i].print_z).str()); } } } bool GLCanvas3D::LegendTexture::generate(const GCodePreviewData& preview_data, const std::vector& tool_colors_in, const GLCanvas3D& canvas, bool compress) { reset(); // collects items to render auto title = _(preview_data.get_legend_title()); std::vector cp_legend_items; std::vector cp_colors; if (preview_data.extrusion.view_type == GCodePreviewData::Extrusion::ColorPrint) { cp_legend_items.reserve(cp_colors.size()); fill_color_print_legend_items(canvas, tool_colors_in, cp_colors, cp_legend_items); } const std::vector& tool_colors = preview_data.extrusion.view_type == GCodePreviewData::Extrusion::ColorPrint ? cp_colors : tool_colors_in; const GCodePreviewData::LegendItemsList& items = preview_data.get_legend_items(tool_colors, cp_legend_items); unsigned int items_count = (unsigned int)items.size(); if (items_count == 0) // nothing to render, return return false; wxMemoryDC memDC; wxMemoryDC mask_memDC; // calculate scaling const float scale_gl = canvas.get_canvas_size().get_scale_factor(); #if ENABLE_RETINA_GL // For non-visible or non-created window getBackingScaleFactor function return 0.0 value. // And using of the zero scale causes a crash, when we trying to draw text to the (0,0) rectangle if (scale_gl <= 0.0f) return false; #endif const float scale = scale_gl * wxGetApp().em_unit()*0.1; // get scale from em_unit() value, because of get_scale_factor() return 1 const int scaled_square = std::floor((float)Px_Square * scale); const int scaled_title_offset = Px_Title_Offset * scale; const int scaled_text_offset = Px_Text_Offset * scale; const int scaled_square_contour = Px_Square_Contour * scale; const int scaled_border = Px_Border * scale; #ifdef __WXMSW__ // set scaled application normal font as default font wxFont font = wxGetApp().normal_font(); // Disabling ClearType works, but the font returned is very different (much thicker) from the default. // msw_disable_cleartype(font); // bool cleartype = is_font_cleartype(font); #else // select default font wxFont font = wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT).Scale(scale_gl); // bool cleartype = false; #endif /* __WXMSW__ */ memDC.SetFont(font); mask_memDC.SetFont(font); // calculates texture size wxCoord w, h; memDC.GetTextExtent(title, &w, &h); int title_width = (int)w; int title_height = (int)h; int max_text_width = 0; int max_text_height = 0; for (const GCodePreviewData::LegendItem& item : items) { memDC.GetTextExtent(GUI::from_u8(item.text), &w, &h); max_text_width = std::max(max_text_width, (int)w); max_text_height = std::max(max_text_height, (int)h); } m_original_width = std::max(2 * scaled_border + title_width, 2 * (scaled_border + scaled_square_contour) + scaled_square + scaled_text_offset + max_text_width); m_original_height = 2 * (scaled_border + scaled_square_contour) + title_height + scaled_title_offset + items_count * scaled_square; if (items_count > 1) m_original_height += (items_count - 1) * scaled_square_contour; m_width = (int)next_highest_power_of_2((uint32_t)m_original_width); m_height = (int)next_highest_power_of_2((uint32_t)m_original_height); // generates bitmap wxBitmap bitmap(m_width, m_height); wxBitmap mask(m_width, m_height); memDC.SelectObject(bitmap); mask_memDC.SelectObject(mask); memDC.SetBackground(wxBrush(*wxBLACK)); mask_memDC.SetBackground(wxBrush(*wxBLACK)); memDC.Clear(); mask_memDC.Clear(); // draw title memDC.SetTextForeground(*wxWHITE); mask_memDC.SetTextForeground(*wxRED); int title_x = scaled_border; int title_y = scaled_border; memDC.DrawText(title, title_x, title_y); mask_memDC.DrawText(title, title_x, title_y); // draw icons contours as background int squares_contour_x = scaled_border; int squares_contour_y = scaled_border + title_height + scaled_title_offset; int squares_contour_width = scaled_square + 2 * scaled_square_contour; int squares_contour_height = items_count * scaled_square + 2 * scaled_square_contour; if (items_count > 1) squares_contour_height += (items_count - 1) * scaled_square_contour; wxColour color(Squares_Border_Color[0], Squares_Border_Color[1], Squares_Border_Color[2]); wxPen pen(color); wxBrush brush(color); memDC.SetPen(pen); memDC.SetBrush(brush); memDC.DrawRectangle(wxRect(squares_contour_x, squares_contour_y, squares_contour_width, squares_contour_height)); // draw items (colored icon + text) int icon_x = squares_contour_x + scaled_square_contour; int icon_x_inner = icon_x + 1; int icon_y = squares_contour_y + scaled_square_contour; int icon_y_step = scaled_square + scaled_square_contour; int text_x = icon_x + scaled_square + scaled_text_offset; int text_y_offset = (scaled_square - max_text_height) / 2; int px_inner_square = scaled_square - 2; for (const GCodePreviewData::LegendItem& item : items) { // draw darker icon perimeter const std::vector& item_color_bytes = item.color.as_bytes(); wxImage::HSVValue dark_hsv = wxImage::RGBtoHSV(wxImage::RGBValue(item_color_bytes[0], item_color_bytes[1], item_color_bytes[2])); dark_hsv.value *= 0.75; wxImage::RGBValue dark_rgb = wxImage::HSVtoRGB(dark_hsv); color.Set(dark_rgb.red, dark_rgb.green, dark_rgb.blue, item_color_bytes[3]); pen.SetColour(color); brush.SetColour(color); memDC.SetPen(pen); memDC.SetBrush(brush); memDC.DrawRectangle(wxRect(icon_x, icon_y, scaled_square, scaled_square)); // draw icon interior color.Set(item_color_bytes[0], item_color_bytes[1], item_color_bytes[2], item_color_bytes[3]); pen.SetColour(color); brush.SetColour(color); memDC.SetPen(pen); memDC.SetBrush(brush); memDC.DrawRectangle(wxRect(icon_x_inner, icon_y + 1, px_inner_square, px_inner_square)); // draw text mask_memDC.DrawText(GUI::from_u8(item.text), text_x, icon_y + text_y_offset); // update y icon_y += icon_y_step; } memDC.SelectObject(wxNullBitmap); mask_memDC.SelectObject(wxNullBitmap); // Convert the bitmap into a linear data ready to be loaded into the GPU. wxImage image = bitmap.ConvertToImage(); wxImage mask_image = mask.ConvertToImage(); // prepare buffer std::vector data(4 * m_width * m_height, 0); const unsigned char *src_image = image.GetData(); const unsigned char *src_mask = mask_image.GetData(); for (int h = 0; h < m_height; ++h) { int hh = h * m_width; unsigned char* px_ptr = data.data() + 4 * hh; for (int w = 0; w < m_width; ++w) { if (w >= squares_contour_x && w < squares_contour_x + squares_contour_width && h >= squares_contour_y && h < squares_contour_y + squares_contour_height) { // Color palette, use the color verbatim. *px_ptr++ = *src_image++; *px_ptr++ = *src_image++; *px_ptr++ = *src_image++; *px_ptr++ = 255; } else { // Text or background unsigned char alpha = *src_mask; // Compensate the white color for the 50% opacity reduction at the character edges. //unsigned char color = (unsigned char)floor(alpha * 255.f / (128.f + 0.5f * alpha)); unsigned char color = alpha; *px_ptr++ = color; *px_ptr++ = color; // *src_mask ++; *px_ptr++ = color; // *src_mask ++; *px_ptr++ = 128 + (alpha / 2); // (alpha > 0) ? 255 : 128; src_image += 3; } src_mask += 3; } } // sends buffer to gpu glsafe(::glPixelStorei(GL_UNPACK_ALIGNMENT, 1)); glsafe(::glGenTextures(1, &m_id)); glsafe(::glBindTexture(GL_TEXTURE_2D, (GLuint)m_id)); if (compress && GLEW_EXT_texture_compression_s3tc) glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, (GLsizei)m_width, (GLsizei)m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const void*)data.data())); else glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, (GLsizei)m_width, (GLsizei)m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const void*)data.data())); glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)); glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)); glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0)); glsafe(::glBindTexture(GL_TEXTURE_2D, 0)); return true; } void GLCanvas3D::LegendTexture::render(const GLCanvas3D& canvas) const { if ((m_id > 0) && (m_original_width > 0) && (m_original_height > 0) && (m_width > 0) && (m_height > 0)) { const Size& cnv_size = canvas.get_canvas_size(); #if ENABLE_NON_STATIC_CANVAS_MANAGER float inv_zoom = (float)wxGetApp().plater()->get_camera().get_inv_zoom(); #else float inv_zoom = (float)canvas.get_camera().get_inv_zoom(); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER float left = (-0.5f * (float)cnv_size.get_width()) * inv_zoom; float top = (0.5f * (float)cnv_size.get_height()) * inv_zoom; float right = left + (float)m_original_width * inv_zoom; float bottom = top - (float)m_original_height * inv_zoom; float uv_left = 0.0f; float uv_top = 0.0f; float uv_right = (float)m_original_width / (float)m_width; float uv_bottom = (float)m_original_height / (float)m_height; GLTexture::Quad_UVs uvs; uvs.left_top = { uv_left, uv_top }; uvs.left_bottom = { uv_left, uv_bottom }; uvs.right_bottom = { uv_right, uv_bottom }; uvs.right_top = { uv_right, uv_top }; GLTexture::render_sub_texture(m_id, left, right, bottom, top, uvs); } } void GLCanvas3D::Labels::render(const std::vector& sorted_instances) const { if (!m_enabled || !is_shown()) return; #if ENABLE_NON_STATIC_CANVAS_MANAGER const Camera& camera = wxGetApp().plater()->get_camera(); #else const Camera& camera = m_canvas.get_camera(); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER const Model* model = m_canvas.get_model(); if (model == nullptr) return; Transform3d world_to_eye = camera.get_view_matrix(); Transform3d world_to_screen = camera.get_projection_matrix() * world_to_eye; const std::array& viewport = camera.get_viewport(); struct Owner { int obj_idx; int inst_idx; size_t model_instance_id; BoundingBoxf3 world_box; double eye_center_z; std::string title; std::string label; std::string print_order; bool selected; }; // collect owners world bounding boxes and data from volumes std::vector owners; const GLVolumeCollection& volumes = m_canvas.get_volumes(); for (const GLVolume* volume : volumes.volumes) { int obj_idx = volume->object_idx(); if (0 <= obj_idx && obj_idx < (int)model->objects.size()) { int inst_idx = volume->instance_idx(); std::vector::iterator it = std::find_if(owners.begin(), owners.end(), [obj_idx, inst_idx](const Owner& owner) { return (owner.obj_idx == obj_idx) && (owner.inst_idx == inst_idx); }); if (it != owners.end()) { it->world_box.merge(volume->transformed_bounding_box()); it->selected &= volume->selected; } else { const ModelObject* model_object = model->objects[obj_idx]; Owner owner; owner.obj_idx = obj_idx; owner.inst_idx = inst_idx; owner.model_instance_id = model_object->instances[inst_idx]->id().id; owner.world_box = volume->transformed_bounding_box(); owner.title = "object" + std::to_string(obj_idx) + "_inst##" + std::to_string(inst_idx); owner.label = model_object->name; if (model_object->instances.size() > 1) owner.label += " (" + std::to_string(inst_idx + 1) + ")"; owner.selected = volume->selected; owners.emplace_back(owner); } } } // updates print order strings if (sorted_instances.size() > 1) { for (size_t i = 0; i < sorted_instances.size(); ++i) { size_t id = sorted_instances[i]->id().id; std::vector::iterator it = std::find_if(owners.begin(), owners.end(), [id](const Owner& owner) { return owner.model_instance_id == id; }); if (it != owners.end()) it->print_order = std::string((_(L("Seq."))).ToUTF8()) + "#: " + std::to_string(i + 1); } } // calculate eye bounding boxes center zs for (Owner& owner : owners) { owner.eye_center_z = (world_to_eye * owner.world_box.center())(2); } // sort owners by center eye zs and selection std::sort(owners.begin(), owners.end(), [](const Owner& owner1, const Owner& owner2) { if (!owner1.selected && owner2.selected) return true; else if (owner1.selected && !owner2.selected) return false; else return (owner1.eye_center_z < owner2.eye_center_z); }); ImGuiWrapper& imgui = *wxGetApp().imgui(); // render info windows for (const Owner& owner : owners) { Vec3d screen_box_center = world_to_screen * owner.world_box.center(); float x = 0.0f; float y = 0.0f; if (camera.get_type() == Camera::Perspective) { x = (0.5f + 0.001f * 0.5f * (float)screen_box_center(0)) * viewport[2]; y = (0.5f - 0.001f * 0.5f * (float)screen_box_center(1)) * viewport[3]; } else { x = (0.5f + 0.5f * (float)screen_box_center(0)) * viewport[2]; y = (0.5f - 0.5f * (float)screen_box_center(1)) * viewport[3]; } if (x < 0.0f || viewport[2] < x || y < 0.0f || viewport[3] < y) continue; ImGui::PushStyleVar(ImGuiStyleVar_WindowBorderSize, owner.selected ? 3.0f : 1.5f); ImGui::PushStyleVar(ImGuiStyleVar_WindowRounding, 0.0f); ImGui::PushStyleColor(ImGuiCol_Border, owner.selected ? ImVec4(0.757f, 0.404f, 0.216f, 1.0f) : ImVec4(0.75f, 0.75f, 0.75f, 1.0f)); imgui.set_next_window_pos(x, y, ImGuiCond_Always, 0.5f, 0.5f); imgui.begin(owner.title, ImGuiWindowFlags_NoMouseInputs | ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoDecoration | ImGuiWindowFlags_NoMove); ImGui::BringWindowToDisplayFront(ImGui::GetCurrentWindow()); float win_w = ImGui::GetWindowWidth(); float label_len = imgui.calc_text_size(owner.label).x; ImGui::SetCursorPosX(0.5f * (win_w - label_len)); ImGui::AlignTextToFramePadding(); imgui.text(owner.label); if (!owner.print_order.empty()) { ImGui::Separator(); float po_len = imgui.calc_text_size(owner.print_order).x; ImGui::SetCursorPosX(0.5f * (win_w - po_len)); ImGui::AlignTextToFramePadding(); imgui.text(owner.print_order); } // force re-render while the windows gets to its final size (it takes several frames) if (ImGui::GetWindowContentRegionWidth() + 2.0f * ImGui::GetStyle().WindowPadding.x != ImGui::CalcWindowExpectedSize(ImGui::GetCurrentWindow()).x) m_canvas.request_extra_frame(); imgui.end(); ImGui::PopStyleColor(); ImGui::PopStyleVar(2); } } #if ENABLE_CANVAS_TOOLTIP_USING_IMGUI void GLCanvas3D::Tooltip::set_text(const std::string& text) { // If the mouse is inside an ImGUI dialog, then the tooltip is suppressed. const std::string &new_text = m_in_imgui ? std::string() : text; if (m_text != new_text) { if (m_text.empty()) m_start_time = std::chrono::steady_clock::now(); m_text = new_text; } } void GLCanvas3D::Tooltip::render(const Vec2d& mouse_position, GLCanvas3D& canvas) const { static ImVec2 size(0.0f, 0.0f); auto validate_position = [](const Vec2d& position, const GLCanvas3D& canvas, const ImVec2& wnd_size) { Size cnv_size = canvas.get_canvas_size(); float x = std::clamp((float)position(0), 0.0f, (float)cnv_size.get_width() - wnd_size.x); float y = std::clamp((float)position(1) + 16, 0.0f, (float)cnv_size.get_height() - wnd_size.y); return Vec2f(x, y); }; if (m_text.empty()) return; // draw the tooltip as hidden until the delay is expired // use a value of alpha slightly different from 0.0f because newer imgui does not calculate properly the window size if alpha == 0.0f float alpha = (std::chrono::duration_cast(std::chrono::steady_clock::now() - m_start_time).count() < 500) ? 0.01f : 1.0f; Vec2f position = validate_position(mouse_position, canvas, size); ImGuiWrapper& imgui = *wxGetApp().imgui(); ImGui::PushStyleVar(ImGuiStyleVar_WindowRounding, 0.0f); ImGui::PushStyleVar(ImGuiStyleVar_Alpha, alpha); imgui.set_next_window_pos(position(0), position(1), ImGuiCond_Always, 0.0f, 0.0f); imgui.begin(_(L("canvas_tooltip")), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoMouseInputs | ImGuiWindowFlags_NoMove | ImGuiWindowFlags_NoDecoration | ImGuiWindowFlags_NoFocusOnAppearing); ImGui::BringWindowToDisplayFront(ImGui::GetCurrentWindow()); ImGui::TextUnformatted(m_text.c_str()); // force re-render while the windows gets to its final size (it may take several frames) or while hidden if (alpha < 1.0f || ImGui::GetWindowContentRegionWidth() + 2.0f * ImGui::GetStyle().WindowPadding.x != ImGui::CalcWindowExpectedSize(ImGui::GetCurrentWindow()).x) canvas.request_extra_frame(); size = ImGui::GetWindowSize(); imgui.end(); ImGui::PopStyleVar(2); } #endif // ENABLE_CANVAS_TOOLTIP_USING_IMGUI #if ENABLE_SLOPE_RENDERING void GLCanvas3D::Slope::render() const { if (is_shown()) { const std::array& z_range = m_volumes.get_slope_z_range(); std::array angle_range = { Geometry::rad2deg(::acos(z_range[0])) - 90.0f, Geometry::rad2deg(::acos(z_range[1])) - 90.0f }; bool modified = false; ImGuiWrapper& imgui = *wxGetApp().imgui(); const Size& cnv_size = m_canvas.get_canvas_size(); imgui.set_next_window_pos((float)cnv_size.get_width(), (float)cnv_size.get_height(), ImGuiCond_Always, 1.0f, 1.0f); imgui.begin(_(L("Slope visualization")), nullptr, ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoCollapse); imgui.text(_(L("Facets' normal angle range (degrees)")) + ":"); ImGui::PushStyleColor(ImGuiCol_FrameBg, ImVec4(0.75f, 0.75f, 0.0f, 0.5f)); ImGui::PushStyleColor(ImGuiCol_FrameBgHovered, ImVec4(1.0f, 1.0f, 0.0f, 0.5f)); ImGui::PushStyleColor(ImGuiCol_FrameBgActive, ImVec4(0.85f, 0.85f, 0.0f, 0.5f)); ImGui::PushStyleColor(ImGuiCol_SliderGrab, ImVec4(0.25f, 0.25f, 0.0f, 1.0f)); if (ImGui::SliderFloat("##yellow", &angle_range[0], 0.0f, 90.0f, "%.1f")) { modified = true; if (angle_range[1] < angle_range[0]) angle_range[1] = angle_range[0]; } ImGui::PopStyleColor(4); ImGui::PushStyleColor(ImGuiCol_FrameBg, ImVec4(0.75f, 0.0f, 0.0f, 0.5f)); ImGui::PushStyleColor(ImGuiCol_FrameBgHovered, ImVec4(1.0f, 0.0f, 0.0f, 0.5f)); ImGui::PushStyleColor(ImGuiCol_FrameBgActive, ImVec4(0.85f, 0.0f, 0.0f, 0.5f)); ImGui::PushStyleColor(ImGuiCol_SliderGrab, ImVec4(0.25f, 0.0f, 0.0f, 1.0f)); if (ImGui::SliderFloat("##red", &angle_range[1], 0.0f, 90.0f, "%.1f")) { modified = true; if (angle_range[0] > angle_range[1]) angle_range[0] = angle_range[1]; } ImGui::PopStyleColor(4); ImGui::Separator(); if (imgui.button(_(L("Default")))) m_volumes.set_default_slope_z_range(); // to let the dialog immediately showup without waiting for a mouse move if (ImGui::GetWindowContentRegionWidth() + 2.0f * ImGui::GetStyle().WindowPadding.x != ImGui::CalcWindowExpectedSize(ImGui::GetCurrentWindow()).x) m_canvas.request_extra_frame(); imgui.end(); if (modified) m_volumes.set_slope_z_range({ -::cos(Geometry::deg2rad(90.0f - angle_range[0])), -::cos(Geometry::deg2rad(90.0f - angle_range[1])) }); } } #endif // ENABLE_SLOPE_RENDERING wxDEFINE_EVENT(EVT_GLCANVAS_SCHEDULE_BACKGROUND_PROCESS, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_OBJECT_SELECT, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_RIGHT_CLICK, RBtnEvent); wxDEFINE_EVENT(EVT_GLCANVAS_REMOVE_OBJECT, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_ARRANGE, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_SELECT_ALL, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_QUESTION_MARK, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_INCREASE_INSTANCES, Event); wxDEFINE_EVENT(EVT_GLCANVAS_INSTANCE_MOVED, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_INSTANCE_ROTATED, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_INSTANCE_SCALED, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_FORCE_UPDATE, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_WIPETOWER_MOVED, Vec3dEvent); wxDEFINE_EVENT(EVT_GLCANVAS_WIPETOWER_ROTATED, Vec3dEvent); wxDEFINE_EVENT(EVT_GLCANVAS_ENABLE_ACTION_BUTTONS, Event); wxDEFINE_EVENT(EVT_GLCANVAS_UPDATE_GEOMETRY, Vec3dsEvent<2>); wxDEFINE_EVENT(EVT_GLCANVAS_MOUSE_DRAGGING_FINISHED, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_UPDATE_BED_SHAPE, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_TAB, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_RESETGIZMOS, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_MOVE_DOUBLE_SLIDER, wxKeyEvent); wxDEFINE_EVENT(EVT_GLCANVAS_EDIT_COLOR_CHANGE, wxKeyEvent); wxDEFINE_EVENT(EVT_GLCANVAS_UNDO, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_REDO, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_RESET_LAYER_HEIGHT_PROFILE, SimpleEvent); wxDEFINE_EVENT(EVT_GLCANVAS_ADAPTIVE_LAYER_HEIGHT_PROFILE, Event); wxDEFINE_EVENT(EVT_GLCANVAS_SMOOTH_LAYER_HEIGHT_PROFILE, HeightProfileSmoothEvent); wxDEFINE_EVENT(EVT_GLCANVAS_RELOAD_FROM_DISK, SimpleEvent); const double GLCanvas3D::DefaultCameraZoomToBoxMarginFactor = 1.25; #if ENABLE_NON_STATIC_CANVAS_MANAGER GLCanvas3D::GLCanvas3D(wxGLCanvas* canvas) #else GLCanvas3D::GLCanvas3D(wxGLCanvas* canvas, Bed3D& bed, Camera& camera, GLToolbar& view_toolbar) #endif // ENABLE_NON_STATIC_CANVAS_MANAGER : m_canvas(canvas) , m_context(nullptr) #if ENABLE_RETINA_GL , m_retina_helper(nullptr) #endif , m_in_render(false) #if !ENABLE_NON_STATIC_CANVAS_MANAGER , m_bed(bed) , m_camera(camera) , m_view_toolbar(view_toolbar) #endif // !ENABLE_NON_STATIC_CANVAS_MANAGER , m_main_toolbar(GLToolbar::Normal, "Top") , m_undoredo_toolbar(GLToolbar::Normal, "Top") , m_gizmos(*this) , m_use_clipping_planes(false) , m_sidebar_field("") , m_extra_frame_requested(false) , m_config(nullptr) , m_process(nullptr) , m_model(nullptr) , m_dirty(true) , m_initialized(false) , m_apply_zoom_to_volumes_filter(false) , m_legend_texture_enabled(false) , m_picking_enabled(false) , m_moving_enabled(false) , m_dynamic_background_enabled(false) , m_multisample_allowed(false) , m_moving(false) , m_tab_down(false) , m_cursor_type(Standard) , m_color_by("volume") , m_reload_delayed(false) #if ENABLE_RENDER_PICKING_PASS , m_show_picking_texture(false) #endif // ENABLE_RENDER_PICKING_PASS , m_render_sla_auxiliaries(true) , m_labels(*this) #if ENABLE_SLOPE_RENDERING , m_slope(*this, m_volumes) #endif // ENABLE_SLOPE_RENDERING { if (m_canvas != nullptr) { m_timer.SetOwner(m_canvas); #if ENABLE_RETINA_GL m_retina_helper.reset(new RetinaHelper(canvas)); #if !ENABLE_NON_STATIC_CANVAS_MANAGER // set default view_toolbar icons size equal to GLGizmosManager::Default_Icons_Size m_view_toolbar.set_icons_size(GLGizmosManager::Default_Icons_Size); #endif // !ENABLE_NON_STATIC_CANVAS_MANAGER #endif // ENABLE_RETINA_GL } m_selection.set_volumes(&m_volumes.volumes); } GLCanvas3D::~GLCanvas3D() { reset_volumes(); } void GLCanvas3D::post_event(wxEvent &&event) { event.SetEventObject(m_canvas); wxPostEvent(m_canvas, event); } bool GLCanvas3D::init() { if (m_initialized) return true; if ((m_canvas == nullptr) || (m_context == nullptr)) return false; glsafe(::glClearColor(1.0f, 1.0f, 1.0f, 1.0f)); glsafe(::glClearDepth(1.0f)); glsafe(::glDepthFunc(GL_LESS)); glsafe(::glEnable(GL_DEPTH_TEST)); glsafe(::glEnable(GL_CULL_FACE)); glsafe(::glEnable(GL_BLEND)); glsafe(::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)); // Set antialiasing / multisampling glsafe(::glDisable(GL_LINE_SMOOTH)); glsafe(::glDisable(GL_POLYGON_SMOOTH)); // ambient lighting GLfloat ambient[4] = { 0.3f, 0.3f, 0.3f, 1.0f }; glsafe(::glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambient)); glsafe(::glEnable(GL_LIGHT0)); glsafe(::glEnable(GL_LIGHT1)); // light from camera GLfloat specular_cam[4] = { 0.3f, 0.3f, 0.3f, 1.0f }; glsafe(::glLightfv(GL_LIGHT1, GL_SPECULAR, specular_cam)); GLfloat diffuse_cam[4] = { 0.2f, 0.2f, 0.2f, 1.0f }; glsafe(::glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuse_cam)); // light from above GLfloat specular_top[4] = { 0.2f, 0.2f, 0.2f, 1.0f }; glsafe(::glLightfv(GL_LIGHT0, GL_SPECULAR, specular_top)); GLfloat diffuse_top[4] = { 0.5f, 0.5f, 0.5f, 1.0f }; glsafe(::glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse_top)); // Enables Smooth Color Shading; try GL_FLAT for (lack of) fun. glsafe(::glShadeModel(GL_SMOOTH)); // A handy trick -- have surface material mirror the color. glsafe(::glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE)); glsafe(::glEnable(GL_COLOR_MATERIAL)); if (m_multisample_allowed) glsafe(::glEnable(GL_MULTISAMPLE)); if (!m_shader.init("gouraud.vs", "gouraud.fs")) { std::cout << "Unable to initialize gouraud shader: please, check that the files gouraud.vs and gouraud.fs are available" << std::endl; return false; } if (m_main_toolbar.is_enabled() && !m_layers_editing.init("variable_layer_height.vs", "variable_layer_height.fs")) { std::cout << "Unable to initialize variable_layer_height shader: please, check that the files variable_layer_height.vs and variable_layer_height.fs are available" << std::endl; return false; } // on linux the gl context is not valid until the canvas is not shown on screen // we defer the geometry finalization of volumes until the first call to render() m_volumes.finalize_geometry(true); if (m_gizmos.is_enabled() && !m_gizmos.init()) std::cout << "Unable to initialize gizmos: please, check that all the required textures are available" << std::endl; if (!_init_toolbars()) return false; if (m_selection.is_enabled() && !m_selection.init()) return false; m_initialized = true; return true; } void GLCanvas3D::set_as_dirty() { m_dirty = true; } unsigned int GLCanvas3D::get_volumes_count() const { return (unsigned int)m_volumes.volumes.size(); } void GLCanvas3D::reset_volumes() { if (!m_initialized) return; #if ENABLE_NON_STATIC_CANVAS_MANAGER if (m_volumes.empty()) return; _set_current(); m_selection.clear(); m_volumes.clear(); m_dirty = true; _set_warning_texture(WarningTexture::ObjectOutside, false); #else _set_current(); if (!m_volumes.empty()) { m_selection.clear(); m_volumes.clear(); m_dirty = true; } _set_warning_texture(WarningTexture::ObjectOutside, false); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER } int GLCanvas3D::check_volumes_outside_state() const { ModelInstance::EPrintVolumeState state; m_volumes.check_outside_state(m_config, &state); return (int)state; } void GLCanvas3D::toggle_sla_auxiliaries_visibility(bool visible, const ModelObject* mo, int instance_idx) { m_render_sla_auxiliaries = visible; for (GLVolume* vol : m_volumes.volumes) { if ((mo == nullptr || m_model->objects[vol->composite_id.object_id] == mo) && (instance_idx == -1 || vol->composite_id.instance_id == instance_idx) && vol->composite_id.volume_id < 0) vol->is_active = visible; } } void GLCanvas3D::toggle_model_objects_visibility(bool visible, const ModelObject* mo, int instance_idx) { for (GLVolume* vol : m_volumes.volumes) { if ((mo == nullptr || m_model->objects[vol->composite_id.object_id] == mo) && (instance_idx == -1 || vol->composite_id.instance_id == instance_idx)) { vol->is_active = visible; vol->force_native_color = (instance_idx != -1); } } if (visible && !mo) toggle_sla_auxiliaries_visibility(true, mo, instance_idx); if (!mo && !visible && !m_model->objects.empty() && (m_model->objects.size() > 1 || m_model->objects.front()->instances.size() > 1)) _set_warning_texture(WarningTexture::SomethingNotShown, true); if (!mo && visible) _set_warning_texture(WarningTexture::SomethingNotShown, false); } void GLCanvas3D::update_instance_printable_state_for_object(const size_t obj_idx) { ModelObject* model_object = m_model->objects[obj_idx]; for (int inst_idx = 0; inst_idx < (int)model_object->instances.size(); ++inst_idx) { ModelInstance* instance = model_object->instances[inst_idx]; for (GLVolume* volume : m_volumes.volumes) { if ((volume->object_idx() == (int)obj_idx) && (volume->instance_idx() == inst_idx)) volume->printable = instance->printable; } } } void GLCanvas3D::update_instance_printable_state_for_objects(std::vector& object_idxs) { for (size_t obj_idx : object_idxs) update_instance_printable_state_for_object(obj_idx); } void GLCanvas3D::set_config(const DynamicPrintConfig* config) { m_config = config; m_layers_editing.set_config(config); } void GLCanvas3D::set_process(BackgroundSlicingProcess *process) { m_process = process; } void GLCanvas3D::set_model(Model* model) { m_model = model; m_selection.set_model(m_model); } void GLCanvas3D::bed_shape_changed() { refresh_camera_scene_box(); #if ENABLE_NON_STATIC_CANVAS_MANAGER wxGetApp().plater()->get_camera().requires_zoom_to_bed = true; #else m_camera.requires_zoom_to_bed = true; #endif // ENABLE_NON_STATIC_CANVAS_MANAGER m_dirty = true; } void GLCanvas3D::set_color_by(const std::string& value) { m_color_by = value; } void GLCanvas3D::refresh_camera_scene_box() { #if ENABLE_NON_STATIC_CANVAS_MANAGER wxGetApp().plater()->get_camera().set_scene_box(scene_bounding_box()); #else m_camera.set_scene_box(scene_bounding_box()); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER } BoundingBoxf3 GLCanvas3D::volumes_bounding_box() const { BoundingBoxf3 bb; for (const GLVolume* volume : m_volumes.volumes) { if (!m_apply_zoom_to_volumes_filter || ((volume != nullptr) && volume->zoom_to_volumes)) bb.merge(volume->transformed_bounding_box()); } return bb; } BoundingBoxf3 GLCanvas3D::scene_bounding_box() const { BoundingBoxf3 bb = volumes_bounding_box(); #if ENABLE_NON_STATIC_CANVAS_MANAGER bb.merge(wxGetApp().plater()->get_bed().get_bounding_box(true)); #else bb.merge(m_bed.get_bounding_box(true)); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER if (m_config != nullptr) { double h = m_config->opt_float("max_print_height"); bb.min(2) = std::min(bb.min(2), -h); bb.max(2) = std::max(bb.max(2), h); } return bb; } bool GLCanvas3D::is_layers_editing_enabled() const { return m_layers_editing.is_enabled(); } bool GLCanvas3D::is_layers_editing_allowed() const { return m_layers_editing.is_allowed(); } void GLCanvas3D::reset_layer_height_profile() { wxGetApp().plater()->take_snapshot(_(L("Variable layer height - Reset"))); m_layers_editing.reset_layer_height_profile(*this); m_layers_editing.state = LayersEditing::Completed; m_dirty = true; } void GLCanvas3D::adaptive_layer_height_profile(float quality_factor) { wxGetApp().plater()->take_snapshot(_(L("Variable layer height - Adaptive"))); m_layers_editing.adaptive_layer_height_profile(*this, quality_factor); m_layers_editing.state = LayersEditing::Completed; m_dirty = true; } void GLCanvas3D::smooth_layer_height_profile(const HeightProfileSmoothingParams& smoothing_params) { wxGetApp().plater()->take_snapshot(_(L("Variable layer height - Smooth all"))); m_layers_editing.smooth_layer_height_profile(*this, smoothing_params); m_layers_editing.state = LayersEditing::Completed; m_dirty = true; } bool GLCanvas3D::is_reload_delayed() const { return m_reload_delayed; } void GLCanvas3D::enable_layers_editing(bool enable) { #if ENABLE_SLOPE_RENDERING if (enable && m_slope.is_shown()) m_slope.show(false); #endif // ENABLE_SLOPE_RENDERING m_layers_editing.set_enabled(enable); const Selection::IndicesList& idxs = m_selection.get_volume_idxs(); for (unsigned int idx : idxs) { GLVolume* v = m_volumes.volumes[idx]; if (v->is_modifier) v->force_transparent = enable; } set_as_dirty(); } void GLCanvas3D::enable_legend_texture(bool enable) { m_legend_texture_enabled = enable; } void GLCanvas3D::enable_picking(bool enable) { m_picking_enabled = enable; m_selection.set_mode(Selection::Instance); } void GLCanvas3D::enable_moving(bool enable) { m_moving_enabled = enable; } void GLCanvas3D::enable_gizmos(bool enable) { m_gizmos.set_enabled(enable); } void GLCanvas3D::enable_selection(bool enable) { m_selection.set_enabled(enable); } void GLCanvas3D::enable_main_toolbar(bool enable) { m_main_toolbar.set_enabled(enable); } void GLCanvas3D::enable_undoredo_toolbar(bool enable) { m_undoredo_toolbar.set_enabled(enable); } void GLCanvas3D::enable_dynamic_background(bool enable) { m_dynamic_background_enabled = enable; } void GLCanvas3D::allow_multisample(bool allow) { m_multisample_allowed = allow; } void GLCanvas3D::zoom_to_bed() { #if ENABLE_NON_STATIC_CANVAS_MANAGER _zoom_to_box(wxGetApp().plater()->get_bed().get_bounding_box(false)); #else _zoom_to_box(m_bed.get_bounding_box(false)); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER } void GLCanvas3D::zoom_to_volumes() { m_apply_zoom_to_volumes_filter = true; _zoom_to_box(volumes_bounding_box()); m_apply_zoom_to_volumes_filter = false; } void GLCanvas3D::zoom_to_selection() { if (!m_selection.is_empty()) _zoom_to_box(m_selection.get_bounding_box()); } void GLCanvas3D::select_view(const std::string& direction) { #if ENABLE_NON_STATIC_CANVAS_MANAGER wxGetApp().plater()->get_camera().select_view(direction); #else m_camera.select_view(direction); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER if (m_canvas != nullptr) m_canvas->Refresh(); } void GLCanvas3D::update_volumes_colors_by_extruder() { if (m_config != nullptr) m_volumes.update_colors_by_extruder(m_config); } void GLCanvas3D::render() { if (m_in_render) { // if called recursively, return m_dirty = true; return; } m_in_render = true; Slic3r::ScopeGuard in_render_guard([this]() { m_in_render = false; }); (void)in_render_guard; if (m_canvas == nullptr) return; // ensures this canvas is current and initialized #if ENABLE_NON_STATIC_CANVAS_MANAGER if (!_is_shown_on_screen() || !_set_current() || !wxGetApp().init_opengl()) return; if (!is_initialized() && !init()) return; #else if (! _is_shown_on_screen() || !_set_current() || !_3DScene::init(m_canvas)) return; #endif // ENABLE_NON_STATIC_CANVAS_MANAGER #if ENABLE_RENDER_STATISTICS auto start_time = std::chrono::high_resolution_clock::now(); #endif // ENABLE_RENDER_STATISTICS #if ENABLE_NON_STATIC_CANVAS_MANAGER if (wxGetApp().plater()->get_bed().get_shape().empty()) #else if (m_bed.get_shape().empty()) #endif // ENABLE_NON_STATIC_CANVAS_MANAGER { // this happens at startup when no data is still saved under <>\AppData\Roaming\Slic3rPE post_event(SimpleEvent(EVT_GLCANVAS_UPDATE_BED_SHAPE)); return; } const Size& cnv_size = get_canvas_size(); // Probably due to different order of events on Linux/GTK2, when one switched from 3D scene // to preview, this was called before canvas had its final size. It reported zero width // and the viewport was set incorrectly, leading to tripping glAsserts further down // the road (in apply_projection). That's why the minimum size is forced to 10. #if ENABLE_NON_STATIC_CANVAS_MANAGER Camera& camera = wxGetApp().plater()->get_camera(); camera.apply_viewport(0, 0, std::max(10u, (unsigned int)cnv_size.get_width()), std::max(10u, (unsigned int)cnv_size.get_height())); if (camera.requires_zoom_to_bed) { zoom_to_bed(); _resize((unsigned int)cnv_size.get_width(), (unsigned int)cnv_size.get_height()); camera.requires_zoom_to_bed = false; } camera.apply_view_matrix(); camera.apply_projection(_max_bounding_box(true, true)); #else m_camera.apply_viewport(0, 0, std::max(10u, (unsigned int)cnv_size.get_width()), std::max(10u, (unsigned int)cnv_size.get_height())); if (m_camera.requires_zoom_to_bed) { zoom_to_bed(); _resize((unsigned int)cnv_size.get_width(), (unsigned int)cnv_size.get_height()); m_camera.requires_zoom_to_bed = false; } m_camera.apply_view_matrix(); m_camera.apply_projection(_max_bounding_box(true, true)); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER GLfloat position_cam[4] = { 1.0f, 0.0f, 1.0f, 0.0f }; glsafe(::glLightfv(GL_LIGHT1, GL_POSITION, position_cam)); GLfloat position_top[4] = { -0.5f, -0.5f, 1.0f, 0.0f }; glsafe(::glLightfv(GL_LIGHT0, GL_POSITION, position_top)); wxGetApp().imgui()->new_frame(); if (m_picking_enabled) { if (m_rectangle_selection.is_dragging()) // picking pass using rectangle selection _rectangular_selection_picking_pass(); else // regular picking pass _picking_pass(); } #if ENABLE_RENDER_PICKING_PASS if (!m_picking_enabled || !m_show_picking_texture) { #endif // ENABLE_RENDER_PICKING_PASS // draw scene glsafe(::glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)); _render_background(); _render_objects(); _render_sla_slices(); _render_selection(); #if ENABLE_NON_STATIC_CANVAS_MANAGER _render_bed(!camera.is_looking_downward(), true); #else _render_bed(!m_camera.is_looking_downward(), true); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER #if ENABLE_RENDER_SELECTION_CENTER _render_selection_center(); #endif // ENABLE_RENDER_SELECTION_CENTER // we need to set the mouse's scene position here because the depth buffer // could be invalidated by the following gizmo render methods // this position is used later into on_mouse() to drag the objects m_mouse.scene_position = _mouse_to_3d(m_mouse.position.cast()); _render_current_gizmo(); _render_selection_sidebar_hints(); #if ENABLE_RENDER_PICKING_PASS } #endif // ENABLE_RENDER_PICKING_PASS #if ENABLE_SHOW_CAMERA_TARGET _render_camera_target(); #endif // ENABLE_SHOW_CAMERA_TARGET if (m_picking_enabled && m_rectangle_selection.is_dragging()) m_rectangle_selection.render(*this); // draw overlays _render_overlays(); #if ENABLE_RENDER_STATISTICS ImGuiWrapper& imgui = *wxGetApp().imgui(); imgui.begin(std::string("Render statistics"), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoCollapse); imgui.text("Last frame: "); ImGui::SameLine(); imgui.text(std::to_string(m_render_stats.last_frame)); ImGui::SameLine(); imgui.text(" ms"); ImGui::Separator(); imgui.text("Compressed textures: "); ImGui::SameLine(); imgui.text(GLCanvas3DManager::are_compressed_textures_supported() ? "supported" : "not supported"); imgui.text("Max texture size: "); ImGui::SameLine(); imgui.text(std::to_string(GLCanvas3DManager::get_gl_info().get_max_tex_size())); imgui.end(); #endif // ENABLE_RENDER_STATISTICS #if ENABLE_CAMERA_STATISTICS m_camera.debug_render(); #endif // ENABLE_CAMERA_STATISTICS #if ENABLE_CANVAS_TOOLTIP_USING_IMGUI std::string tooltip; // Negative coordinate means out of the window, likely because the window was deactivated. // In that case the tooltip should be hidden. if (m_mouse.position.x() >= 0. && m_mouse.position.y() >= 0.) { if (tooltip.empty()) tooltip = m_layers_editing.get_tooltip(*this); if (tooltip.empty()) tooltip = m_gizmos.get_tooltip(); if (tooltip.empty()) tooltip = m_main_toolbar.get_tooltip(); if (tooltip.empty()) tooltip = m_undoredo_toolbar.get_tooltip(); if (tooltip.empty()) #if ENABLE_NON_STATIC_CANVAS_MANAGER tooltip = wxGetApp().plater()->get_view_toolbar().get_tooltip(); #else tooltip = m_view_toolbar.get_tooltip(); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER } set_tooltip(tooltip); m_tooltip.render(m_mouse.position, *this); #endif // ENABLE_CANVAS_TOOLTIP_USING_IMGUI wxGetApp().plater()->get_mouse3d_controller().render_settings_dialog(*this); wxGetApp().imgui()->render(); m_canvas->SwapBuffers(); #if ENABLE_RENDER_STATISTICS auto end_time = std::chrono::high_resolution_clock::now(); m_render_stats.last_frame = std::chrono::duration_cast(end_time - start_time).count(); #endif // ENABLE_RENDER_STATISTICS #if !ENABLE_CANVAS_TOOLTIP_USING_IMGUI std::string tooltip = ""; if (tooltip.empty()) tooltip = m_layers_editing.get_tooltip(*this); if (tooltip.empty()) tooltip = m_gizmos.get_tooltip(); if (tooltip.empty()) tooltip = m_main_toolbar.get_tooltip(); if (tooltip.empty()) tooltip = m_undoredo_toolbar.get_tooltip(); if (tooltip.empty()) tooltip = m_view_toolbar.get_tooltip(); set_tooltip(tooltip); #endif // !ENABLE_CANVAS_TOOLTIP_USING_IMGUI } void GLCanvas3D::render_thumbnail(ThumbnailData& thumbnail_data, unsigned int w, unsigned int h, bool printable_only, bool parts_only, bool show_bed, bool transparent_background) const { switch (GLCanvas3DManager::get_framebuffers_type()) { #if ENABLE_NON_STATIC_CANVAS_MANAGER case GLCanvas3DManager::EFramebufferType::Arb: { _render_thumbnail_framebuffer(thumbnail_data, w, h, printable_only, parts_only, show_bed, transparent_background); break; } case GLCanvas3DManager::EFramebufferType::Ext: { _render_thumbnail_framebuffer_ext(thumbnail_data, w, h, printable_only, parts_only, show_bed, transparent_background); break; } #else case GLCanvas3DManager::FB_Arb: { _render_thumbnail_framebuffer(thumbnail_data, w, h, printable_only, parts_only, show_bed, transparent_background); break; } case GLCanvas3DManager::FB_Ext: { _render_thumbnail_framebuffer_ext(thumbnail_data, w, h, printable_only, parts_only, show_bed, transparent_background); break; } #endif // ENABLE_NON_STATIC_CANVAS_MANAGER default: { _render_thumbnail_legacy(thumbnail_data, w, h, printable_only, parts_only, show_bed, transparent_background); break; } } } void GLCanvas3D::select_all() { m_selection.add_all(); m_dirty = true; } void GLCanvas3D::deselect_all() { m_selection.remove_all(); wxGetApp().obj_manipul()->set_dirty(); m_gizmos.reset_all_states(); m_gizmos.update_data(); post_event(SimpleEvent(EVT_GLCANVAS_OBJECT_SELECT)); } void GLCanvas3D::delete_selected() { m_selection.erase(); } void GLCanvas3D::ensure_on_bed(unsigned int object_idx) { typedef std::map, double> InstancesToZMap; InstancesToZMap instances_min_z; for (GLVolume* volume : m_volumes.volumes) { if ((volume->object_idx() == (int)object_idx) && !volume->is_modifier) { double min_z = volume->transformed_convex_hull_bounding_box().min(2); std::pair instance = std::make_pair(volume->object_idx(), volume->instance_idx()); InstancesToZMap::iterator it = instances_min_z.find(instance); if (it == instances_min_z.end()) it = instances_min_z.insert(InstancesToZMap::value_type(instance, DBL_MAX)).first; it->second = std::min(it->second, min_z); } } for (GLVolume* volume : m_volumes.volumes) { std::pair instance = std::make_pair(volume->object_idx(), volume->instance_idx()); InstancesToZMap::iterator it = instances_min_z.find(instance); if (it != instances_min_z.end()) volume->set_instance_offset(Z, volume->get_instance_offset(Z) - it->second); } } std::vector GLCanvas3D::get_current_print_zs(bool active_only) const { return m_volumes.get_current_print_zs(active_only); } void GLCanvas3D::set_toolpaths_range(double low, double high) { m_volumes.set_range(low, high); } std::vector GLCanvas3D::load_object(const ModelObject& model_object, int obj_idx, std::vector instance_idxs) { if (instance_idxs.empty()) { for (unsigned int i = 0; i < model_object.instances.size(); ++i) { instance_idxs.emplace_back(i); } } return m_volumes.load_object(&model_object, obj_idx, instance_idxs, m_color_by, m_initialized); } std::vector GLCanvas3D::load_object(const Model& model, int obj_idx) { if ((0 <= obj_idx) && (obj_idx < (int)model.objects.size())) { const ModelObject* model_object = model.objects[obj_idx]; if (model_object != nullptr) return load_object(*model_object, obj_idx, std::vector()); } return std::vector(); } void GLCanvas3D::mirror_selection(Axis axis) { m_selection.mirror(axis); do_mirror(L("Mirror Object")); wxGetApp().obj_manipul()->set_dirty(); } // Reload the 3D scene of // 1) Model / ModelObjects / ModelInstances / ModelVolumes // 2) Print bed // 3) SLA support meshes for their respective ModelObjects / ModelInstances // 4) Wipe tower preview // 5) Out of bed collision status & message overlay (texture) void GLCanvas3D::reload_scene(bool refresh_immediately, bool force_full_scene_refresh) { if ((m_canvas == nullptr) || (m_config == nullptr) || (m_model == nullptr)) return; #if ENABLE_NON_STATIC_CANVAS_MANAGER if (!m_initialized) return; _set_current(); #else if (m_initialized) _set_current(); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER struct ModelVolumeState { ModelVolumeState(const GLVolume* volume) : model_volume(nullptr), geometry_id(volume->geometry_id), volume_idx(-1) {} ModelVolumeState(const ModelVolume* model_volume, const ObjectID& instance_id, const GLVolume::CompositeID& composite_id) : model_volume(model_volume), geometry_id(std::make_pair(model_volume->id().id, instance_id.id)), composite_id(composite_id), volume_idx(-1) {} ModelVolumeState(const ObjectID& volume_id, const ObjectID& instance_id) : model_volume(nullptr), geometry_id(std::make_pair(volume_id.id, instance_id.id)), volume_idx(-1) {} bool new_geometry() const { return this->volume_idx == size_t(-1); } const ModelVolume* model_volume; // ObjectID of ModelVolume + ObjectID of ModelInstance // or timestamp of an SLAPrintObjectStep + ObjectID of ModelInstance std::pair geometry_id; GLVolume::CompositeID composite_id; // Volume index in the new GLVolume vector. size_t volume_idx; }; std::vector model_volume_state; std::vector aux_volume_state; struct GLVolumeState { GLVolumeState() : volume_idx(size_t(-1)) {} GLVolumeState(const GLVolume* volume, unsigned int volume_idx) : composite_id(volume->composite_id), volume_idx(volume_idx) {} GLVolumeState(const GLVolume::CompositeID &composite_id) : composite_id(composite_id), volume_idx(size_t(-1)) {} GLVolume::CompositeID composite_id; // Volume index in the old GLVolume vector. size_t volume_idx; }; // SLA steps to pull the preview meshes for. typedef std::array SLASteps; SLASteps sla_steps = { slaposDrillHoles, slaposSupportTree, slaposPad }; struct SLASupportState { std::array::value> step; }; // State of the sla_steps for all SLAPrintObjects. std::vector sla_support_state; std::vector instance_ids_selected; std::vector map_glvolume_old_to_new(m_volumes.volumes.size(), size_t(-1)); std::vector deleted_volumes; std::vector glvolumes_new; glvolumes_new.reserve(m_volumes.volumes.size()); auto model_volume_state_lower = [](const ModelVolumeState& m1, const ModelVolumeState& m2) { return m1.geometry_id < m2.geometry_id; }; m_reload_delayed = !m_canvas->IsShown() && !refresh_immediately && !force_full_scene_refresh; PrinterTechnology printer_technology = m_process->current_printer_technology(); int volume_idx_wipe_tower_old = -1; // Release invalidated volumes to conserve GPU memory in case of delayed refresh (see m_reload_delayed). // First initialize model_volumes_new_sorted & model_instances_new_sorted. for (int object_idx = 0; object_idx < (int)m_model->objects.size(); ++object_idx) { const ModelObject* model_object = m_model->objects[object_idx]; for (int instance_idx = 0; instance_idx < (int)model_object->instances.size(); ++instance_idx) { const ModelInstance* model_instance = model_object->instances[instance_idx]; for (int volume_idx = 0; volume_idx < (int)model_object->volumes.size(); ++volume_idx) { const ModelVolume* model_volume = model_object->volumes[volume_idx]; model_volume_state.emplace_back(model_volume, model_instance->id(), GLVolume::CompositeID(object_idx, volume_idx, instance_idx)); } } } if (printer_technology == ptSLA) { const SLAPrint* sla_print = this->sla_print(); #ifndef NDEBUG // Verify that the SLAPrint object is synchronized with m_model. check_model_ids_equal(*m_model, sla_print->model()); #endif /* NDEBUG */ sla_support_state.reserve(sla_print->objects().size()); for (const SLAPrintObject* print_object : sla_print->objects()) { SLASupportState state; for (size_t istep = 0; istep < sla_steps.size(); ++istep) { state.step[istep] = print_object->step_state_with_timestamp(sla_steps[istep]); if (state.step[istep].state == PrintStateBase::DONE) { if (!print_object->has_mesh(sla_steps[istep])) // Consider the DONE step without a valid mesh as invalid for the purpose // of mesh visualization. state.step[istep].state = PrintStateBase::INVALID; else if (sla_steps[istep] != slaposDrillHoles) for (const ModelInstance* model_instance : print_object->model_object()->instances) // Only the instances, which are currently printable, will have the SLA support structures kept. // The instances outside the print bed will have the GLVolumes of their support structures released. if (model_instance->is_printable()) aux_volume_state.emplace_back(state.step[istep].timestamp, model_instance->id()); } } sla_support_state.emplace_back(state); } } std::sort(model_volume_state.begin(), model_volume_state.end(), model_volume_state_lower); std::sort(aux_volume_state.begin(), aux_volume_state.end(), model_volume_state_lower); // Release all ModelVolume based GLVolumes not found in the current Model. Find the GLVolume of a hollowed mesh. for (size_t volume_id = 0; volume_id < m_volumes.volumes.size(); ++volume_id) { GLVolume* volume = m_volumes.volumes[volume_id]; ModelVolumeState key(volume); ModelVolumeState* mvs = nullptr; if (volume->volume_idx() < 0) { auto it = std::lower_bound(aux_volume_state.begin(), aux_volume_state.end(), key, model_volume_state_lower); if (it != aux_volume_state.end() && it->geometry_id == key.geometry_id) // This can be an SLA support structure that should not be rendered (in case someone used undo // to revert to before it was generated). We only reuse the volume if that's not the case. if (m_model->objects[volume->composite_id.object_id]->sla_points_status != sla::PointsStatus::NoPoints) mvs = &(*it); } else { auto it = std::lower_bound(model_volume_state.begin(), model_volume_state.end(), key, model_volume_state_lower); if (it != model_volume_state.end() && it->geometry_id == key.geometry_id) mvs = &(*it); } // Emplace instance ID of the volume. Both the aux volumes and model volumes share the same instance ID. // The wipe tower has its own wipe_tower_instance_id(). if (m_selection.contains_volume(volume_id)) instance_ids_selected.emplace_back(volume->geometry_id.second); if (mvs == nullptr || force_full_scene_refresh) { // This GLVolume will be released. if (volume->is_wipe_tower) { // There is only one wipe tower. assert(volume_idx_wipe_tower_old == -1); volume_idx_wipe_tower_old = (int)volume_id; } if (!m_reload_delayed) { deleted_volumes.emplace_back(volume, volume_id); delete volume; } } else { // This GLVolume will be reused. volume->set_sla_shift_z(0.0); map_glvolume_old_to_new[volume_id] = glvolumes_new.size(); mvs->volume_idx = glvolumes_new.size(); glvolumes_new.emplace_back(volume); // Update color of the volume based on the current extruder. if (mvs->model_volume != nullptr) { int extruder_id = mvs->model_volume->extruder_id(); if (extruder_id != -1) volume->extruder_id = extruder_id; volume->is_modifier = !mvs->model_volume->is_model_part(); volume->set_color_from_model_volume(mvs->model_volume); // updates volumes transformations volume->set_instance_transformation(mvs->model_volume->get_object()->instances[mvs->composite_id.instance_id]->get_transformation()); volume->set_volume_transformation(mvs->model_volume->get_transformation()); } } } sort_remove_duplicates(instance_ids_selected); auto deleted_volumes_lower = [](const GLVolumeState &v1, const GLVolumeState &v2) { return v1.composite_id < v2.composite_id; }; std::sort(deleted_volumes.begin(), deleted_volumes.end(), deleted_volumes_lower); if (m_reload_delayed) return; bool update_object_list = false; if (m_volumes.volumes != glvolumes_new) update_object_list = true; m_volumes.volumes = std::move(glvolumes_new); for (unsigned int obj_idx = 0; obj_idx < (unsigned int)m_model->objects.size(); ++ obj_idx) { const ModelObject &model_object = *m_model->objects[obj_idx]; for (int volume_idx = 0; volume_idx < (int)model_object.volumes.size(); ++ volume_idx) { const ModelVolume &model_volume = *model_object.volumes[volume_idx]; for (int instance_idx = 0; instance_idx < (int)model_object.instances.size(); ++ instance_idx) { const ModelInstance &model_instance = *model_object.instances[instance_idx]; ModelVolumeState key(model_volume.id(), model_instance.id()); auto it = std::lower_bound(model_volume_state.begin(), model_volume_state.end(), key, model_volume_state_lower); assert(it != model_volume_state.end() && it->geometry_id == key.geometry_id); if (it->new_geometry()) { // New volume. auto it_old_volume = std::lower_bound(deleted_volumes.begin(), deleted_volumes.end(), GLVolumeState(it->composite_id), deleted_volumes_lower); if (it_old_volume != deleted_volumes.end() && it_old_volume->composite_id == it->composite_id) // If a volume changed its ObjectID, but it reuses a GLVolume's CompositeID, maintain its selection. map_glvolume_old_to_new[it_old_volume->volume_idx] = m_volumes.volumes.size(); // Note the index of the loaded volume, so that we can reload the main model GLVolume with the hollowed mesh // later in this function. it->volume_idx = m_volumes.volumes.size(); m_volumes.load_object_volume(&model_object, obj_idx, volume_idx, instance_idx, m_color_by, m_initialized); m_volumes.volumes.back()->geometry_id = key.geometry_id; update_object_list = true; } else { // Recycling an old GLVolume. GLVolume &existing_volume = *m_volumes.volumes[it->volume_idx]; assert(existing_volume.geometry_id == key.geometry_id); // Update the Object/Volume/Instance indices into the current Model. if (existing_volume.composite_id != it->composite_id) { existing_volume.composite_id = it->composite_id; update_object_list = true; } } } } } if (printer_technology == ptSLA) { size_t idx = 0; const SLAPrint *sla_print = this->sla_print(); std::vector shift_zs(m_model->objects.size(), 0); double relative_correction_z = sla_print->relative_correction().z(); if (relative_correction_z <= EPSILON) relative_correction_z = 1.; for (const SLAPrintObject *print_object : sla_print->objects()) { SLASupportState &state = sla_support_state[idx ++]; const ModelObject *model_object = print_object->model_object(); // Find an index of the ModelObject int object_idx; // There may be new SLA volumes added to the scene for this print_object. // Find the object index of this print_object in the Model::objects list. auto it = std::find(sla_print->model().objects.begin(), sla_print->model().objects.end(), model_object); assert(it != sla_print->model().objects.end()); object_idx = it - sla_print->model().objects.begin(); // Cache the Z offset to be applied to all volumes with this object_idx. shift_zs[object_idx] = print_object->get_current_elevation() / relative_correction_z; // Collect indices of this print_object's instances, for which the SLA support meshes are to be added to the scene. // pairs of std::vector> instances[std::tuple_size::value]; for (size_t print_instance_idx = 0; print_instance_idx < print_object->instances().size(); ++ print_instance_idx) { const SLAPrintObject::Instance &instance = print_object->instances()[print_instance_idx]; // Find index of ModelInstance corresponding to this SLAPrintObject::Instance. auto it = std::find_if(model_object->instances.begin(), model_object->instances.end(), [&instance](const ModelInstance *mi) { return mi->id() == instance.instance_id; }); assert(it != model_object->instances.end()); int instance_idx = it - model_object->instances.begin(); for (size_t istep = 0; istep < sla_steps.size(); ++ istep) if (sla_steps[istep] == slaposDrillHoles) { // Hollowing is a special case, where the mesh from the backend is being loaded into the 1st volume of an instance, // not into its own GLVolume. // There shall always be such a GLVolume allocated. ModelVolumeState key(model_object->volumes.front()->id(), instance.instance_id); auto it = std::lower_bound(model_volume_state.begin(), model_volume_state.end(), key, model_volume_state_lower); assert(it != model_volume_state.end() && it->geometry_id == key.geometry_id); assert(!it->new_geometry()); GLVolume &volume = *m_volumes.volumes[it->volume_idx]; if (! volume.offsets.empty() && state.step[istep].timestamp != volume.offsets.front()) { // The backend either produced a new hollowed mesh, or it invalidated the one that the front end has seen. volume.indexed_vertex_array.release_geometry(); if (state.step[istep].state == PrintStateBase::DONE) { TriangleMesh mesh = print_object->get_mesh(slaposDrillHoles); assert(! mesh.empty()); mesh.transform(sla_print->sla_trafo(*m_model->objects[volume.object_idx()]).inverse()); volume.indexed_vertex_array.load_mesh(mesh); } else { // Reload the original volume. volume.indexed_vertex_array.load_mesh(m_model->objects[volume.object_idx()]->volumes[volume.volume_idx()]->mesh()); } volume.finalize_geometry(true); } //FIXME it is an ugly hack to write the timestamp into the "offsets" field to not have to add another member variable // to the GLVolume. We should refactor GLVolume significantly, so that the GLVolume will not contain member variables // of various concenrs (model vs. 3D print path). volume.offsets = { state.step[istep].timestamp }; } else if (state.step[istep].state == PrintStateBase::DONE) { // Check whether there is an existing auxiliary volume to be updated, or a new auxiliary volume to be created. ModelVolumeState key(state.step[istep].timestamp, instance.instance_id.id); auto it = std::lower_bound(aux_volume_state.begin(), aux_volume_state.end(), key, model_volume_state_lower); assert(it != aux_volume_state.end() && it->geometry_id == key.geometry_id); if (it->new_geometry()) { // This can be an SLA support structure that should not be rendered (in case someone used undo // to revert to before it was generated). If that's the case, we should not generate anything. if (model_object->sla_points_status != sla::PointsStatus::NoPoints) instances[istep].emplace_back(std::pair(instance_idx, print_instance_idx)); else shift_zs[object_idx] = 0.; } else { // Recycling an old GLVolume. Update the Object/Instance indices into the current Model. m_volumes.volumes[it->volume_idx]->composite_id = GLVolume::CompositeID(object_idx, m_volumes.volumes[it->volume_idx]->volume_idx(), instance_idx); m_volumes.volumes[it->volume_idx]->set_instance_transformation(model_object->instances[instance_idx]->get_transformation()); } } } for (size_t istep = 0; istep < sla_steps.size(); ++istep) if (!instances[istep].empty()) m_volumes.load_object_auxiliary(print_object, object_idx, instances[istep], sla_steps[istep], state.step[istep].timestamp, m_initialized); } // Shift-up all volumes of the object so that it has the right elevation with respect to the print bed for (GLVolume* volume : m_volumes.volumes) if (volume->object_idx() < (int)m_model->objects.size() && m_model->objects[volume->object_idx()]->instances[volume->instance_idx()]->is_printable()) volume->set_sla_shift_z(shift_zs[volume->object_idx()]); } if (printer_technology == ptFFF && m_config->has("nozzle_diameter")) { // Should the wipe tower be visualized ? unsigned int extruders_count = (unsigned int)dynamic_cast(m_config->option("nozzle_diameter"))->values.size(); bool wt = dynamic_cast(m_config->option("wipe_tower"))->value; bool co = dynamic_cast(m_config->option("complete_objects"))->value; if ((extruders_count > 1) && wt && !co) { // Height of a print (Show at least a slab) double height = std::max(m_model->bounding_box().max(2), 10.0); float x = dynamic_cast(m_config->option("wipe_tower_x"))->value; float y = dynamic_cast(m_config->option("wipe_tower_y"))->value; float w = dynamic_cast(m_config->option("wipe_tower_width"))->value; float a = dynamic_cast(m_config->option("wipe_tower_rotation_angle"))->value; const Print *print = m_process->fff_print(); const DynamicPrintConfig &print_config = wxGetApp().preset_bundle->prints.get_edited_preset().config; double layer_height = print_config.opt_float("layer_height"); double first_layer_height = print_config.get_abs_value("first_layer_height", layer_height); double nozzle_diameter = print->config().nozzle_diameter.values[0]; float depth = print->wipe_tower_data(extruders_count, first_layer_height, nozzle_diameter).depth; float brim_width = print->wipe_tower_data(extruders_count, first_layer_height, nozzle_diameter).brim_width; int volume_idx_wipe_tower_new = m_volumes.load_wipe_tower_preview( 1000, x, y, w, depth, (float)height, a, !print->is_step_done(psWipeTower), brim_width, m_initialized); if (volume_idx_wipe_tower_old != -1) map_glvolume_old_to_new[volume_idx_wipe_tower_old] = volume_idx_wipe_tower_new; } } update_volumes_colors_by_extruder(); // Update selection indices based on the old/new GLVolumeCollection. if (m_selection.get_mode() == Selection::Instance) m_selection.instances_changed(instance_ids_selected); else m_selection.volumes_changed(map_glvolume_old_to_new); m_gizmos.update_data(); m_gizmos.refresh_on_off_state(); // Update the toolbar if (update_object_list) post_event(SimpleEvent(EVT_GLCANVAS_OBJECT_SELECT)); // checks for geometry outside the print volume to render it accordingly if (!m_volumes.empty()) { ModelInstance::EPrintVolumeState state; const bool contained_min_one = m_volumes.check_outside_state(m_config, &state); _set_warning_texture(WarningTexture::ObjectClashed, state == ModelInstance::PVS_Partly_Outside); _set_warning_texture(WarningTexture::ObjectOutside, state == ModelInstance::PVS_Fully_Outside); post_event(Event(EVT_GLCANVAS_ENABLE_ACTION_BUTTONS, contained_min_one && !m_model->objects.empty() && state != ModelInstance::PVS_Partly_Outside)); } else { _set_warning_texture(WarningTexture::ObjectOutside, false); _set_warning_texture(WarningTexture::ObjectClashed, false); post_event(Event(EVT_GLCANVAS_ENABLE_ACTION_BUTTONS, false)); } refresh_camera_scene_box(); if (m_selection.is_empty()) { // If no object is selected, deactivate the active gizmo, if any // Otherwise it may be shown after cleaning the scene (if it was active while the objects were deleted) m_gizmos.reset_all_states(); // If no object is selected, reset the objects manipulator on the sidebar // to force a reset of its cache auto manip = wxGetApp().obj_manipul(); if (manip != nullptr) manip->set_dirty(); } // and force this canvas to be redrawn. m_dirty = true; } static void reserve_new_volume_finalize_old_volume(GLVolume& vol_new, GLVolume& vol_old, bool gl_initialized, size_t prealloc_size = VERTEX_BUFFER_RESERVE_SIZE) { // Assign the large pre-allocated buffers to the new GLVolume. vol_new.indexed_vertex_array = std::move(vol_old.indexed_vertex_array); // Copy the content back to the old GLVolume. vol_old.indexed_vertex_array = vol_new.indexed_vertex_array; // Clear the buffers, but keep them pre-allocated. vol_new.indexed_vertex_array.clear(); // Just make sure that clear did not clear the reserved memory. // Reserving number of vertices (3x position + 3x color) vol_new.indexed_vertex_array.reserve(prealloc_size / 6); // Finalize the old geometry, possibly move data to the graphics card. vol_old.finalize_geometry(gl_initialized); } static void load_gcode_retractions(const GCodePreviewData::Retraction& retractions, GLCanvas3D::GCodePreviewVolumeIndex::EType extrusion_type, GLVolumeCollection &volumes, GLCanvas3D::GCodePreviewVolumeIndex &volume_index, bool gl_initialized) { // nothing to render, return if (retractions.positions.empty()) return; volume_index.first_volumes.emplace_back(extrusion_type, 0, (unsigned int)volumes.volumes.size()); GLVolume *volume = volumes.new_nontoolpath_volume(retractions.color.rgba.data(), VERTEX_BUFFER_RESERVE_SIZE); GCodePreviewData::Retraction::PositionsList copy(retractions.positions); std::sort(copy.begin(), copy.end(), [](const GCodePreviewData::Retraction::Position& p1, const GCodePreviewData::Retraction::Position& p2) { return p1.position(2) < p2.position(2); }); for (const GCodePreviewData::Retraction::Position& position : copy) { volume->print_zs.emplace_back(unscale(position.position(2))); volume->offsets.emplace_back(volume->indexed_vertex_array.quad_indices.size()); volume->offsets.emplace_back(volume->indexed_vertex_array.triangle_indices.size()); _3DScene::point3_to_verts(position.position, position.width, position.height, *volume); // Ensure that no volume grows over the limits. If the volume is too large, allocate a new one. if (volume->indexed_vertex_array.vertices_and_normals_interleaved.size() > MAX_VERTEX_BUFFER_SIZE) { GLVolume &vol = *volume; volume = volumes.new_nontoolpath_volume(vol.color); reserve_new_volume_finalize_old_volume(*volume, vol, gl_initialized); } } volume->indexed_vertex_array.finalize_geometry(gl_initialized); } void GLCanvas3D::load_gcode_preview(const GCodePreviewData& preview_data, const std::vector& str_tool_colors) { const Print *print = this->fff_print(); if ((m_canvas != nullptr) && (print != nullptr)) { _set_current(); std::vector tool_colors = _parse_colors(str_tool_colors); if (m_volumes.empty()) { m_gcode_preview_volume_index.reset(); _load_gcode_extrusion_paths(preview_data, tool_colors); _load_gcode_travel_paths(preview_data, tool_colors); load_gcode_retractions(preview_data.retraction, GCodePreviewVolumeIndex::Retraction, m_volumes, m_gcode_preview_volume_index, m_initialized); load_gcode_retractions(preview_data.unretraction, GCodePreviewVolumeIndex::Unretraction, m_volumes, m_gcode_preview_volume_index, m_initialized); if (!m_volumes.empty()) { // Remove empty volumes from both m_volumes, update m_gcode_preview_volume_index. { size_t idx_volume_src = 0; size_t idx_volume_dst = 0; size_t idx_volume_index_src = 0; size_t idx_volume_index_dst = 0; size_t idx_volume_of_this_type_last = (idx_volume_index_src + 1 == m_gcode_preview_volume_index.first_volumes.size()) ? m_volumes.volumes.size() : m_gcode_preview_volume_index.first_volumes[idx_volume_index_src + 1].id; size_t idx_volume_of_this_type_first_new = 0; for (;;) { if (idx_volume_src == idx_volume_of_this_type_last) { if (idx_volume_of_this_type_first_new < idx_volume_dst) { // There are some volumes of this type left, therefore their entry in the index has to be maintained. if (idx_volume_index_dst < idx_volume_index_src) m_gcode_preview_volume_index.first_volumes[idx_volume_index_dst] = m_gcode_preview_volume_index.first_volumes[idx_volume_index_src]; m_gcode_preview_volume_index.first_volumes[idx_volume_index_dst].id = idx_volume_of_this_type_first_new; ++ idx_volume_index_dst; } if (idx_volume_of_this_type_last == m_volumes.volumes.size()) break; ++ idx_volume_index_src; idx_volume_of_this_type_last = (idx_volume_index_src + 1 == m_gcode_preview_volume_index.first_volumes.size()) ? m_volumes.volumes.size() : m_gcode_preview_volume_index.first_volumes[idx_volume_index_src + 1].id; idx_volume_of_this_type_first_new = idx_volume_dst; if (idx_volume_src == idx_volume_of_this_type_last) // Empty sequence of volumes for the current index item. continue; } if (! m_volumes.volumes[idx_volume_src]->print_zs.empty()) m_volumes.volumes[idx_volume_dst ++] = m_volumes.volumes[idx_volume_src]; ++ idx_volume_src; } m_volumes.volumes.erase(m_volumes.volumes.begin() + idx_volume_dst, m_volumes.volumes.end()); m_gcode_preview_volume_index.first_volumes.erase(m_gcode_preview_volume_index.first_volumes.begin() + idx_volume_index_dst, m_gcode_preview_volume_index.first_volumes.end()); } _load_fff_shells(); } _update_toolpath_volumes_outside_state(); } _update_gcode_volumes_visibility(preview_data); _show_warning_texture_if_needed(WarningTexture::ToolpathOutside); if (m_volumes.empty()) reset_legend_texture(); else _generate_legend_texture(preview_data, tool_colors); } } void GLCanvas3D::load_sla_preview() { const SLAPrint* print = this->sla_print(); if ((m_canvas != nullptr) && (print != nullptr)) { _set_current(); // Release OpenGL data before generating new data. this->reset_volumes(); _load_sla_shells(); _update_sla_shells_outside_state(); _show_warning_texture_if_needed(WarningTexture::SlaSupportsOutside); } } void GLCanvas3D::load_preview(const std::vector& str_tool_colors, const std::vector& color_print_values) { const Print *print = this->fff_print(); if (print == nullptr) return; _set_current(); // Release OpenGL data before generating new data. this->reset_volumes(); _load_print_toolpaths(); _load_wipe_tower_toolpaths(str_tool_colors); for (const PrintObject* object : print->objects()) _load_print_object_toolpaths(*object, str_tool_colors, color_print_values); _update_toolpath_volumes_outside_state(); _show_warning_texture_if_needed(WarningTexture::ToolpathOutside); if (color_print_values.empty()) reset_legend_texture(); else { auto preview_data = GCodePreviewData(); preview_data.extrusion.view_type = GCodePreviewData::Extrusion::ColorPrint; const std::vector tool_colors = _parse_colors(str_tool_colors); _generate_legend_texture(preview_data, tool_colors); } } void GLCanvas3D::bind_event_handlers() { if (m_canvas != nullptr) { m_canvas->Bind(wxEVT_SIZE, &GLCanvas3D::on_size, this); m_canvas->Bind(wxEVT_IDLE, &GLCanvas3D::on_idle, this); m_canvas->Bind(wxEVT_CHAR, &GLCanvas3D::on_char, this); m_canvas->Bind(wxEVT_KEY_DOWN, &GLCanvas3D::on_key, this); m_canvas->Bind(wxEVT_KEY_UP, &GLCanvas3D::on_key, this); m_canvas->Bind(wxEVT_MOUSEWHEEL, &GLCanvas3D::on_mouse_wheel, this); m_canvas->Bind(wxEVT_TIMER, &GLCanvas3D::on_timer, this); m_canvas->Bind(wxEVT_LEFT_DOWN, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_LEFT_UP, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_MIDDLE_DOWN, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_MIDDLE_UP, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_RIGHT_DOWN, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_RIGHT_UP, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_MOTION, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_ENTER_WINDOW, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_LEAVE_WINDOW, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_LEFT_DCLICK, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_MIDDLE_DCLICK, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_RIGHT_DCLICK, &GLCanvas3D::on_mouse, this); m_canvas->Bind(wxEVT_PAINT, &GLCanvas3D::on_paint, this); } } void GLCanvas3D::unbind_event_handlers() { if (m_canvas != nullptr) { m_canvas->Unbind(wxEVT_SIZE, &GLCanvas3D::on_size, this); m_canvas->Unbind(wxEVT_IDLE, &GLCanvas3D::on_idle, this); m_canvas->Unbind(wxEVT_CHAR, &GLCanvas3D::on_char, this); m_canvas->Unbind(wxEVT_KEY_DOWN, &GLCanvas3D::on_key, this); m_canvas->Unbind(wxEVT_KEY_UP, &GLCanvas3D::on_key, this); m_canvas->Unbind(wxEVT_MOUSEWHEEL, &GLCanvas3D::on_mouse_wheel, this); m_canvas->Unbind(wxEVT_TIMER, &GLCanvas3D::on_timer, this); m_canvas->Unbind(wxEVT_LEFT_DOWN, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_LEFT_UP, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_MIDDLE_DOWN, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_MIDDLE_UP, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_RIGHT_DOWN, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_RIGHT_UP, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_MOTION, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_ENTER_WINDOW, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_LEAVE_WINDOW, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_LEFT_DCLICK, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_MIDDLE_DCLICK, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_RIGHT_DCLICK, &GLCanvas3D::on_mouse, this); m_canvas->Unbind(wxEVT_PAINT, &GLCanvas3D::on_paint, this); } } void GLCanvas3D::on_size(wxSizeEvent& evt) { m_dirty = true; } void GLCanvas3D::on_idle(wxIdleEvent& evt) { if (!m_initialized) return; m_dirty |= m_main_toolbar.update_items_state(); m_dirty |= m_undoredo_toolbar.update_items_state(); #if ENABLE_NON_STATIC_CANVAS_MANAGER m_dirty |= wxGetApp().plater()->get_view_toolbar().update_items_state(); bool mouse3d_controller_applied = wxGetApp().plater()->get_mouse3d_controller().apply(wxGetApp().plater()->get_camera()); #else m_dirty |= m_view_toolbar.update_items_state(); bool mouse3d_controller_applied = wxGetApp().plater()->get_mouse3d_controller().apply(m_camera); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER m_dirty |= mouse3d_controller_applied; if (!m_dirty) return; _refresh_if_shown_on_screen(); if (m_extra_frame_requested || mouse3d_controller_applied) { m_dirty = true; m_extra_frame_requested = false; evt.RequestMore(); } else m_dirty = false; } void GLCanvas3D::on_char(wxKeyEvent& evt) { if (!m_initialized) return; // see include/wx/defs.h enum wxKeyCode int keyCode = evt.GetKeyCode(); int ctrlMask = wxMOD_CONTROL; auto imgui = wxGetApp().imgui(); if (imgui->update_key_data(evt)) { render(); return; } if ((keyCode == WXK_ESCAPE) && _deactivate_undo_redo_toolbar_items()) return; if (m_gizmos.on_char(evt)) return; //#ifdef __APPLE__ // ctrlMask |= wxMOD_RAW_CONTROL; //#endif /* __APPLE__ */ if ((evt.GetModifiers() & ctrlMask) != 0) { switch (keyCode) { #ifdef __APPLE__ case 'a': case 'A': #else /* __APPLE__ */ case WXK_CONTROL_A: #endif /* __APPLE__ */ post_event(SimpleEvent(EVT_GLCANVAS_SELECT_ALL)); break; #ifdef __APPLE__ case 'c': case 'C': #else /* __APPLE__ */ case WXK_CONTROL_C: #endif /* __APPLE__ */ post_event(SimpleEvent(EVT_GLTOOLBAR_COPY)); break; #ifdef __APPLE__ case 'm': case 'M': #else /* __APPLE__ */ case WXK_CONTROL_M: #endif /* __APPLE__ */ { Mouse3DController& controller = wxGetApp().plater()->get_mouse3d_controller(); controller.show_settings_dialog(!controller.is_settings_dialog_shown()); m_dirty = true; break; } #ifdef __APPLE__ case 'v': case 'V': #else /* __APPLE__ */ case WXK_CONTROL_V: #endif /* __APPLE__ */ post_event(SimpleEvent(EVT_GLTOOLBAR_PASTE)); break; #ifdef __APPLE__ case 'y': case 'Y': #else /* __APPLE__ */ case WXK_CONTROL_Y: #endif /* __APPLE__ */ post_event(SimpleEvent(EVT_GLCANVAS_REDO)); break; #ifdef __APPLE__ case 'z': case 'Z': #else /* __APPLE__ */ case WXK_CONTROL_Z: #endif /* __APPLE__ */ post_event(SimpleEvent(EVT_GLCANVAS_UNDO)); break; case WXK_BACK: case WXK_DELETE: post_event(SimpleEvent(EVT_GLTOOLBAR_DELETE_ALL)); break; default: evt.Skip(); } } else if (evt.HasModifiers()) { evt.Skip(); } else { switch (keyCode) { case WXK_BACK: case WXK_DELETE: post_event(SimpleEvent(EVT_GLTOOLBAR_DELETE)); break; case WXK_ESCAPE: { deselect_all(); break; } case WXK_F5: { post_event(SimpleEvent(EVT_GLCANVAS_RELOAD_FROM_DISK)); break; } case '0': { select_view("iso"); break; } case '1': { select_view("top"); break; } case '2': { select_view("bottom"); break; } case '3': { select_view("front"); break; } case '4': { select_view("rear"); break; } case '5': { select_view("left"); break; } case '6': { select_view("right"); break; } case '+': { if (dynamic_cast(m_canvas->GetParent()) != nullptr) post_event(wxKeyEvent(EVT_GLCANVAS_EDIT_COLOR_CHANGE, evt)); else post_event(Event(EVT_GLCANVAS_INCREASE_INSTANCES, +1)); break; } case '-': { if (dynamic_cast(m_canvas->GetParent()) != nullptr) post_event(wxKeyEvent(EVT_GLCANVAS_EDIT_COLOR_CHANGE, evt)); else post_event(Event(EVT_GLCANVAS_INCREASE_INSTANCES, -1)); break; } case '?': { post_event(SimpleEvent(EVT_GLCANVAS_QUESTION_MARK)); break; } case 'A': case 'a': { post_event(SimpleEvent(EVT_GLCANVAS_ARRANGE)); break; } case 'B': case 'b': { zoom_to_bed(); break; } #if ENABLE_SLOPE_RENDERING case 'D': case 'd': { if (!is_layers_editing_enabled()) { m_slope.show(!m_slope.is_shown()); m_dirty = true; } break; } #endif // ENABLE_SLOPE_RENDERING case 'E': case 'e': { m_labels.show(!m_labels.is_shown()); m_dirty = true; break; } case 'I': case 'i': { _update_camera_zoom(1.0); break; } case 'K': #if ENABLE_NON_STATIC_CANVAS_MANAGER case 'k': { wxGetApp().plater()->get_camera().select_next_type(); m_dirty = true; break; } #else case 'k': { m_camera.select_next_type(); m_dirty = true; break; } #endif // ENABLE_NON_STATIC_CANVAS_MANAGER case 'O': case 'o': { _update_camera_zoom(-1.0); break; } #if ENABLE_RENDER_PICKING_PASS case 'T': case 't': { m_show_picking_texture = !m_show_picking_texture; m_dirty = true; break; } #endif // ENABLE_RENDER_PICKING_PASS case 'Z': case 'z': { m_selection.is_empty() ? zoom_to_volumes() : zoom_to_selection(); break; } default: { evt.Skip(); break; } } } } class TranslationProcessor { using UpAction = std::function; using DownAction = std::function; UpAction m_up_action{ nullptr }; DownAction m_down_action{ nullptr }; bool m_running{ false }; Vec3d m_direction{ Vec3d::UnitX() }; public: TranslationProcessor(UpAction up_action, DownAction down_action) : m_up_action(up_action), m_down_action(down_action) { } void process(wxKeyEvent& evt) { const int keyCode = evt.GetKeyCode(); wxEventType type = evt.GetEventType(); if (type == wxEVT_KEY_UP) { switch (keyCode) { case WXK_NUMPAD_LEFT: case WXK_LEFT: case WXK_NUMPAD_RIGHT: case WXK_RIGHT: case WXK_NUMPAD_UP: case WXK_UP: case WXK_NUMPAD_DOWN: case WXK_DOWN: { m_running = false; m_up_action(); break; } default: { break; } } } else if (type == wxEVT_KEY_DOWN) { bool apply = false; switch (keyCode) { case WXK_SHIFT: { if (m_running) apply = true; break; } case WXK_NUMPAD_LEFT: case WXK_LEFT: { m_direction = -Vec3d::UnitX(); apply = true; break; } case WXK_NUMPAD_RIGHT: case WXK_RIGHT: { m_direction = Vec3d::UnitX(); apply = true; break; } case WXK_NUMPAD_UP: case WXK_UP: { m_direction = Vec3d::UnitY(); apply = true; break; } case WXK_NUMPAD_DOWN: case WXK_DOWN: { m_direction = -Vec3d::UnitY(); apply = true; break; } default: { break; } } if (apply) { m_running = true; m_down_action(m_direction, evt.ShiftDown(), evt.CmdDown()); } } } }; void GLCanvas3D::on_key(wxKeyEvent& evt) { static TranslationProcessor translationProcessor( [this]() { do_move(L("Gizmo-Move")); m_gizmos.update_data(); wxGetApp().obj_manipul()->set_dirty(); // Let the plater know that the dragging finished, so a delayed refresh // of the scene with the background processing data should be performed. post_event(SimpleEvent(EVT_GLCANVAS_MOUSE_DRAGGING_FINISHED)); // updates camera target constraints refresh_camera_scene_box(); m_dirty = true; }, [this](const Vec3d& direction, bool slow, bool camera_space) { m_selection.start_dragging(); double multiplier = slow ? 1.0 : 10.0; Vec3d displacement; if (camera_space) { #if ENABLE_NON_STATIC_CANVAS_MANAGER Eigen::Matrix inv_view_3x3 = wxGetApp().plater()->get_camera().get_view_matrix().inverse().matrix().block(0, 0, 3, 3); #else Eigen::Matrix inv_view_3x3 = m_camera.get_view_matrix().inverse().matrix().block(0, 0, 3, 3); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER displacement = multiplier * (inv_view_3x3 * direction); displacement(2) = 0.0; } else displacement = multiplier * direction; m_selection.translate(displacement); m_dirty = true; } ); const int keyCode = evt.GetKeyCode(); auto imgui = wxGetApp().imgui(); if (imgui->update_key_data(evt)) { render(); } else { if (!m_gizmos.on_key(evt)) { if (evt.GetEventType() == wxEVT_KEY_UP) { if (m_tab_down && keyCode == WXK_TAB && !evt.HasAnyModifiers()) { // Enable switching between 3D and Preview with Tab // m_canvas->HandleAsNavigationKey(evt); // XXX: Doesn't work in some cases / on Linux post_event(SimpleEvent(EVT_GLCANVAS_TAB)); } else if (keyCode == WXK_SHIFT) { translationProcessor.process(evt); if (m_picking_enabled && m_rectangle_selection.is_dragging()) { _update_selection_from_hover(); m_rectangle_selection.stop_dragging(); m_mouse.ignore_left_up = true; m_dirty = true; } // set_cursor(Standard); } else if (keyCode == WXK_ALT) { if (m_picking_enabled && m_rectangle_selection.is_dragging()) { _update_selection_from_hover(); m_rectangle_selection.stop_dragging(); m_mouse.ignore_left_up = true; m_dirty = true; } // set_cursor(Standard); } else if (keyCode == WXK_CONTROL) m_dirty = true; else if (m_gizmos.is_enabled() && !m_selection.is_empty()) { translationProcessor.process(evt); switch (keyCode) { case WXK_NUMPAD_PAGEUP: case WXK_PAGEUP: case WXK_NUMPAD_PAGEDOWN: case WXK_PAGEDOWN: { do_rotate(L("Gizmo-Rotate")); m_gizmos.update_data(); wxGetApp().obj_manipul()->set_dirty(); // Let the plater know that the dragging finished, so a delayed refresh // of the scene with the background processing data should be performed. post_event(SimpleEvent(EVT_GLCANVAS_MOUSE_DRAGGING_FINISHED)); // updates camera target constraints refresh_camera_scene_box(); m_dirty = true; break; } default: { break; } } } } else if (evt.GetEventType() == wxEVT_KEY_DOWN) { m_tab_down = keyCode == WXK_TAB && !evt.HasAnyModifiers(); if (keyCode == WXK_SHIFT) { translationProcessor.process(evt); if (m_picking_enabled && (m_gizmos.get_current_type() != GLGizmosManager::SlaSupports)) { m_mouse.ignore_left_up = false; // set_cursor(Cross); } } else if (keyCode == WXK_ALT) { if (m_picking_enabled && (m_gizmos.get_current_type() != GLGizmosManager::SlaSupports)) { m_mouse.ignore_left_up = false; // set_cursor(Cross); } } else if (keyCode == WXK_CONTROL) m_dirty = true; else if (m_gizmos.is_enabled() && !m_selection.is_empty()) { auto do_rotate = [this](double angle_z_rad) { m_selection.start_dragging(); m_selection.rotate(Vec3d(0.0, 0.0, angle_z_rad), TransformationType(TransformationType::World_Relative_Joint)); m_dirty = true; // wxGetApp().obj_manipul()->set_dirty(); }; translationProcessor.process(evt); switch (keyCode) { case WXK_NUMPAD_PAGEUP: case WXK_PAGEUP: { do_rotate(0.25 * M_PI); break; } case WXK_NUMPAD_PAGEDOWN: case WXK_PAGEDOWN: { do_rotate(-0.25 * M_PI); break; } default: { break; } } } else if (!m_gizmos.is_enabled()) { // DoubleSlider navigation in Preview if (keyCode == WXK_LEFT || keyCode == WXK_RIGHT || keyCode == WXK_UP || keyCode == WXK_DOWN) { if (dynamic_cast(m_canvas->GetParent()) != nullptr) post_event(wxKeyEvent(EVT_GLCANVAS_MOVE_DOUBLE_SLIDER, evt)); } } } } } if (keyCode != WXK_TAB && keyCode != WXK_LEFT && keyCode != WXK_UP && keyCode != WXK_RIGHT && keyCode != WXK_DOWN) { evt.Skip(); // Needed to have EVT_CHAR generated as well } } void GLCanvas3D::on_mouse_wheel(wxMouseEvent& evt) { #ifdef WIN32 // Try to filter out spurious mouse wheel events comming from 3D mouse. if (wxGetApp().plater()->get_mouse3d_controller().process_mouse_wheel()) return; #endif if (!m_initialized) return; // Ignore the wheel events if the middle button is pressed. if (evt.MiddleIsDown()) return; #if ENABLE_RETINA_GL const float scale = m_retina_helper->get_scale_factor(); evt.SetX(evt.GetX() * scale); evt.SetY(evt.GetY() * scale); #endif #ifdef __WXMSW__ // For some reason the Idle event is not being generated after the mouse scroll event in case of scrolling with the two fingers on the touch pad, // if the event is not allowed to be passed further. // https://github.com/prusa3d/PrusaSlicer/issues/2750 evt.Skip(); #endif /* __WXMSW__ */ // Performs layers editing updates, if enabled if (is_layers_editing_enabled()) { int object_idx_selected = m_selection.get_object_idx(); if (object_idx_selected != -1) { // A volume is selected. Test, whether hovering over a layer thickness bar. if (m_layers_editing.bar_rect_contains(*this, (float)evt.GetX(), (float)evt.GetY())) { // Adjust the width of the selection. m_layers_editing.band_width = std::max(std::min(m_layers_editing.band_width * (1.0f + 0.1f * (float)evt.GetWheelRotation() / (float)evt.GetWheelDelta()), 10.0f), 1.5f); if (m_canvas != nullptr) m_canvas->Refresh(); return; } } } // Inform gizmos about the event so they have the opportunity to react. if (m_gizmos.on_mouse_wheel(evt)) return; // Calculate the zoom delta and apply it to the current zoom factor _update_camera_zoom((double)evt.GetWheelRotation() / (double)evt.GetWheelDelta()); } void GLCanvas3D::on_timer(wxTimerEvent& evt) { if (m_layers_editing.state == LayersEditing::Editing) _perform_layer_editing_action(); } #ifndef NDEBUG // #define SLIC3R_DEBUG_MOUSE_EVENTS #endif #ifdef SLIC3R_DEBUG_MOUSE_EVENTS std::string format_mouse_event_debug_message(const wxMouseEvent &evt) { static int idx = 0; char buf[2048]; std::string out; sprintf(buf, "Mouse Event %d - ", idx ++); out = buf; if (evt.Entering()) out += "Entering "; if (evt.Leaving()) out += "Leaving "; if (evt.Dragging()) out += "Dragging "; if (evt.Moving()) out += "Moving "; if (evt.Magnify()) out += "Magnify "; if (evt.LeftDown()) out += "LeftDown "; if (evt.LeftUp()) out += "LeftUp "; if (evt.LeftDClick()) out += "LeftDClick "; if (evt.MiddleDown()) out += "MiddleDown "; if (evt.MiddleUp()) out += "MiddleUp "; if (evt.MiddleDClick()) out += "MiddleDClick "; if (evt.RightDown()) out += "RightDown "; if (evt.RightUp()) out += "RightUp "; if (evt.RightDClick()) out += "RightDClick "; sprintf(buf, "(%d, %d)", evt.GetX(), evt.GetY()); out += buf; return out; } #endif /* SLIC3R_DEBUG_MOUSE_EVENTS */ void GLCanvas3D::on_mouse(wxMouseEvent& evt) { if (!m_initialized || !_set_current()) return; #if ENABLE_RETINA_GL const float scale = m_retina_helper->get_scale_factor(); evt.SetX(evt.GetX() * scale); evt.SetY(evt.GetY() * scale); #endif Point pos(evt.GetX(), evt.GetY()); ImGuiWrapper* imgui = wxGetApp().imgui(); #if ENABLE_CANVAS_TOOLTIP_USING_IMGUI if (m_tooltip.is_in_imgui() && evt.LeftUp()) // ignore left up events coming from imgui windows and not processed by them m_mouse.ignore_left_up = true; m_tooltip.set_in_imgui(false); #endif // ENABLE_CANVAS_TOOLTIP_USING_IMGUI if (imgui->update_mouse_data(evt)) { m_mouse.position = evt.Leaving() ? Vec2d(-1.0, -1.0) : pos.cast(); #if ENABLE_CANVAS_TOOLTIP_USING_IMGUI m_tooltip.set_in_imgui(true); #endif // ENABLE_CANVAS_TOOLTIP_USING_IMGUI render(); #ifdef SLIC3R_DEBUG_MOUSE_EVENTS printf((format_mouse_event_debug_message(evt) + " - Consumed by ImGUI\n").c_str()); #endif /* SLIC3R_DEBUG_MOUSE_EVENTS */ // do not return if dragging or tooltip not empty to allow for tooltip update #if ENABLE_CANVAS_TOOLTIP_USING_IMGUI if (!m_mouse.dragging && m_tooltip.is_empty()) return; #else if (!m_mouse.dragging && m_canvas->GetToolTipText().empty()) return; #endif // ENABLE_CANVAS_TOOLTIP_USING_IMGUI } #ifdef __WXMSW__ bool on_enter_workaround = false; if (! evt.Entering() && ! evt.Leaving() && m_mouse.position.x() == -1.0) { // Workaround for SPE-832: There seems to be a mouse event sent to the window before evt.Entering() m_mouse.position = pos.cast(); render(); #ifdef SLIC3R_DEBUG_MOUSE_EVENTS printf((format_mouse_event_debug_message(evt) + " - OnEnter workaround\n").c_str()); #endif /* SLIC3R_DEBUG_MOUSE_EVENTS */ on_enter_workaround = true; } else #endif /* __WXMSW__ */ { #ifdef SLIC3R_DEBUG_MOUSE_EVENTS printf((format_mouse_event_debug_message(evt) + " - other\n").c_str()); #endif /* SLIC3R_DEBUG_MOUSE_EVENTS */ } if (m_main_toolbar.on_mouse(evt, *this)) { if (evt.LeftUp() || evt.MiddleUp() || evt.RightUp()) mouse_up_cleanup(); m_mouse.set_start_position_3D_as_invalid(); return; } if (m_undoredo_toolbar.on_mouse(evt, *this)) { if (evt.LeftUp() || evt.MiddleUp() || evt.RightUp()) mouse_up_cleanup(); m_mouse.set_start_position_3D_as_invalid(); return; } #if ENABLE_NON_STATIC_CANVAS_MANAGER if (wxGetApp().plater()->get_view_toolbar().on_mouse(evt, *this)) #else if (m_view_toolbar.on_mouse(evt, *this)) #endif // ENABLE_NON_STATIC_CANVAS_MANAGER { if (evt.LeftUp() || evt.MiddleUp() || evt.RightUp()) mouse_up_cleanup(); m_mouse.set_start_position_3D_as_invalid(); return; } if (m_gizmos.on_mouse(evt)) { if (evt.LeftUp() || evt.MiddleUp() || evt.RightUp()) mouse_up_cleanup(); m_mouse.set_start_position_3D_as_invalid(); #if ENABLE_CANVAS_TOOLTIP_USING_IMGUI m_mouse.position = pos.cast(); #endif /// ENABLE_CANVAS_TOOLTIP_USING_IMGUI return; } int selected_object_idx = m_selection.get_object_idx(); int layer_editing_object_idx = is_layers_editing_enabled() ? selected_object_idx : -1; m_layers_editing.select_object(*m_model, layer_editing_object_idx); if (m_mouse.drag.move_requires_threshold && m_mouse.is_move_start_threshold_position_2D_defined() && m_mouse.is_move_threshold_met(pos)) { m_mouse.drag.move_requires_threshold = false; m_mouse.set_move_start_threshold_position_2D_as_invalid(); } if (evt.ButtonDown() && wxWindow::FindFocus() != this->m_canvas) // Grab keyboard focus on any mouse click event. m_canvas->SetFocus(); if (evt.Entering()) { //#if defined(__WXMSW__) || defined(__linux__) // // On Windows and Linux needs focus in order to catch key events // Set focus in order to remove it from sidebar fields if (m_canvas != nullptr) { // Only set focus, if the top level window of this canvas is active. auto p = dynamic_cast(evt.GetEventObject()); while (p->GetParent()) p = p->GetParent(); auto *top_level_wnd = dynamic_cast(p); if (top_level_wnd && top_level_wnd->IsActive()) m_canvas->SetFocus(); m_mouse.position = pos.cast(); // 1) forces a frame render to ensure that m_hover_volume_idxs is updated even when the user right clicks while // the context menu is shown, ensuring it to disappear if the mouse is outside any volume and to // change the volume hover state if any is under the mouse // 2) when switching between 3d view and preview the size of the canvas changes if the side panels are visible, // so forces a resize to avoid multiple renders with different sizes (seen as flickering) _refresh_if_shown_on_screen(); } m_mouse.set_start_position_2D_as_invalid(); //#endif } else if (evt.Leaving()) { _deactivate_undo_redo_toolbar_items(); // to remove hover on objects when the mouse goes out of this canvas m_mouse.position = Vec2d(-1.0, -1.0); m_dirty = true; } else if (evt.LeftDown() || evt.RightDown() || evt.MiddleDown()) { if (_deactivate_undo_redo_toolbar_items()) return; // If user pressed left or right button we first check whether this happened // on a volume or not. m_layers_editing.state = LayersEditing::Unknown; if ((layer_editing_object_idx != -1) && m_layers_editing.bar_rect_contains(*this, pos(0), pos(1))) { // A volume is selected and the mouse is inside the layer thickness bar. // Start editing the layer height. m_layers_editing.state = LayersEditing::Editing; _perform_layer_editing_action(&evt); } else if (evt.LeftDown() && (evt.ShiftDown() || evt.AltDown()) && m_picking_enabled) { if (m_gizmos.get_current_type() != GLGizmosManager::SlaSupports) { m_rectangle_selection.start_dragging(m_mouse.position, evt.ShiftDown() ? GLSelectionRectangle::Select : GLSelectionRectangle::Deselect); m_dirty = true; } } else { // Select volume in this 3D canvas. // Don't deselect a volume if layer editing is enabled. We want the object to stay selected // during the scene manipulation. if (m_picking_enabled && (!m_hover_volume_idxs.empty() || !is_layers_editing_enabled())) { if (evt.LeftDown() && !m_hover_volume_idxs.empty()) { int volume_idx = get_first_hover_volume_idx(); bool already_selected = m_selection.contains_volume(volume_idx); bool ctrl_down = evt.CmdDown(); Selection::IndicesList curr_idxs = m_selection.get_volume_idxs(); if (already_selected && ctrl_down) m_selection.remove(volume_idx); else { m_selection.add(volume_idx, !ctrl_down, true); m_mouse.drag.move_requires_threshold = !already_selected; if (already_selected) m_mouse.set_move_start_threshold_position_2D_as_invalid(); else m_mouse.drag.move_start_threshold_position_2D = pos; } // propagate event through callback if (curr_idxs != m_selection.get_volume_idxs()) { if (m_selection.is_empty()) m_gizmos.reset_all_states(); else m_gizmos.refresh_on_off_state(); m_gizmos.update_data(); post_event(SimpleEvent(EVT_GLCANVAS_OBJECT_SELECT)); m_dirty = true; } } } if (!m_hover_volume_idxs.empty()) { if (evt.LeftDown() && m_moving_enabled && (m_mouse.drag.move_volume_idx == -1)) { // Only accept the initial position, if it is inside the volume bounding box. int volume_idx = get_first_hover_volume_idx(); BoundingBoxf3 volume_bbox = m_volumes.volumes[volume_idx]->transformed_bounding_box(); volume_bbox.offset(1.0); if (volume_bbox.contains(m_mouse.scene_position)) { m_volumes.volumes[volume_idx]->hover = GLVolume::HS_None; // The dragging operation is initiated. m_mouse.drag.move_volume_idx = volume_idx; m_selection.start_dragging(); m_mouse.drag.start_position_3D = m_mouse.scene_position; m_moving = true; } } } } } else if (evt.Dragging() && evt.LeftIsDown() && (m_layers_editing.state == LayersEditing::Unknown) && (m_mouse.drag.move_volume_idx != -1)) { if (!m_mouse.drag.move_requires_threshold) { m_mouse.dragging = true; Vec3d cur_pos = m_mouse.drag.start_position_3D; // we do not want to translate objects if the user just clicked on an object while pressing shift to remove it from the selection and then drag if (m_selection.contains_volume(get_first_hover_volume_idx())) { #if ENABLE_NON_STATIC_CANVAS_MANAGER const Camera& camera = wxGetApp().plater()->get_camera(); if (std::abs(camera.get_dir_forward()(2)) < EPSILON) #else if (std::abs(m_camera.get_dir_forward()(2)) < EPSILON) #endif // ENABLE_NON_STATIC_CANVAS_MANAGER { // side view -> move selected volumes orthogonally to camera view direction Linef3 ray = mouse_ray(pos); Vec3d dir = ray.unit_vector(); // finds the intersection of the mouse ray with the plane parallel to the camera viewport and passing throught the starting position // use ray-plane intersection see i.e. https://en.wikipedia.org/wiki/Line%E2%80%93plane_intersection algebric form // in our case plane normal and ray direction are the same (orthogonal view) // when moving to perspective camera the negative z unit axis of the camera needs to be transformed in world space and used as plane normal Vec3d inters = ray.a + (m_mouse.drag.start_position_3D - ray.a).dot(dir) / dir.squaredNorm() * dir; // vector from the starting position to the found intersection Vec3d inters_vec = inters - m_mouse.drag.start_position_3D; #if ENABLE_NON_STATIC_CANVAS_MANAGER Vec3d camera_right = camera.get_dir_right(); Vec3d camera_up = camera.get_dir_up(); #else Vec3d camera_right = m_camera.get_dir_right(); Vec3d camera_up = m_camera.get_dir_up(); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER // finds projection of the vector along the camera axes double projection_x = inters_vec.dot(camera_right); double projection_z = inters_vec.dot(camera_up); // apply offset cur_pos = m_mouse.drag.start_position_3D + projection_x * camera_right + projection_z * camera_up; } else { // Generic view // Get new position at the same Z of the initial click point. float z0 = 0.0f; float z1 = 1.0f; cur_pos = Linef3(_mouse_to_3d(pos, &z0), _mouse_to_3d(pos, &z1)).intersect_plane(m_mouse.drag.start_position_3D(2)); } } m_selection.translate(cur_pos - m_mouse.drag.start_position_3D); wxGetApp().obj_manipul()->set_dirty(); m_dirty = true; } } else if (evt.Dragging() && evt.LeftIsDown() && m_picking_enabled && m_rectangle_selection.is_dragging()) { m_rectangle_selection.dragging(pos.cast()); m_dirty = true; } else if (evt.Dragging()) { m_mouse.dragging = true; if ((m_layers_editing.state != LayersEditing::Unknown) && (layer_editing_object_idx != -1)) { if (m_layers_editing.state == LayersEditing::Editing) { _perform_layer_editing_action(&evt); m_mouse.position = pos.cast(); } } // do not process the dragging if the left mouse was set down in another canvas else if (evt.LeftIsDown()) { // if dragging over blank area with left button, rotate if (m_hover_volume_idxs.empty() && m_mouse.is_start_position_3D_defined()) { const Vec3d rot = (Vec3d(pos.x(), pos.y(), 0.) - m_mouse.drag.start_position_3D) * (PI * TRACKBALLSIZE / 180.); if (wxGetApp().app_config->get("use_free_camera") == "1") // Virtual track ball (similar to the 3DConnexion mouse). #if ENABLE_NON_STATIC_CANVAS_MANAGER wxGetApp().plater()->get_camera().rotate_local_around_target(Vec3d(rot.y(), rot.x(), 0.)); #else m_camera.rotate_local_around_target(Vec3d(rot.y(), rot.x(), 0.)); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER else { // Forces camera right vector to be parallel to XY plane in case it has been misaligned using the 3D mouse free rotation. // It is cheaper to call this function right away instead of testing wxGetApp().plater()->get_mouse3d_controller().connected(), // which checks an atomics (flushes CPU caches). // See GH issue #3816. #if ENABLE_NON_STATIC_CANVAS_MANAGER Camera& camera = wxGetApp().plater()->get_camera(); camera.recover_from_free_camera(); camera.rotate_on_sphere(rot.x(), rot.y(), wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptSLA); #else m_camera.recover_from_free_camera(); m_camera.rotate_on_sphere(rot.x(), rot.y(), wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptSLA); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER } m_dirty = true; } m_mouse.drag.start_position_3D = Vec3d((double)pos(0), (double)pos(1), 0.0); } else if (evt.MiddleIsDown() || evt.RightIsDown()) { // If dragging over blank area with right button, pan. if (m_mouse.is_start_position_2D_defined()) { // get point in model space at Z = 0 float z = 0.0f; const Vec3d& cur_pos = _mouse_to_3d(pos, &z); Vec3d orig = _mouse_to_3d(m_mouse.drag.start_position_2D, &z); #if ENABLE_NON_STATIC_CANVAS_MANAGER Camera& camera = wxGetApp().plater()->get_camera(); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER if (wxGetApp().app_config->get("use_free_camera") != "1") // Forces camera right vector to be parallel to XY plane in case it has been misaligned using the 3D mouse free rotation. // It is cheaper to call this function right away instead of testing wxGetApp().plater()->get_mouse3d_controller().connected(), // which checks an atomics (flushes CPU caches). // See GH issue #3816. #if ENABLE_NON_STATIC_CANVAS_MANAGER camera.recover_from_free_camera(); camera.set_target(camera.get_target() + orig - cur_pos); #else m_camera.recover_from_free_camera(); m_camera.set_target(m_camera.get_target() + orig - cur_pos); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER m_dirty = true; } m_mouse.drag.start_position_2D = pos; } } else if (evt.LeftUp() || evt.MiddleUp() || evt.RightUp()) { if (m_layers_editing.state != LayersEditing::Unknown) { m_layers_editing.state = LayersEditing::Unknown; _stop_timer(); m_layers_editing.accept_changes(*this); } else if ((m_mouse.drag.move_volume_idx != -1) && m_mouse.dragging) { do_move(L("Move Object")); wxGetApp().obj_manipul()->set_dirty(); // Let the plater know that the dragging finished, so a delayed refresh // of the scene with the background processing data should be performed. post_event(SimpleEvent(EVT_GLCANVAS_MOUSE_DRAGGING_FINISHED)); } else if (evt.LeftUp() && m_picking_enabled && m_rectangle_selection.is_dragging()) { if (evt.ShiftDown() || evt.AltDown()) _update_selection_from_hover(); m_rectangle_selection.stop_dragging(); } else if (evt.LeftUp() && !m_mouse.ignore_left_up && !m_mouse.dragging && m_hover_volume_idxs.empty() && !is_layers_editing_enabled()) { // deselect and propagate event through callback if (!evt.ShiftDown() && m_picking_enabled) deselect_all(); } else if (evt.RightUp()) { m_mouse.position = pos.cast(); // forces a frame render to ensure that m_hover_volume_idxs is updated even when the user right clicks while // the context menu is already shown render(); if (!m_hover_volume_idxs.empty()) { // if right clicking on volume, propagate event through callback (shows context menu) int volume_idx = get_first_hover_volume_idx(); if (!m_volumes.volumes[volume_idx]->is_wipe_tower // no context menu for the wipe tower && m_gizmos.get_current_type() != GLGizmosManager::SlaSupports) // disable context menu when the gizmo is open { // forces the selection of the volume /* m_selection.add(volume_idx); // #et_FIXME_if_needed * To avoid extra "Add-Selection" snapshots, * call add() with check_for_already_contained=true * */ m_selection.add(volume_idx, true, true); m_gizmos.refresh_on_off_state(); post_event(SimpleEvent(EVT_GLCANVAS_OBJECT_SELECT)); m_gizmos.update_data(); wxGetApp().obj_manipul()->set_dirty(); // forces a frame render to update the view before the context menu is shown render(); } } Vec2d logical_pos = pos.cast(); #if ENABLE_RETINA_GL const float factor = m_retina_helper->get_scale_factor(); logical_pos = logical_pos.cwiseQuotient(Vec2d(factor, factor)); #endif // ENABLE_RETINA_GL if (!m_mouse.dragging) // do not post the event if the user is panning the scene post_event(RBtnEvent(EVT_GLCANVAS_RIGHT_CLICK, { logical_pos, m_hover_volume_idxs.empty() })); } mouse_up_cleanup(); } else if (evt.Moving()) { m_mouse.position = pos.cast(); // updates gizmos overlay if (m_selection.is_empty()) m_gizmos.reset_all_states(); // Only refresh if picking is enabled, in that case the objects may get highlighted if the mouse cursor hovers over. if (m_picking_enabled) m_dirty = true; } else evt.Skip(); #ifdef __WXMSW__ if (on_enter_workaround) m_mouse.position = Vec2d(-1., -1.); #endif /* __WXMSW__ */ } void GLCanvas3D::on_paint(wxPaintEvent& evt) { if (m_initialized) m_dirty = true; else // Call render directly, so it gets initialized immediately, not from On Idle handler. this->render(); } Size GLCanvas3D::get_canvas_size() const { int w = 0; int h = 0; if (m_canvas != nullptr) m_canvas->GetSize(&w, &h); #if ENABLE_RETINA_GL const float factor = m_retina_helper->get_scale_factor(); w *= factor; h *= factor; #else const float factor = 1.0f; #endif return Size(w, h, factor); } Vec2d GLCanvas3D::get_local_mouse_position() const { if (m_canvas == nullptr) return Vec2d::Zero(); wxPoint mouse_pos = m_canvas->ScreenToClient(wxGetMousePosition()); const double factor = #if ENABLE_RETINA_GL m_retina_helper->get_scale_factor(); #else 1.0; #endif return Vec2d(factor * mouse_pos.x, factor * mouse_pos.y); } void GLCanvas3D::reset_legend_texture() { if (m_legend_texture.get_id() != 0) { _set_current(); m_legend_texture.reset(); } } void GLCanvas3D::set_tooltip(const std::string& tooltip) const { if (m_canvas != nullptr) { #if ENABLE_CANVAS_TOOLTIP_USING_IMGUI m_tooltip.set_text(tooltip); #else wxString txt = wxString::FromUTF8(tooltip.data()); if (m_canvas->GetToolTipText() != txt) m_canvas->SetToolTip(txt); // wxToolTip* t = m_canvas->GetToolTip(); // if (t != nullptr) // { // if (tooltip.empty()) // m_canvas->UnsetToolTip(); // else // t->SetTip(wxString::FromUTF8(tooltip.data())); // } // else if (!tooltip.empty()) // Avoid "empty" tooltips => unset of the empty tooltip leads to application crash under OSX // m_canvas->SetToolTip(wxString::FromUTF8(tooltip.data())); #endif // ENABLE_CANVAS_TOOLTIP_USING_IMGUI } } void GLCanvas3D::do_move(const std::string& snapshot_type) { if (m_model == nullptr) return; if (!snapshot_type.empty()) wxGetApp().plater()->take_snapshot(_(snapshot_type)); std::set> done; // keeps track of modified instances bool object_moved = false; Vec3d wipe_tower_origin = Vec3d::Zero(); Selection::EMode selection_mode = m_selection.get_mode(); for (const GLVolume* v : m_volumes.volumes) { int object_idx = v->object_idx(); int instance_idx = v->instance_idx(); int volume_idx = v->volume_idx(); std::pair done_id(object_idx, instance_idx); if ((0 <= object_idx) && (object_idx < (int)m_model->objects.size())) { done.insert(done_id); // Move instances/volumes ModelObject* model_object = m_model->objects[object_idx]; if (model_object != nullptr) { if (selection_mode == Selection::Instance) model_object->instances[instance_idx]->set_offset(v->get_instance_offset()); else if (selection_mode == Selection::Volume) model_object->volumes[volume_idx]->set_offset(v->get_volume_offset()); object_moved = true; model_object->invalidate_bounding_box(); } } else if (object_idx == 1000) // Move a wipe tower proxy. wipe_tower_origin = v->get_volume_offset(); } // Fixes sinking/flying instances for (const std::pair& i : done) { ModelObject* m = m_model->objects[i.first]; Vec3d shift(0.0, 0.0, -m->get_instance_min_z(i.second)); m_selection.translate(i.first, i.second, shift); m->translate_instance(i.second, shift); } if (object_moved) post_event(SimpleEvent(EVT_GLCANVAS_INSTANCE_MOVED)); if (wipe_tower_origin != Vec3d::Zero()) post_event(Vec3dEvent(EVT_GLCANVAS_WIPETOWER_MOVED, std::move(wipe_tower_origin))); m_dirty = true; } void GLCanvas3D::do_rotate(const std::string& snapshot_type) { if (m_model == nullptr) return; if (!snapshot_type.empty()) wxGetApp().plater()->take_snapshot(_(snapshot_type)); std::set> done; // keeps track of modified instances Selection::EMode selection_mode = m_selection.get_mode(); for (const GLVolume* v : m_volumes.volumes) { int object_idx = v->object_idx(); if (object_idx == 1000) { // the wipe tower Vec3d offset = v->get_volume_offset(); post_event(Vec3dEvent(EVT_GLCANVAS_WIPETOWER_ROTATED, Vec3d(offset(0), offset(1), v->get_volume_rotation()(2)))); } if ((object_idx < 0) || ((int)m_model->objects.size() <= object_idx)) continue; int instance_idx = v->instance_idx(); int volume_idx = v->volume_idx(); done.insert(std::pair(object_idx, instance_idx)); // Rotate instances/volumes. ModelObject* model_object = m_model->objects[object_idx]; if (model_object != nullptr) { if (selection_mode == Selection::Instance) { model_object->instances[instance_idx]->set_rotation(v->get_instance_rotation()); model_object->instances[instance_idx]->set_offset(v->get_instance_offset()); } else if (selection_mode == Selection::Volume) { model_object->volumes[volume_idx]->set_rotation(v->get_volume_rotation()); model_object->volumes[volume_idx]->set_offset(v->get_volume_offset()); } model_object->invalidate_bounding_box(); } } // Fixes sinking/flying instances for (const std::pair& i : done) { ModelObject* m = m_model->objects[i.first]; Vec3d shift(0.0, 0.0, -m->get_instance_min_z(i.second)); m_selection.translate(i.first, i.second, shift); m->translate_instance(i.second, shift); } if (!done.empty()) post_event(SimpleEvent(EVT_GLCANVAS_INSTANCE_ROTATED)); m_dirty = true; } void GLCanvas3D::do_scale(const std::string& snapshot_type) { if (m_model == nullptr) return; if (!snapshot_type.empty()) wxGetApp().plater()->take_snapshot(_(snapshot_type)); std::set> done; // keeps track of modified instances Selection::EMode selection_mode = m_selection.get_mode(); for (const GLVolume* v : m_volumes.volumes) { int object_idx = v->object_idx(); if ((object_idx < 0) || ((int)m_model->objects.size() <= object_idx)) continue; int instance_idx = v->instance_idx(); int volume_idx = v->volume_idx(); done.insert(std::pair(object_idx, instance_idx)); // Rotate instances/volumes ModelObject* model_object = m_model->objects[object_idx]; if (model_object != nullptr) { if (selection_mode == Selection::Instance) { model_object->instances[instance_idx]->set_scaling_factor(v->get_instance_scaling_factor()); model_object->instances[instance_idx]->set_offset(v->get_instance_offset()); } else if (selection_mode == Selection::Volume) { model_object->instances[instance_idx]->set_offset(v->get_instance_offset()); model_object->volumes[volume_idx]->set_scaling_factor(v->get_volume_scaling_factor()); model_object->volumes[volume_idx]->set_offset(v->get_volume_offset()); } model_object->invalidate_bounding_box(); } } // Fixes sinking/flying instances for (const std::pair& i : done) { ModelObject* m = m_model->objects[i.first]; Vec3d shift(0.0, 0.0, -m->get_instance_min_z(i.second)); m_selection.translate(i.first, i.second, shift); m->translate_instance(i.second, shift); } if (!done.empty()) post_event(SimpleEvent(EVT_GLCANVAS_INSTANCE_ROTATED)); m_dirty = true; } void GLCanvas3D::do_flatten(const Vec3d& normal, const std::string& snapshot_type) { if (!snapshot_type.empty()) wxGetApp().plater()->take_snapshot(_(snapshot_type)); m_selection.flattening_rotate(normal); do_rotate(""); // avoid taking another snapshot } void GLCanvas3D::do_mirror(const std::string& snapshot_type) { if (m_model == nullptr) return; if (!snapshot_type.empty()) wxGetApp().plater()->take_snapshot(_(snapshot_type)); std::set> done; // keeps track of modified instances Selection::EMode selection_mode = m_selection.get_mode(); for (const GLVolume* v : m_volumes.volumes) { int object_idx = v->object_idx(); if ((object_idx < 0) || ((int)m_model->objects.size() <= object_idx)) continue; int instance_idx = v->instance_idx(); int volume_idx = v->volume_idx(); done.insert(std::pair(object_idx, instance_idx)); // Mirror instances/volumes ModelObject* model_object = m_model->objects[object_idx]; if (model_object != nullptr) { if (selection_mode == Selection::Instance) model_object->instances[instance_idx]->set_mirror(v->get_instance_mirror()); else if (selection_mode == Selection::Volume) model_object->volumes[volume_idx]->set_mirror(v->get_volume_mirror()); model_object->invalidate_bounding_box(); } } // Fixes sinking/flying instances for (const std::pair& i : done) { ModelObject* m = m_model->objects[i.first]; Vec3d shift(0.0, 0.0, -m->get_instance_min_z(i.second)); m_selection.translate(i.first, i.second, shift); m->translate_instance(i.second, shift); } post_event(SimpleEvent(EVT_GLCANVAS_SCHEDULE_BACKGROUND_PROCESS)); m_dirty = true; } void GLCanvas3D::update_gizmos_on_off_state() { set_as_dirty(); m_gizmos.update_data(); m_gizmos.refresh_on_off_state(); } void GLCanvas3D::handle_sidebar_focus_event(const std::string& opt_key, bool focus_on) { m_sidebar_field = focus_on ? opt_key : ""; if (!m_sidebar_field.empty()) m_gizmos.reset_all_states(); m_dirty = true; } void GLCanvas3D::handle_layers_data_focus_event(const t_layer_height_range range, const EditorType type) { std::string field = "layer_" + std::to_string(type) + "_" + std::to_string(range.first) + "_" + std::to_string(range.second); handle_sidebar_focus_event(field, true); } void GLCanvas3D::update_ui_from_settings() { m_dirty = true; #if ENABLE_RETINA_GL const float orig_scaling = m_retina_helper->get_scale_factor(); const bool use_retina = wxGetApp().app_config->get("use_retina_opengl") == "1"; BOOST_LOG_TRIVIAL(debug) << "GLCanvas3D: Use Retina OpenGL: " << use_retina; m_retina_helper->set_use_retina(use_retina); const float new_scaling = m_retina_helper->get_scale_factor(); if (new_scaling != orig_scaling) { BOOST_LOG_TRIVIAL(debug) << "GLCanvas3D: Scaling factor: " << new_scaling; #if ENABLE_NON_STATIC_CANVAS_MANAGER Camera& camera = wxGetApp().plater()->get_camera(); camera.set_zoom(camera.get_zoom() * new_scaling / orig_scaling); #else m_camera.set_zoom(m_camera.get_zoom() * new_scaling / orig_scaling); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER _refresh_if_shown_on_screen(); } #endif } GLCanvas3D::WipeTowerInfo GLCanvas3D::get_wipe_tower_info() const { WipeTowerInfo wti; for (const GLVolume* vol : m_volumes.volumes) { if (vol->is_wipe_tower) { wti.m_pos = Vec2d(m_config->opt_float("wipe_tower_x"), m_config->opt_float("wipe_tower_y")); wti.m_rotation = (M_PI/180.) * m_config->opt_float("wipe_tower_rotation_angle"); const BoundingBoxf3& bb = vol->bounding_box(); wti.m_bb_size = Vec2d(bb.size().x(), bb.size().y()); break; } } return wti; } Linef3 GLCanvas3D::mouse_ray(const Point& mouse_pos) { float z0 = 0.0f; float z1 = 1.0f; return Linef3(_mouse_to_3d(mouse_pos, &z0), _mouse_to_3d(mouse_pos, &z1)); } double GLCanvas3D::get_size_proportional_to_max_bed_size(double factor) const { #if ENABLE_NON_STATIC_CANVAS_MANAGER return factor * wxGetApp().plater()->get_bed().get_bounding_box(false).max_size(); #else return factor * m_bed.get_bounding_box(false).max_size(); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER } void GLCanvas3D::set_cursor(ECursorType type) { if ((m_canvas != nullptr) && (m_cursor_type != type)) { switch (type) { case Standard: { m_canvas->SetCursor(*wxSTANDARD_CURSOR); break; } case Cross: { m_canvas->SetCursor(*wxCROSS_CURSOR); break; } } m_cursor_type = type; } } void GLCanvas3D::msw_rescale() { m_warning_texture.msw_rescale(*this); } bool GLCanvas3D::has_toolpaths_to_export() const { return m_volumes.has_toolpaths_to_export(); } void GLCanvas3D::export_toolpaths_to_obj(const char* filename) const { m_volumes.export_toolpaths_to_obj(filename); } void GLCanvas3D::mouse_up_cleanup() { m_moving = false; m_mouse.drag.move_volume_idx = -1; m_mouse.set_start_position_3D_as_invalid(); m_mouse.set_start_position_2D_as_invalid(); m_mouse.dragging = false; m_mouse.ignore_left_up = false; m_dirty = true; if (m_canvas->HasCapture()) m_canvas->ReleaseMouse(); } bool GLCanvas3D::_is_shown_on_screen() const { return (m_canvas != nullptr) ? m_canvas->IsShownOnScreen() : false; } // Getter for the const char*[] static bool string_getter(const bool is_undo, int idx, const char** out_text) { return wxGetApp().plater()->undo_redo_string_getter(is_undo, idx, out_text); } bool GLCanvas3D::_render_undo_redo_stack(const bool is_undo, float pos_x) const { bool action_taken = false; ImGuiWrapper* imgui = wxGetApp().imgui(); #if ENABLE_NON_STATIC_CANVAS_MANAGER const float x = pos_x * (float)wxGetApp().plater()->get_camera().get_zoom() + 0.5f * (float)get_canvas_size().get_width(); #else const float x = pos_x * (float)get_camera().get_zoom() + 0.5f * (float)get_canvas_size().get_width(); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER imgui->set_next_window_pos(x, m_undoredo_toolbar.get_height(), ImGuiCond_Always, 0.5f, 0.0f); std::string title = is_undo ? L("Undo History") : L("Redo History"); imgui->begin(_(title), ImGuiWindowFlags_NoMove | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoCollapse); int hovered = m_imgui_undo_redo_hovered_pos; int selected = -1; float em = static_cast(wxGetApp().em_unit()); #if ENABLE_RETINA_GL em *= m_retina_helper->get_scale_factor(); #endif if (imgui->undo_redo_list(ImVec2(18 * em, 26 * em), is_undo, &string_getter, hovered, selected)) m_imgui_undo_redo_hovered_pos = hovered; else m_imgui_undo_redo_hovered_pos = -1; if (selected >= 0) { is_undo ? wxGetApp().plater()->undo_to(selected) : wxGetApp().plater()->redo_to(selected); action_taken = true; } imgui->text(wxString::Format(is_undo ? _L_PLURAL("Undo %1$d Action", "Undo %1$d Actions", hovered + 1) : _L_PLURAL("Redo %1$d Action", "Redo %1$d Actions", hovered + 1), hovered + 1)); imgui->end(); return action_taken; } #define ENABLE_THUMBNAIL_GENERATOR_DEBUG_OUTPUT 0 #if ENABLE_THUMBNAIL_GENERATOR_DEBUG_OUTPUT static void debug_output_thumbnail(const ThumbnailData& thumbnail_data) { // debug export of generated image wxImage image(thumbnail_data.width, thumbnail_data.height); image.InitAlpha(); for (unsigned int r = 0; r < thumbnail_data.height; ++r) { unsigned int rr = (thumbnail_data.height - 1 - r) * thumbnail_data.width; for (unsigned int c = 0; c < thumbnail_data.width; ++c) { unsigned char* px = (unsigned char*)thumbnail_data.pixels.data() + 4 * (rr + c); image.SetRGB((int)c, (int)r, px[0], px[1], px[2]); image.SetAlpha((int)c, (int)r, px[3]); } } image.SaveFile("C:/prusa/test/test.png", wxBITMAP_TYPE_PNG); } #endif // ENABLE_THUMBNAIL_GENERATOR_DEBUG_OUTPUT void GLCanvas3D::_render_thumbnail_internal(ThumbnailData& thumbnail_data, bool printable_only, bool parts_only, bool show_bed, bool transparent_background) const { auto is_visible = [](const GLVolume& v) -> bool { bool ret = v.printable; ret &= (!v.shader_outside_printer_detection_enabled || !v.is_outside); return ret; }; static const GLfloat orange[] = { 0.923f, 0.504f, 0.264f, 1.0f }; static const GLfloat gray[] = { 0.64f, 0.64f, 0.64f, 1.0f }; GLVolumePtrs visible_volumes; for (GLVolume* vol : m_volumes.volumes) { if (!vol->is_modifier && !vol->is_wipe_tower && (!parts_only || (vol->composite_id.volume_id >= 0))) { if (!printable_only || is_visible(*vol)) visible_volumes.emplace_back(vol); } } if (visible_volumes.empty()) return; BoundingBoxf3 box; for (const GLVolume* vol : visible_volumes) { box.merge(vol->transformed_bounding_box()); } Camera camera; camera.set_type(Camera::Ortho); camera.set_scene_box(scene_bounding_box()); camera.apply_viewport(0, 0, thumbnail_data.width, thumbnail_data.height); camera.zoom_to_volumes(visible_volumes); camera.apply_view_matrix(); double near_z = -1.0; double far_z = -1.0; if (show_bed) { // extends the near and far z of the frustrum to avoid the bed being clipped // box in eye space #if ENABLE_NON_STATIC_CANVAS_MANAGER BoundingBoxf3 t_bed_box = wxGetApp().plater()->get_bed().get_bounding_box(true).transformed(camera.get_view_matrix()); #else BoundingBoxf3 t_bed_box = m_bed.get_bounding_box(true).transformed(camera.get_view_matrix()); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER near_z = -t_bed_box.max(2); far_z = -t_bed_box.min(2); } camera.apply_projection(box, near_z, far_z); if (transparent_background) glsafe(::glClearColor(0.0f, 0.0f, 0.0f, 0.0f)); glsafe(::glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)); glsafe(::glEnable(GL_DEPTH_TEST)); m_shader.start_using(); GLint shader_id = m_shader.get_shader_program_id(); GLint color_id = ::glGetUniformLocation(shader_id, "uniform_color"); GLint print_box_detection_id = ::glGetUniformLocation(shader_id, "print_box.volume_detection"); glcheck(); if (print_box_detection_id != -1) glsafe(::glUniform1i(print_box_detection_id, 0)); for (const GLVolume* vol : visible_volumes) { if (color_id >= 0) glsafe(::glUniform4fv(color_id, 1, (vol->printable && !vol->is_outside) ? orange : gray)); else glsafe(::glColor4fv((vol->printable && !vol->is_outside) ? orange : gray)); vol->render(); } m_shader.stop_using(); glsafe(::glDisable(GL_DEPTH_TEST)); if (show_bed) _render_bed(!camera.is_looking_downward(), false); if (transparent_background) glsafe(::glClearColor(1.0f, 1.0f, 1.0f, 1.0f)); } void GLCanvas3D::_render_thumbnail_framebuffer(ThumbnailData& thumbnail_data, unsigned int w, unsigned int h, bool printable_only, bool parts_only, bool show_bed, bool transparent_background) const { thumbnail_data.set(w, h); if (!thumbnail_data.is_valid()) return; bool multisample = m_multisample_allowed; if (multisample) glsafe(::glEnable(GL_MULTISAMPLE)); GLint max_samples; glsafe(::glGetIntegerv(GL_MAX_SAMPLES, &max_samples)); GLsizei num_samples = max_samples / 2; GLuint render_fbo; glsafe(::glGenFramebuffers(1, &render_fbo)); glsafe(::glBindFramebuffer(GL_FRAMEBUFFER, render_fbo)); GLuint render_tex = 0; GLuint render_tex_buffer = 0; if (multisample) { // use renderbuffer instead of texture to avoid the need to use glTexImage2DMultisample which is available only since OpenGL 3.2 glsafe(::glGenRenderbuffers(1, &render_tex_buffer)); glsafe(::glBindRenderbuffer(GL_RENDERBUFFER, render_tex_buffer)); glsafe(::glRenderbufferStorageMultisample(GL_RENDERBUFFER, num_samples, GL_RGBA8, w, h)); glsafe(::glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, render_tex_buffer)); } else { glsafe(::glGenTextures(1, &render_tex)); glsafe(::glBindTexture(GL_TEXTURE_2D, render_tex)); glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr)); glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)); glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)); glsafe(::glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, render_tex, 0)); } GLuint render_depth; glsafe(::glGenRenderbuffers(1, &render_depth)); glsafe(::glBindRenderbuffer(GL_RENDERBUFFER, render_depth)); if (multisample) glsafe(::glRenderbufferStorageMultisample(GL_RENDERBUFFER, num_samples, GL_DEPTH_COMPONENT24, w, h)); else glsafe(::glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT, w, h)); glsafe(::glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, render_depth)); GLenum drawBufs[] = { GL_COLOR_ATTACHMENT0 }; glsafe(::glDrawBuffers(1, drawBufs)); if (::glCheckFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE) { _render_thumbnail_internal(thumbnail_data, printable_only, parts_only, show_bed, transparent_background); if (multisample) { GLuint resolve_fbo; glsafe(::glGenFramebuffers(1, &resolve_fbo)); glsafe(::glBindFramebuffer(GL_FRAMEBUFFER, resolve_fbo)); GLuint resolve_tex; glsafe(::glGenTextures(1, &resolve_tex)); glsafe(::glBindTexture(GL_TEXTURE_2D, resolve_tex)); glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr)); glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)); glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)); glsafe(::glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, resolve_tex, 0)); glsafe(::glDrawBuffers(1, drawBufs)); if (::glCheckFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE) { glsafe(::glBindFramebuffer(GL_READ_FRAMEBUFFER, render_fbo)); glsafe(::glBindFramebuffer(GL_DRAW_FRAMEBUFFER, resolve_fbo)); glsafe(::glBlitFramebuffer(0, 0, w, h, 0, 0, w, h, GL_COLOR_BUFFER_BIT, GL_LINEAR)); glsafe(::glBindFramebuffer(GL_READ_FRAMEBUFFER, resolve_fbo)); glsafe(::glReadPixels(0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, (void*)thumbnail_data.pixels.data())); } glsafe(::glDeleteTextures(1, &resolve_tex)); glsafe(::glDeleteFramebuffers(1, &resolve_fbo)); } else glsafe(::glReadPixels(0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, (void*)thumbnail_data.pixels.data())); #if ENABLE_THUMBNAIL_GENERATOR_DEBUG_OUTPUT debug_output_thumbnail(thumbnail_data); #endif // ENABLE_THUMBNAIL_GENERATOR_DEBUG_OUTPUT } glsafe(::glBindFramebuffer(GL_FRAMEBUFFER, 0)); glsafe(::glDeleteRenderbuffers(1, &render_depth)); if (render_tex_buffer != 0) glsafe(::glDeleteRenderbuffers(1, &render_tex_buffer)); if (render_tex != 0) glsafe(::glDeleteTextures(1, &render_tex)); glsafe(::glDeleteFramebuffers(1, &render_fbo)); if (multisample) glsafe(::glDisable(GL_MULTISAMPLE)); } void GLCanvas3D::_render_thumbnail_framebuffer_ext(ThumbnailData & thumbnail_data, unsigned int w, unsigned int h, bool printable_only, bool parts_only, bool show_bed, bool transparent_background) const { thumbnail_data.set(w, h); if (!thumbnail_data.is_valid()) return; bool multisample = m_multisample_allowed; if (multisample) glsafe(::glEnable(GL_MULTISAMPLE)); GLint max_samples; glsafe(::glGetIntegerv(GL_MAX_SAMPLES_EXT, &max_samples)); GLsizei num_samples = max_samples / 2; GLuint render_fbo; glsafe(::glGenFramebuffersEXT(1, &render_fbo)); glsafe(::glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, render_fbo)); GLuint render_tex = 0; GLuint render_tex_buffer = 0; if (multisample) { // use renderbuffer instead of texture to avoid the need to use glTexImage2DMultisample which is available only since OpenGL 3.2 glsafe(::glGenRenderbuffersEXT(1, &render_tex_buffer)); glsafe(::glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, render_tex_buffer)); glsafe(::glRenderbufferStorageMultisampleEXT(GL_RENDERBUFFER_EXT, num_samples, GL_RGBA8, w, h)); glsafe(::glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_RENDERBUFFER_EXT, render_tex_buffer)); } else { glsafe(::glGenTextures(1, &render_tex)); glsafe(::glBindTexture(GL_TEXTURE_2D, render_tex)); glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr)); glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)); glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)); glsafe(::glFramebufferTexture2D(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, render_tex, 0)); } GLuint render_depth; glsafe(::glGenRenderbuffersEXT(1, &render_depth)); glsafe(::glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, render_depth)); if (multisample) glsafe(::glRenderbufferStorageMultisampleEXT(GL_RENDERBUFFER_EXT, num_samples, GL_DEPTH_COMPONENT24, w, h)); else glsafe(::glRenderbufferStorageEXT(GL_RENDERBUFFER_EXT, GL_DEPTH_COMPONENT, w, h)); glsafe(::glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_RENDERBUFFER_EXT, render_depth)); GLenum drawBufs[] = { GL_COLOR_ATTACHMENT0 }; glsafe(::glDrawBuffers(1, drawBufs)); if (::glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT) == GL_FRAMEBUFFER_COMPLETE_EXT) { _render_thumbnail_internal(thumbnail_data, printable_only, parts_only, show_bed, transparent_background); if (multisample) { GLuint resolve_fbo; glsafe(::glGenFramebuffersEXT(1, &resolve_fbo)); glsafe(::glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, resolve_fbo)); GLuint resolve_tex; glsafe(::glGenTextures(1, &resolve_tex)); glsafe(::glBindTexture(GL_TEXTURE_2D, resolve_tex)); glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr)); glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)); glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)); glsafe(::glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, resolve_tex, 0)); glsafe(::glDrawBuffers(1, drawBufs)); if (::glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT) == GL_FRAMEBUFFER_COMPLETE_EXT) { glsafe(::glBindFramebufferEXT(GL_READ_FRAMEBUFFER_EXT, render_fbo)); glsafe(::glBindFramebufferEXT(GL_DRAW_FRAMEBUFFER_EXT, resolve_fbo)); glsafe(::glBlitFramebufferEXT(0, 0, w, h, 0, 0, w, h, GL_COLOR_BUFFER_BIT, GL_LINEAR)); glsafe(::glBindFramebufferEXT(GL_READ_FRAMEBUFFER_EXT, resolve_fbo)); glsafe(::glReadPixels(0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, (void*)thumbnail_data.pixels.data())); } glsafe(::glDeleteTextures(1, &resolve_tex)); glsafe(::glDeleteFramebuffersEXT(1, &resolve_fbo)); } else glsafe(::glReadPixels(0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, (void*)thumbnail_data.pixels.data())); #if ENABLE_THUMBNAIL_GENERATOR_DEBUG_OUTPUT debug_output_thumbnail(thumbnail_data); #endif // ENABLE_THUMBNAIL_GENERATOR_DEBUG_OUTPUT } glsafe(::glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0)); glsafe(::glDeleteRenderbuffersEXT(1, &render_depth)); if (render_tex_buffer != 0) glsafe(::glDeleteRenderbuffersEXT(1, &render_tex_buffer)); if (render_tex != 0) glsafe(::glDeleteTextures(1, &render_tex)); glsafe(::glDeleteFramebuffersEXT(1, &render_fbo)); if (multisample) glsafe(::glDisable(GL_MULTISAMPLE)); } void GLCanvas3D::_render_thumbnail_legacy(ThumbnailData& thumbnail_data, unsigned int w, unsigned int h, bool printable_only, bool parts_only, bool show_bed, bool transparent_background) const { // check that thumbnail size does not exceed the default framebuffer size const Size& cnv_size = get_canvas_size(); unsigned int cnv_w = (unsigned int)cnv_size.get_width(); unsigned int cnv_h = (unsigned int)cnv_size.get_height(); if ((w > cnv_w) || (h > cnv_h)) { float ratio = std::min((float)cnv_w / (float)w, (float)cnv_h / (float)h); w = (unsigned int)(ratio * (float)w); h = (unsigned int)(ratio * (float)h); } thumbnail_data.set(w, h); if (!thumbnail_data.is_valid()) return; _render_thumbnail_internal(thumbnail_data, printable_only, parts_only, show_bed, transparent_background); glsafe(::glReadPixels(0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, (void*)thumbnail_data.pixels.data())); #if ENABLE_THUMBNAIL_GENERATOR_DEBUG_OUTPUT debug_output_thumbnail(thumbnail_data); #endif // ENABLE_THUMBNAIL_GENERATOR_DEBUG_OUTPUT // restore the default framebuffer size to avoid flickering on the 3D scene #if ENABLE_NON_STATIC_CANVAS_MANAGER wxGetApp().plater()->get_camera().apply_viewport(0, 0, cnv_size.get_width(), cnv_size.get_height()); #else m_camera.apply_viewport(0, 0, cnv_size.get_width(), cnv_size.get_height()); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER } bool GLCanvas3D::_init_toolbars() { if (!_init_main_toolbar()) return false; if (!_init_undoredo_toolbar()) return false; if (!_init_view_toolbar()) return false; return true; } bool GLCanvas3D::_init_main_toolbar() { if (!m_main_toolbar.is_enabled()) return true; BackgroundTexture::Metadata background_data; background_data.filename = "toolbar_background.png"; background_data.left = 16; background_data.top = 16; background_data.right = 16; background_data.bottom = 16; if (!m_main_toolbar.init(background_data)) { // unable to init the toolbar texture, disable it m_main_toolbar.set_enabled(false); return true; } // m_main_toolbar.set_layout_type(GLToolbar::Layout::Vertical); m_main_toolbar.set_layout_type(GLToolbar::Layout::Horizontal); m_main_toolbar.set_horizontal_orientation(GLToolbar::Layout::HO_Right); m_main_toolbar.set_vertical_orientation(GLToolbar::Layout::VO_Top); m_main_toolbar.set_border(5.0f); m_main_toolbar.set_separator_size(5); m_main_toolbar.set_gap_size(2); GLToolbarItem::Data item; item.name = "add"; item.icon_filename = "add.svg"; item.tooltip = _utf8(L("Add...")) + " [" + GUI::shortkey_ctrl_prefix() + "I]"; item.sprite_id = 0; item.left.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_ADD)); }; if (!m_main_toolbar.add_item(item)) return false; item.name = "delete"; item.icon_filename = "remove.svg"; item.tooltip = _utf8(L("Delete")) + " [Del]"; item.sprite_id = 1; item.left.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_DELETE)); }; item.enabling_callback = []()->bool { return wxGetApp().plater()->can_delete(); }; if (!m_main_toolbar.add_item(item)) return false; item.name = "deleteall"; item.icon_filename = "delete_all.svg"; item.tooltip = _utf8(L("Delete all")) + " [" + GUI::shortkey_ctrl_prefix() + "Del]"; item.sprite_id = 2; item.left.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_DELETE_ALL)); }; item.enabling_callback = []()->bool { return wxGetApp().plater()->can_delete_all(); }; if (!m_main_toolbar.add_item(item)) return false; item.name = "arrange"; item.icon_filename = "arrange.svg"; item.tooltip = _utf8(L("Arrange")) + " [A]\n" + _utf8(L("Arrange selection")) + " [Shift+A]"; item.sprite_id = 3; item.left.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_ARRANGE)); }; item.enabling_callback = []()->bool { return wxGetApp().plater()->can_arrange(); }; if (!m_main_toolbar.add_item(item)) return false; if (!m_main_toolbar.add_separator()) return false; item.name = "copy"; item.icon_filename = "copy.svg"; item.tooltip = _utf8(L("Copy")) + " [" + GUI::shortkey_ctrl_prefix() + "C]"; item.sprite_id = 4; item.left.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_COPY)); }; item.enabling_callback = []()->bool { return wxGetApp().plater()->can_copy_to_clipboard(); }; if (!m_main_toolbar.add_item(item)) return false; item.name = "paste"; item.icon_filename = "paste.svg"; item.tooltip = _utf8(L("Paste")) + " [" + GUI::shortkey_ctrl_prefix() + "V]"; item.sprite_id = 5; item.left.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_PASTE)); }; item.enabling_callback = []()->bool { return wxGetApp().plater()->can_paste_from_clipboard(); }; if (!m_main_toolbar.add_item(item)) return false; if (!m_main_toolbar.add_separator()) return false; item.name = "more"; item.icon_filename = "instance_add.svg"; item.tooltip = _utf8(L("Add instance")) + " [+]"; item.sprite_id = 6; item.left.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_MORE)); }; item.visibility_callback = []()->bool { return wxGetApp().get_mode() != comSimple; }; item.enabling_callback = []()->bool { return wxGetApp().plater()->can_increase_instances(); }; if (!m_main_toolbar.add_item(item)) return false; item.name = "fewer"; item.icon_filename = "instance_remove.svg"; item.tooltip = _utf8(L("Remove instance")) + " [-]"; item.sprite_id = 7; item.left.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_FEWER)); }; item.visibility_callback = []()->bool { return wxGetApp().get_mode() != comSimple; }; item.enabling_callback = []()->bool { return wxGetApp().plater()->can_decrease_instances(); }; if (!m_main_toolbar.add_item(item)) return false; if (!m_main_toolbar.add_separator()) return false; item.name = "splitobjects"; item.icon_filename = "split_objects.svg"; item.tooltip = _utf8(L("Split to objects")); item.sprite_id = 8; item.left.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_SPLIT_OBJECTS)); }; item.visibility_callback = GLToolbarItem::Default_Visibility_Callback; item.enabling_callback = []()->bool { return wxGetApp().plater()->can_split_to_objects(); }; if (!m_main_toolbar.add_item(item)) return false; item.name = "splitvolumes"; item.icon_filename = "split_parts.svg"; item.tooltip = _utf8(L("Split to parts")); item.sprite_id = 9; item.left.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_SPLIT_VOLUMES)); }; item.visibility_callback = []()->bool { return wxGetApp().get_mode() != comSimple; }; item.enabling_callback = []()->bool { return wxGetApp().plater()->can_split_to_volumes(); }; if (!m_main_toolbar.add_item(item)) return false; if (!m_main_toolbar.add_separator()) return false; item.name = "layersediting"; item.icon_filename = "layers_white.svg"; item.tooltip = _utf8(L("Variable layer height")); item.sprite_id = 10; item.left.toggable = true; item.left.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_LAYERSEDITING)); }; item.visibility_callback = [this]()->bool { bool res = m_process->current_printer_technology() == ptFFF; // turns off if changing printer technology if (!res && m_main_toolbar.is_item_visible("layersediting") && m_main_toolbar.is_item_pressed("layersediting")) force_main_toolbar_left_action(get_main_toolbar_item_id("layersediting")); return res; }; item.enabling_callback = []()->bool { return wxGetApp().plater()->can_layers_editing(); }; if (!m_main_toolbar.add_item(item)) return false; return true; } bool GLCanvas3D::_init_undoredo_toolbar() { if (!m_undoredo_toolbar.is_enabled()) return true; BackgroundTexture::Metadata background_data; background_data.filename = "toolbar_background.png"; background_data.left = 16; background_data.top = 16; background_data.right = 16; background_data.bottom = 16; if (!m_undoredo_toolbar.init(background_data)) { // unable to init the toolbar texture, disable it m_undoredo_toolbar.set_enabled(false); return true; } // m_undoredo_toolbar.set_layout_type(GLToolbar::Layout::Vertical); m_undoredo_toolbar.set_layout_type(GLToolbar::Layout::Horizontal); m_undoredo_toolbar.set_horizontal_orientation(GLToolbar::Layout::HO_Left); m_undoredo_toolbar.set_vertical_orientation(GLToolbar::Layout::VO_Top); m_undoredo_toolbar.set_border(5.0f); m_undoredo_toolbar.set_separator_size(5); m_undoredo_toolbar.set_gap_size(2); GLToolbarItem::Data item; item.name = "undo"; item.icon_filename = "undo_toolbar.svg"; item.tooltip = _utf8(L("Undo")) + " [" + GUI::shortkey_ctrl_prefix() + "Z]\n" + _utf8(L("Click right mouse button to open/close History")); item.sprite_id = 0; item.left.action_callback = [this]() { post_event(SimpleEvent(EVT_GLCANVAS_UNDO)); }; item.right.toggable = true; item.right.action_callback = [this]() { m_imgui_undo_redo_hovered_pos = -1; }; item.right.render_callback = [this](float left, float right, float, float) { if (m_canvas != nullptr) { if (_render_undo_redo_stack(true, 0.5f * (left + right))) _deactivate_undo_redo_toolbar_items(); } }; item.enabling_callback = [this]()->bool { bool can_undo = wxGetApp().plater()->can_undo(); int id = m_undoredo_toolbar.get_item_id("undo"); std::string curr_additional_tooltip; m_undoredo_toolbar.get_additional_tooltip(id, curr_additional_tooltip); std::string new_additional_tooltip = ""; if (can_undo) { std::string action; wxGetApp().plater()->undo_redo_topmost_string_getter(true, action); new_additional_tooltip = (boost::format(_utf8(L("Next Undo action: %1%"))) % action).str(); } if (new_additional_tooltip != curr_additional_tooltip) { m_undoredo_toolbar.set_additional_tooltip(id, new_additional_tooltip); set_tooltip(""); } return can_undo; }; if (!m_undoredo_toolbar.add_item(item)) return false; item.name = "redo"; item.icon_filename = "redo_toolbar.svg"; item.tooltip = _utf8(L("Redo")) + " [" + GUI::shortkey_ctrl_prefix() + "Y]\n" + _utf8(L("Click right mouse button to open/close History")); item.sprite_id = 1; item.left.action_callback = [this]() { post_event(SimpleEvent(EVT_GLCANVAS_REDO)); }; item.right.action_callback = [this]() { m_imgui_undo_redo_hovered_pos = -1; }; item.right.render_callback = [this](float left, float right, float, float) { if (m_canvas != nullptr) { if (_render_undo_redo_stack(false, 0.5f * (left + right))) _deactivate_undo_redo_toolbar_items(); } }; item.enabling_callback = [this]()->bool { bool can_redo = wxGetApp().plater()->can_redo(); int id = m_undoredo_toolbar.get_item_id("redo"); std::string curr_additional_tooltip; m_undoredo_toolbar.get_additional_tooltip(id, curr_additional_tooltip); std::string new_additional_tooltip = ""; if (can_redo) { std::string action; wxGetApp().plater()->undo_redo_topmost_string_getter(false, action); new_additional_tooltip = (boost::format(_utf8(L("Next Redo action: %1%"))) % action).str(); } if (new_additional_tooltip != curr_additional_tooltip) { m_undoredo_toolbar.set_additional_tooltip(id, new_additional_tooltip); set_tooltip(""); } return can_redo; }; if (!m_undoredo_toolbar.add_item(item)) return false; return true; } bool GLCanvas3D::_init_view_toolbar() { return wxGetApp().plater()->init_view_toolbar(); } bool GLCanvas3D::_set_current() { return m_context != nullptr && m_canvas->SetCurrent(*m_context); } void GLCanvas3D::_resize(unsigned int w, unsigned int h) { if ((m_canvas == nullptr) && (m_context == nullptr)) return; auto *imgui = wxGetApp().imgui(); imgui->set_display_size((float)w, (float)h); const float font_size = 1.5f * wxGetApp().em_unit(); #if ENABLE_RETINA_GL imgui->set_scaling(font_size, 1.0f, m_retina_helper->get_scale_factor()); #else imgui->set_scaling(font_size, m_canvas->GetContentScaleFactor(), 1.0f); #endif // ensures that this canvas is current _set_current(); } BoundingBoxf3 GLCanvas3D::_max_bounding_box(bool include_gizmos, bool include_bed_model) const { BoundingBoxf3 bb = volumes_bounding_box(); // The following is a workaround for gizmos not being taken in account when calculating the tight camera frustrum // A better solution would ask the gizmo manager for the bounding box of the current active gizmo, if any if (include_gizmos && m_gizmos.is_running()) { BoundingBoxf3 sel_bb = m_selection.get_bounding_box(); Vec3d sel_bb_center = sel_bb.center(); Vec3d extend_by = sel_bb.max_size() * Vec3d::Ones(); bb.merge(BoundingBoxf3(sel_bb_center - extend_by, sel_bb_center + extend_by)); } #if ENABLE_NON_STATIC_CANVAS_MANAGER bb.merge(wxGetApp().plater()->get_bed().get_bounding_box(include_bed_model)); #else bb.merge(m_bed.get_bounding_box(include_bed_model)); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER return bb; } void GLCanvas3D::_zoom_to_box(const BoundingBoxf3& box, double margin_factor) { #if ENABLE_NON_STATIC_CANVAS_MANAGER wxGetApp().plater()->get_camera().zoom_to_box(box, margin_factor); #else m_camera.zoom_to_box(box, margin_factor); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER m_dirty = true; } void GLCanvas3D::_update_camera_zoom(double zoom) { #if ENABLE_NON_STATIC_CANVAS_MANAGER wxGetApp().plater()->get_camera().update_zoom(zoom); #else m_camera.update_zoom(zoom); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER m_dirty = true; } void GLCanvas3D::_refresh_if_shown_on_screen() { if (_is_shown_on_screen()) { const Size& cnv_size = get_canvas_size(); _resize((unsigned int)cnv_size.get_width(), (unsigned int)cnv_size.get_height()); // Because of performance problems on macOS, where PaintEvents are not delivered // frequently enough, we call render() here directly when we can. render(); } } void GLCanvas3D::_picking_pass() const { if (m_picking_enabled && !m_mouse.dragging && (m_mouse.position != Vec2d(DBL_MAX, DBL_MAX))) { m_hover_volume_idxs.clear(); // Render the object for picking. // FIXME This cannot possibly work in a multi - sampled context as the color gets mangled by the anti - aliasing. // Better to use software ray - casting on a bounding - box hierarchy. if (m_multisample_allowed) // This flag is often ignored by NVIDIA drivers if rendering into a screen buffer. glsafe(::glDisable(GL_MULTISAMPLE)); glsafe(::glDisable(GL_BLEND)); glsafe(::glEnable(GL_DEPTH_TEST)); glsafe(::glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)); m_camera_clipping_plane = m_gizmos.get_sla_clipping_plane(); if (m_camera_clipping_plane.is_active()) { ::glClipPlane(GL_CLIP_PLANE0, (GLdouble*)m_camera_clipping_plane.get_data()); ::glEnable(GL_CLIP_PLANE0); } _render_volumes_for_picking(); if (m_camera_clipping_plane.is_active()) ::glDisable(GL_CLIP_PLANE0); m_gizmos.render_current_gizmo_for_picking_pass(); if (m_multisample_allowed) glsafe(::glEnable(GL_MULTISAMPLE)); int volume_id = -1; GLubyte color[4] = { 0, 0, 0, 0 }; const Size& cnv_size = get_canvas_size(); bool inside = (0 <= m_mouse.position(0)) && (m_mouse.position(0) < cnv_size.get_width()) && (0 <= m_mouse.position(1)) && (m_mouse.position(1) < cnv_size.get_height()); if (inside) { glsafe(::glReadPixels(m_mouse.position(0), cnv_size.get_height() - m_mouse.position(1) - 1, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, (void*)color)); if (picking_checksum_alpha_channel(color[0], color[1], color[2]) == color[3]) // Only non-interpolated colors are valid, those have their lowest three bits zeroed. volume_id = color[0] + (color[1] << 8) + (color[2] << 16); } if ((0 <= volume_id) && (volume_id < (int)m_volumes.volumes.size())) { m_hover_volume_idxs.emplace_back(volume_id); m_gizmos.set_hover_id(-1); } else m_gizmos.set_hover_id(inside && (unsigned int)volume_id <= GLGizmoBase::BASE_ID ? ((int)GLGizmoBase::BASE_ID - volume_id) : -1); _update_volumes_hover_state(); } } void GLCanvas3D::_rectangular_selection_picking_pass() const { m_gizmos.set_hover_id(-1); std::set idxs; if (m_picking_enabled) { if (m_multisample_allowed) // This flag is often ignored by NVIDIA drivers if rendering into a screen buffer. glsafe(::glDisable(GL_MULTISAMPLE)); glsafe(::glDisable(GL_BLEND)); glsafe(::glEnable(GL_DEPTH_TEST)); glsafe(::glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)); _render_volumes_for_picking(); if (m_multisample_allowed) glsafe(::glEnable(GL_MULTISAMPLE)); int width = std::max((int)m_rectangle_selection.get_width(), 1); int height = std::max((int)m_rectangle_selection.get_height(), 1); int px_count = width * height; int left = (int)m_rectangle_selection.get_left(); int top = get_canvas_size().get_height() - (int)m_rectangle_selection.get_top(); if ((left >= 0) && (top >= 0)) { #define USE_PARALLEL 1 #if USE_PARALLEL struct Pixel { std::array data; // Only non-interpolated colors are valid, those have their lowest three bits zeroed. bool valid() const { return picking_checksum_alpha_channel(data[0], data[1], data[2]) == data[3]; } int id() const { return data[0] + (data[1] << 8) + (data[2] << 16); } }; std::vector frame(px_count); glsafe(::glReadPixels(left, top, width, height, GL_RGBA, GL_UNSIGNED_BYTE, (void*)frame.data())); tbb::spin_mutex mutex; tbb::parallel_for(tbb::blocked_range(0, frame.size(), (size_t)width), [this, &frame, &idxs, &mutex](const tbb::blocked_range& range) { for (size_t i = range.begin(); i < range.end(); ++i) if (frame[i].valid()) { int volume_id = frame[i].id(); if ((0 <= volume_id) && (volume_id < (int)m_volumes.volumes.size())) { mutex.lock(); idxs.insert(volume_id); mutex.unlock(); } } }); #else std::vector frame(4 * px_count); glsafe(::glReadPixels(left, top, width, height, GL_RGBA, GL_UNSIGNED_BYTE, (void*)frame.data())); for (int i = 0; i < px_count; ++i) { int px_id = 4 * i; int volume_id = frame[px_id] + (frame[px_id + 1] << 8) + (frame[px_id + 2] << 16); if ((0 <= volume_id) && (volume_id < (int)m_volumes.volumes.size())) idxs.insert(volume_id); } #endif // USE_PARALLEL } } m_hover_volume_idxs.assign(idxs.begin(), idxs.end()); _update_volumes_hover_state(); } void GLCanvas3D::_render_background() const { glsafe(::glPushMatrix()); glsafe(::glLoadIdentity()); glsafe(::glMatrixMode(GL_PROJECTION)); glsafe(::glPushMatrix()); glsafe(::glLoadIdentity()); // Draws a bottom to top gradient over the complete screen. glsafe(::glDisable(GL_DEPTH_TEST)); ::glBegin(GL_QUADS); if (m_dynamic_background_enabled && _is_any_volume_outside()) ::glColor3fv(ERROR_BG_DARK_COLOR); else ::glColor3fv(DEFAULT_BG_DARK_COLOR); ::glVertex2f(-1.0f, -1.0f); ::glVertex2f(1.0f, -1.0f); if (m_dynamic_background_enabled && _is_any_volume_outside()) ::glColor3fv(ERROR_BG_LIGHT_COLOR); else ::glColor3fv(DEFAULT_BG_LIGHT_COLOR); ::glVertex2f(1.0f, 1.0f); ::glVertex2f(-1.0f, 1.0f); glsafe(::glEnd()); glsafe(::glEnable(GL_DEPTH_TEST)); glsafe(::glPopMatrix()); glsafe(::glMatrixMode(GL_MODELVIEW)); glsafe(::glPopMatrix()); } void GLCanvas3D::_render_bed(float theta, bool show_axes) const { float scale_factor = 1.0; #if ENABLE_RETINA_GL scale_factor = m_retina_helper->get_scale_factor(); #endif // ENABLE_RETINA_GL #if ENABLE_NON_STATIC_CANVAS_MANAGER wxGetApp().plater()->get_bed().render(const_cast(*this), theta, scale_factor, show_axes); #else m_bed.render(const_cast(*this), theta, scale_factor, show_axes); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER } void GLCanvas3D::_render_objects() const { if (m_volumes.empty()) return; glsafe(::glEnable(GL_DEPTH_TEST)); m_camera_clipping_plane = m_gizmos.get_sla_clipping_plane(); if (m_picking_enabled) { // Update the layer editing selection to the first object selected, update the current object maximum Z. const_cast(m_layers_editing).select_object(*m_model, this->is_layers_editing_enabled() ? m_selection.get_object_idx() : -1); if (m_config != nullptr) { #if ENABLE_NON_STATIC_CANVAS_MANAGER const BoundingBoxf3& bed_bb = wxGetApp().plater()->get_bed().get_bounding_box(false); #else const BoundingBoxf3& bed_bb = m_bed.get_bounding_box(false); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER m_volumes.set_print_box((float)bed_bb.min(0), (float)bed_bb.min(1), 0.0f, (float)bed_bb.max(0), (float)bed_bb.max(1), (float)m_config->opt_float("max_print_height")); m_volumes.check_outside_state(m_config, nullptr); } } if (m_use_clipping_planes) m_volumes.set_z_range(-m_clipping_planes[0].get_data()[3], m_clipping_planes[1].get_data()[3]); else m_volumes.set_z_range(-FLT_MAX, FLT_MAX); m_volumes.set_clipping_plane(m_camera_clipping_plane.get_data()); m_shader.start_using(); if (m_picking_enabled && !m_gizmos.is_dragging() && m_layers_editing.is_enabled() && (m_layers_editing.last_object_id != -1) && (m_layers_editing.object_max_z() > 0.0f)) { int object_id = m_layers_editing.last_object_id; #if ENABLE_NON_STATIC_CANVAS_MANAGER m_volumes.render(GLVolumeCollection::Opaque, false, wxGetApp().plater()->get_camera().get_view_matrix(), [object_id](const GLVolume& volume) { // Which volume to paint without the layer height profile shader? return volume.is_active && (volume.is_modifier || volume.composite_id.object_id != object_id); }); #else m_volumes.render(GLVolumeCollection::Opaque, false, m_camera.get_view_matrix(), [object_id](const GLVolume& volume) { // Which volume to paint without the layer height profile shader? return volume.is_active && (volume.is_modifier || volume.composite_id.object_id != object_id); }); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER // Let LayersEditing handle rendering of the active object using the layer height profile shader. m_layers_editing.render_volumes(*this, this->m_volumes); } else { // do not cull backfaces to show broken geometry, if any #if ENABLE_NON_STATIC_CANVAS_MANAGER m_volumes.render(GLVolumeCollection::Opaque, m_picking_enabled, wxGetApp().plater()->get_camera().get_view_matrix(), [this](const GLVolume& volume) { return (m_render_sla_auxiliaries || volume.composite_id.volume_id >= 0); }); #else m_volumes.render(GLVolumeCollection::Opaque, m_picking_enabled, m_camera.get_view_matrix(), [this](const GLVolume& volume) { return (m_render_sla_auxiliaries || volume.composite_id.volume_id >= 0); }); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER } #if ENABLE_NON_STATIC_CANVAS_MANAGER m_volumes.render(GLVolumeCollection::Transparent, false, wxGetApp().plater()->get_camera().get_view_matrix()); #else m_volumes.render(GLVolumeCollection::Transparent, false, m_camera.get_view_matrix()); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER m_shader.stop_using(); m_camera_clipping_plane = ClippingPlane::ClipsNothing(); } void GLCanvas3D::_render_selection() const { float scale_factor = 1.0; #if ENABLE_RETINA_GL scale_factor = m_retina_helper->get_scale_factor(); #endif if (!m_gizmos.is_running()) m_selection.render(scale_factor); } #if ENABLE_RENDER_SELECTION_CENTER void GLCanvas3D::_render_selection_center() const { m_selection.render_center(m_gizmos.is_dragging()); } #endif // ENABLE_RENDER_SELECTION_CENTER void GLCanvas3D::_render_overlays() const { glsafe(::glDisable(GL_DEPTH_TEST)); glsafe(::glPushMatrix()); glsafe(::glLoadIdentity()); // ensure that the textures are renderered inside the frustrum #if ENABLE_NON_STATIC_CANVAS_MANAGER const Camera& camera = wxGetApp().plater()->get_camera(); glsafe(::glTranslated(0.0, 0.0, -(camera.get_near_z() + 0.005))); // ensure that the overlay fits the frustrum near z plane double gui_scale = camera.get_gui_scale(); #else glsafe(::glTranslated(0.0, 0.0, -(m_camera.get_near_z() + 0.005))); // ensure that the overlay fits the frustrum near z plane double gui_scale = m_camera.get_gui_scale(); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER glsafe(::glScaled(gui_scale, gui_scale, 1.0)); _render_gizmos_overlay(); _render_warning_texture(); _render_legend_texture(); // main toolbar and undoredo toolbar need to be both updated before rendering because both their sizes are needed // to correctly place them #if ENABLE_RETINA_GL const float scale = m_retina_helper->get_scale_factor() * wxGetApp().toolbar_icon_scale(true); m_main_toolbar.set_scale(scale); m_undoredo_toolbar.set_scale(scale); #else const float size = int(GLToolbar::Default_Icons_Size * wxGetApp().toolbar_icon_scale(true)); m_main_toolbar.set_icons_size(size); m_undoredo_toolbar.set_icons_size(size); #endif // ENABLE_RETINA_GL _render_main_toolbar(); _render_undoredo_toolbar(); _render_view_toolbar(); if ((m_layers_editing.last_object_id >= 0) && (m_layers_editing.object_max_z() > 0.0f)) m_layers_editing.render_overlay(*this); const ConfigOptionBool* opt = dynamic_cast(m_config->option("complete_objects")); bool sequential_print = opt != nullptr && opt->value; std::vector sorted_instances; if (sequential_print) { for (ModelObject* model_object : m_model->objects) for (ModelInstance* model_instance : model_object->instances) { sorted_instances.emplace_back(model_instance); } } m_labels.render(sorted_instances); #if ENABLE_SLOPE_RENDERING m_slope.render(); #endif // ENABLE_SLOPE_RENDERING glsafe(::glPopMatrix()); } void GLCanvas3D::_render_warning_texture() const { m_warning_texture.render(*this); } void GLCanvas3D::_render_legend_texture() const { if (!m_legend_texture_enabled) return; m_legend_texture.render(*this); } void GLCanvas3D::_render_volumes_for_picking() const { static const GLfloat INV_255 = 1.0f / 255.0f; // do not cull backfaces to show broken geometry, if any glsafe(::glDisable(GL_CULL_FACE)); glsafe(::glEnableClientState(GL_VERTEX_ARRAY)); glsafe(::glEnableClientState(GL_NORMAL_ARRAY)); #if ENABLE_NON_STATIC_CANVAS_MANAGER const Transform3d& view_matrix = wxGetApp().plater()->get_camera().get_view_matrix(); #else const Transform3d& view_matrix = m_camera.get_view_matrix(); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER for (size_t type = 0; type < 2; ++ type) { GLVolumeWithIdAndZList to_render = volumes_to_render(m_volumes.volumes, (type == 0) ? GLVolumeCollection::Opaque : GLVolumeCollection::Transparent, view_matrix); for (const GLVolumeWithIdAndZ& volume : to_render) if (!volume.first->disabled && ((volume.first->composite_id.volume_id >= 0) || m_render_sla_auxiliaries)) { // Object picking mode. Render the object with a color encoding the object index. unsigned int id = volume.second.first; unsigned int r = (id & (0x000000FF << 0)) << 0; unsigned int g = (id & (0x000000FF << 8)) >> 8; unsigned int b = (id & (0x000000FF << 16)) >> 16; unsigned int a = picking_checksum_alpha_channel(r, g, b); glsafe(::glColor4f((GLfloat)r * INV_255, (GLfloat)g * INV_255, (GLfloat)b * INV_255, (GLfloat)a * INV_255)); volume.first->render(); } } glsafe(::glDisableClientState(GL_NORMAL_ARRAY)); glsafe(::glDisableClientState(GL_VERTEX_ARRAY)); glsafe(::glEnable(GL_CULL_FACE)); } void GLCanvas3D::_render_current_gizmo() const { m_gizmos.render_current_gizmo(); } void GLCanvas3D::_render_gizmos_overlay() const { #if ENABLE_RETINA_GL // m_gizmos.set_overlay_scale(m_retina_helper->get_scale_factor()); const float scale = m_retina_helper->get_scale_factor()*wxGetApp().toolbar_icon_scale(); m_gizmos.set_overlay_scale(scale); //! #ys_FIXME_experiment #else // m_gizmos.set_overlay_scale(m_canvas->GetContentScaleFactor()); // m_gizmos.set_overlay_scale(wxGetApp().em_unit()*0.1f); const float size = int(GLGizmosManager::Default_Icons_Size*wxGetApp().toolbar_icon_scale()); m_gizmos.set_overlay_icon_size(size); //! #ys_FIXME_experiment #endif /* __WXMSW__ */ m_gizmos.render_overlay(); } void GLCanvas3D::_render_main_toolbar() const { if (!m_main_toolbar.is_enabled()) return; Size cnv_size = get_canvas_size(); #if ENABLE_NON_STATIC_CANVAS_MANAGER float inv_zoom = (float)wxGetApp().plater()->get_camera().get_inv_zoom(); #else float inv_zoom = (float)m_camera.get_inv_zoom(); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER float top = 0.5f * (float)cnv_size.get_height() * inv_zoom; float left = -0.5f * (m_main_toolbar.get_width() + m_undoredo_toolbar.get_width()) * inv_zoom; m_main_toolbar.set_position(top, left); m_main_toolbar.render(*this); } void GLCanvas3D::_render_undoredo_toolbar() const { if (!m_undoredo_toolbar.is_enabled()) return; Size cnv_size = get_canvas_size(); #if ENABLE_NON_STATIC_CANVAS_MANAGER float inv_zoom = (float)wxGetApp().plater()->get_camera().get_inv_zoom(); #else float inv_zoom = (float)m_camera.get_inv_zoom(); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER float top = 0.5f * (float)cnv_size.get_height() * inv_zoom; float left = (m_main_toolbar.get_width() - 0.5f * (m_main_toolbar.get_width() + m_undoredo_toolbar.get_width())) * inv_zoom; m_undoredo_toolbar.set_position(top, left); m_undoredo_toolbar.render(*this); } void GLCanvas3D::_render_view_toolbar() const { #if ENABLE_NON_STATIC_CANVAS_MANAGER GLToolbar& view_toolbar = wxGetApp().plater()->get_view_toolbar(); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER #if ENABLE_RETINA_GL // m_view_toolbar.set_scale(m_retina_helper->get_scale_factor()); const float scale = m_retina_helper->get_scale_factor() * wxGetApp().toolbar_icon_scale(); #if ENABLE_NON_STATIC_CANVAS_MANAGER view_toolbar.set_scale(scale); //! #ys_FIXME_experiment #else m_view_toolbar.set_scale(scale); //! #ys_FIXME_experiment #endif // ENABLE_NON_STATIC_CANVAS_MANAGER #else // m_view_toolbar.set_scale(m_canvas->GetContentScaleFactor()); // m_view_toolbar.set_scale(wxGetApp().em_unit()*0.1f); const float size = int(GLGizmosManager::Default_Icons_Size * wxGetApp().toolbar_icon_scale()); #if ENABLE_NON_STATIC_CANVAS_MANAGER view_toolbar.set_icons_size(size); //! #ys_FIXME_experiment #else m_view_toolbar.set_icons_size(size); //! #ys_FIXME_experiment #endif // ENABLE_NON_STATIC_CANVAS_MANAGER #endif // ENABLE_RETINA_GL Size cnv_size = get_canvas_size(); #if ENABLE_NON_STATIC_CANVAS_MANAGER float inv_zoom = (float)wxGetApp().plater()->get_camera().get_inv_zoom(); #else float inv_zoom = (float)m_camera.get_inv_zoom(); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER // places the toolbar on the bottom-left corner of the 3d scene #if ENABLE_NON_STATIC_CANVAS_MANAGER float top = (-0.5f * (float)cnv_size.get_height() + view_toolbar.get_height()) * inv_zoom; #else float top = (-0.5f * (float)cnv_size.get_height() + m_view_toolbar.get_height()) * inv_zoom; #endif // ENABLE_NON_STATIC_CANVAS_MANAGER float left = -0.5f * (float)cnv_size.get_width() * inv_zoom; #if ENABLE_NON_STATIC_CANVAS_MANAGER view_toolbar.set_position(top, left); view_toolbar.render(*this); #else m_view_toolbar.set_position(top, left); m_view_toolbar.render(*this); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER } #if ENABLE_SHOW_CAMERA_TARGET void GLCanvas3D::_render_camera_target() const { double half_length = 5.0; glsafe(::glDisable(GL_DEPTH_TEST)); glsafe(::glLineWidth(2.0f)); ::glBegin(GL_LINES); const Vec3d& target = m_camera.get_target(); // draw line for x axis ::glColor3f(1.0f, 0.0f, 0.0f); ::glVertex3d(target(0) - half_length, target(1), target(2)); ::glVertex3d(target(0) + half_length, target(1), target(2)); // draw line for y axis ::glColor3f(0.0f, 1.0f, 0.0f); ::glVertex3d(target(0), target(1) - half_length, target(2)); ::glVertex3d(target(0), target(1) + half_length, target(2)); // draw line for z axis ::glColor3f(0.0f, 0.0f, 1.0f); ::glVertex3d(target(0), target(1), target(2) - half_length); ::glVertex3d(target(0), target(1), target(2) + half_length); glsafe(::glEnd()); } #endif // ENABLE_SHOW_CAMERA_TARGET void GLCanvas3D::_render_sla_slices() const { if (!m_use_clipping_planes || wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptSLA) return; const SLAPrint* print = this->sla_print(); const PrintObjects& print_objects = print->objects(); if (print_objects.empty()) // nothing to render, return return; double clip_min_z = -m_clipping_planes[0].get_data()[3]; double clip_max_z = m_clipping_planes[1].get_data()[3]; for (unsigned int i = 0; i < (unsigned int)print_objects.size(); ++i) { const SLAPrintObject* obj = print_objects[i]; if (!obj->is_step_done(slaposSliceSupports)) continue; SlaCap::ObjectIdToTrianglesMap::iterator it_caps_bottom = m_sla_caps[0].triangles.find(i); SlaCap::ObjectIdToTrianglesMap::iterator it_caps_top = m_sla_caps[1].triangles.find(i); { if (it_caps_bottom == m_sla_caps[0].triangles.end()) it_caps_bottom = m_sla_caps[0].triangles.emplace(i, SlaCap::Triangles()).first; if (! m_sla_caps[0].matches(clip_min_z)) { m_sla_caps[0].z = clip_min_z; it_caps_bottom->second.object.clear(); it_caps_bottom->second.supports.clear(); } if (it_caps_top == m_sla_caps[1].triangles.end()) it_caps_top = m_sla_caps[1].triangles.emplace(i, SlaCap::Triangles()).first; if (! m_sla_caps[1].matches(clip_max_z)) { m_sla_caps[1].z = clip_max_z; it_caps_top->second.object.clear(); it_caps_top->second.supports.clear(); } } Pointf3s &bottom_obj_triangles = it_caps_bottom->second.object; Pointf3s &bottom_sup_triangles = it_caps_bottom->second.supports; Pointf3s &top_obj_triangles = it_caps_top->second.object; Pointf3s &top_sup_triangles = it_caps_top->second.supports; if ((bottom_obj_triangles.empty() || bottom_sup_triangles.empty() || top_obj_triangles.empty() || top_sup_triangles.empty()) && !obj->get_slice_index().empty()) { double layer_height = print->default_object_config().layer_height.value; double initial_layer_height = print->material_config().initial_layer_height.value; bool left_handed = obj->is_left_handed(); coord_t key_zero = obj->get_slice_index().front().print_level(); // Slice at the center of the slab starting at clip_min_z will be rendered for the lower plane. coord_t key_low = coord_t((clip_min_z - initial_layer_height + layer_height) / SCALING_FACTOR) + key_zero; // Slice at the center of the slab ending at clip_max_z will be rendered for the upper plane. coord_t key_high = coord_t((clip_max_z - initial_layer_height) / SCALING_FACTOR) + key_zero; const SliceRecord& slice_low = obj->closest_slice_to_print_level(key_low, coord_t(SCALED_EPSILON)); const SliceRecord& slice_high = obj->closest_slice_to_print_level(key_high, coord_t(SCALED_EPSILON)); // Offset to avoid OpenGL Z fighting between the object's horizontal surfaces and the triangluated surfaces of the cuts. double plane_shift_z = 0.002; if (slice_low.is_valid()) { const ExPolygons& obj_bottom = slice_low.get_slice(soModel); const ExPolygons& sup_bottom = slice_low.get_slice(soSupport); // calculate model bottom cap if (bottom_obj_triangles.empty() && !obj_bottom.empty()) bottom_obj_triangles = triangulate_expolygons_3d(obj_bottom, clip_min_z - plane_shift_z, ! left_handed); // calculate support bottom cap if (bottom_sup_triangles.empty() && !sup_bottom.empty()) bottom_sup_triangles = triangulate_expolygons_3d(sup_bottom, clip_min_z - plane_shift_z, ! left_handed); } if (slice_high.is_valid()) { const ExPolygons& obj_top = slice_high.get_slice(soModel); const ExPolygons& sup_top = slice_high.get_slice(soSupport); // calculate model top cap if (top_obj_triangles.empty() && !obj_top.empty()) top_obj_triangles = triangulate_expolygons_3d(obj_top, clip_max_z + plane_shift_z, left_handed); // calculate support top cap if (top_sup_triangles.empty() && !sup_top.empty()) top_sup_triangles = triangulate_expolygons_3d(sup_top, clip_max_z + plane_shift_z, left_handed); } } if (!bottom_obj_triangles.empty() || !top_obj_triangles.empty() || !bottom_sup_triangles.empty() || !top_sup_triangles.empty()) { for (const SLAPrintObject::Instance& inst : obj->instances()) { glsafe(::glPushMatrix()); glsafe(::glTranslated(unscale(inst.shift.x()), unscale(inst.shift.y()), 0)); glsafe(::glRotatef(Geometry::rad2deg(inst.rotation), 0.0, 0.0, 1.0)); if (obj->is_left_handed()) // The polygons are mirrored by X. glsafe(::glScalef(-1.0, 1.0, 1.0)); glsafe(::glEnableClientState(GL_VERTEX_ARRAY)); glsafe(::glColor3f(1.0f, 0.37f, 0.0f)); if (!bottom_obj_triangles.empty()) { glsafe(::glVertexPointer(3, GL_DOUBLE, 0, (GLdouble*)bottom_obj_triangles.front().data())); glsafe(::glDrawArrays(GL_TRIANGLES, 0, bottom_obj_triangles.size())); } if (! top_obj_triangles.empty()) { glsafe(::glVertexPointer(3, GL_DOUBLE, 0, (GLdouble*)top_obj_triangles.front().data())); glsafe(::glDrawArrays(GL_TRIANGLES, 0, top_obj_triangles.size())); } glsafe(::glColor3f(1.0f, 0.0f, 0.37f)); if (! bottom_sup_triangles.empty()) { glsafe(::glVertexPointer(3, GL_DOUBLE, 0, (GLdouble*)bottom_sup_triangles.front().data())); glsafe(::glDrawArrays(GL_TRIANGLES, 0, bottom_sup_triangles.size())); } if (! top_sup_triangles.empty()) { glsafe(::glVertexPointer(3, GL_DOUBLE, 0, (GLdouble*)top_sup_triangles.front().data())); glsafe(::glDrawArrays(GL_TRIANGLES, 0, top_sup_triangles.size())); } glsafe(::glDisableClientState(GL_VERTEX_ARRAY)); glsafe(::glPopMatrix()); } } } } void GLCanvas3D::_render_selection_sidebar_hints() const { m_selection.render_sidebar_hints(m_sidebar_field, m_shader); } void GLCanvas3D::_update_volumes_hover_state() const { for (GLVolume* v : m_volumes.volumes) { v->hover = GLVolume::HS_None; } if (m_hover_volume_idxs.empty()) return; bool ctrl_pressed = wxGetKeyState(WXK_CONTROL); // additive select/deselect bool shift_pressed = wxGetKeyState(WXK_SHIFT); // select by rectangle bool alt_pressed = wxGetKeyState(WXK_ALT); // deselect by rectangle if (alt_pressed && (shift_pressed || ctrl_pressed)) { // illegal combinations of keys m_hover_volume_idxs.clear(); return; } bool selection_modifiers_only = m_selection.is_empty() || m_selection.is_any_modifier(); bool hover_modifiers_only = true; for (int i : m_hover_volume_idxs) { if (!m_volumes.volumes[i]->is_modifier) { hover_modifiers_only = false; break; } } std::set> hover_instances; for (int i : m_hover_volume_idxs) { const GLVolume& v = *m_volumes.volumes[i]; hover_instances.insert(std::make_pair(v.object_idx(), v.instance_idx())); } bool hover_from_single_instance = hover_instances.size() == 1; if (hover_modifiers_only && !hover_from_single_instance) { // do not allow to select volumes from different instances m_hover_volume_idxs.clear(); return; } for (int i : m_hover_volume_idxs) { GLVolume& volume = *m_volumes.volumes[i]; if (volume.hover != GLVolume::HS_None) continue; bool deselect = volume.selected && ((ctrl_pressed && !shift_pressed) || alt_pressed); // (volume->is_modifier && !selection_modifiers_only && !is_ctrl_pressed) -> allows hovering on selected modifiers belonging to selection of type Instance bool select = (!volume.selected || (volume.is_modifier && !selection_modifiers_only && !ctrl_pressed)) && !alt_pressed; if (select || deselect) { bool as_volume = volume.is_modifier && hover_from_single_instance && !ctrl_pressed && ( (!deselect) || (deselect && !m_selection.is_single_full_instance() && (volume.object_idx() == m_selection.get_object_idx()) && (volume.instance_idx() == m_selection.get_instance_idx())) ); if (as_volume) { if (deselect) volume.hover = GLVolume::HS_Deselect; else volume.hover = GLVolume::HS_Select; } else { int object_idx = volume.object_idx(); int instance_idx = volume.instance_idx(); for (GLVolume* v : m_volumes.volumes) { if ((v->object_idx() == object_idx) && (v->instance_idx() == instance_idx)) { if (deselect) v->hover = GLVolume::HS_Deselect; else v->hover = GLVolume::HS_Select; } } } } } } void GLCanvas3D::_perform_layer_editing_action(wxMouseEvent* evt) { int object_idx_selected = m_layers_editing.last_object_id; if (object_idx_selected == -1) return; // A volume is selected. Test, whether hovering over a layer thickness bar. if (evt != nullptr) { const Rect& rect = LayersEditing::get_bar_rect_screen(*this); float b = rect.get_bottom(); m_layers_editing.last_z = m_layers_editing.object_max_z() * (b - evt->GetY() - 1.0f) / (b - rect.get_top()); m_layers_editing.last_action = evt->ShiftDown() ? (evt->RightIsDown() ? LAYER_HEIGHT_EDIT_ACTION_SMOOTH : LAYER_HEIGHT_EDIT_ACTION_REDUCE) : (evt->RightIsDown() ? LAYER_HEIGHT_EDIT_ACTION_INCREASE : LAYER_HEIGHT_EDIT_ACTION_DECREASE); } m_layers_editing.adjust_layer_height_profile(); _refresh_if_shown_on_screen(); // Automatic action on mouse down with the same coordinate. _start_timer(); } Vec3d GLCanvas3D::_mouse_to_3d(const Point& mouse_pos, float* z) { if (m_canvas == nullptr) return Vec3d(DBL_MAX, DBL_MAX, DBL_MAX); #if ENABLE_NON_STATIC_CANVAS_MANAGER const Camera& camera = wxGetApp().plater()->get_camera(); const std::array& viewport = camera.get_viewport(); const Transform3d& modelview_matrix = camera.get_view_matrix(); const Transform3d& projection_matrix = camera.get_projection_matrix(); #else const std::array& viewport = m_camera.get_viewport(); const Transform3d& modelview_matrix = m_camera.get_view_matrix(); const Transform3d& projection_matrix = m_camera.get_projection_matrix(); #endif // ENABLE_NON_STATIC_CANVAS_MANAGER GLint y = viewport[3] - (GLint)mouse_pos(1); GLfloat mouse_z; if (z == nullptr) glsafe(::glReadPixels((GLint)mouse_pos(0), y, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, (void*)&mouse_z)); else mouse_z = *z; GLdouble out_x, out_y, out_z; ::gluUnProject((GLdouble)mouse_pos(0), (GLdouble)y, (GLdouble)mouse_z, (GLdouble*)modelview_matrix.data(), (GLdouble*)projection_matrix.data(), (GLint*)viewport.data(), &out_x, &out_y, &out_z); return Vec3d((double)out_x, (double)out_y, (double)out_z); } Vec3d GLCanvas3D::_mouse_to_bed_3d(const Point& mouse_pos) { return mouse_ray(mouse_pos).intersect_plane(0.0); } void GLCanvas3D::_start_timer() { m_timer.Start(100, wxTIMER_CONTINUOUS); } void GLCanvas3D::_stop_timer() { m_timer.Stop(); } void GLCanvas3D::_load_print_toolpaths() { const Print *print = this->fff_print(); if (print == nullptr) return; if (!print->is_step_done(psSkirt) || !print->is_step_done(psBrim)) return; if (!print->has_skirt() && (print->config().brim_width.value == 0)) return; const float color[] = { 0.5f, 1.0f, 0.5f, 1.0f }; // greenish // number of skirt layers size_t total_layer_count = 0; for (const PrintObject* print_object : print->objects()) { total_layer_count = std::max(total_layer_count, print_object->total_layer_count()); } size_t skirt_height = print->has_infinite_skirt() ? total_layer_count : std::min(print->config().skirt_height.value, total_layer_count); if ((skirt_height == 0) && (print->config().brim_width.value > 0)) skirt_height = 1; // Get first skirt_height layers. //FIXME This code is fishy. It may not work for multiple objects with different layering due to variable layer height feature. // This is not critical as this is just an initial preview. const PrintObject* highest_object = *std::max_element(print->objects().begin(), print->objects().end(), [](auto l, auto r){ return l->layers().size() < r->layers().size(); }); std::vector print_zs; print_zs.reserve(skirt_height * 2); for (size_t i = 0; i < std::min(skirt_height, highest_object->layers().size()); ++ i) print_zs.emplace_back(float(highest_object->layers()[i]->print_z)); // Only add skirt for the raft layers. for (size_t i = 0; i < std::min(skirt_height, std::min(highest_object->slicing_parameters().raft_layers(), highest_object->support_layers().size())); ++ i) print_zs.emplace_back(float(highest_object->support_layers()[i]->print_z)); sort_remove_duplicates(print_zs); skirt_height = std::min(skirt_height, print_zs.size()); print_zs.erase(print_zs.begin() + skirt_height, print_zs.end()); GLVolume *volume = m_volumes.new_toolpath_volume(color, VERTEX_BUFFER_RESERVE_SIZE); for (size_t i = 0; i < skirt_height; ++ i) { volume->print_zs.emplace_back(print_zs[i]); volume->offsets.emplace_back(volume->indexed_vertex_array.quad_indices.size()); volume->offsets.emplace_back(volume->indexed_vertex_array.triangle_indices.size()); if (i == 0) _3DScene::extrusionentity_to_verts(print->brim(), print_zs[i], Point(0, 0), *volume); _3DScene::extrusionentity_to_verts(print->skirt(), print_zs[i], Point(0, 0), *volume); // Ensure that no volume grows over the limits. If the volume is too large, allocate a new one. if (volume->indexed_vertex_array.vertices_and_normals_interleaved.size() > MAX_VERTEX_BUFFER_SIZE) { GLVolume &vol = *volume; volume = m_volumes.new_toolpath_volume(vol.color); reserve_new_volume_finalize_old_volume(*volume, vol, m_initialized); } } volume->indexed_vertex_array.finalize_geometry(m_initialized); } void GLCanvas3D::_load_print_object_toolpaths(const PrintObject& print_object, const std::vector& str_tool_colors, const std::vector& color_print_values) { std::vector tool_colors = _parse_colors(str_tool_colors); struct Ctxt { const PrintInstances *shifted_copies; std::vector layers; bool has_perimeters; bool has_infill; bool has_support; const std::vector* tool_colors; bool is_single_material_print; int extruders_cnt; const std::vector* color_print_values; static const float* color_perimeters() { static float color[4] = { 1.0f, 1.0f, 0.0f, 1.f }; return color; } // yellow static const float* color_infill() { static float color[4] = { 1.0f, 0.5f, 0.5f, 1.f }; return color; } // redish static const float* color_support() { static float color[4] = { 0.5f, 1.0f, 0.5f, 1.f }; return color; } // greenish static const float* color_pause_or_custom_code() { static float color[4] = { 0.5f, 0.5f, 0.5f, 1.f }; return color; } // gray // For cloring by a tool, return a parsed color. bool color_by_tool() const { return tool_colors != nullptr; } size_t number_tools() const { return this->color_by_tool() ? tool_colors->size() / 4 : 0; } const float* color_tool(size_t tool) const { return tool_colors->data() + tool * 4; } // For coloring by a color_print(M600), return a parsed color. bool color_by_color_print() const { return color_print_values!=nullptr; } const size_t color_print_color_idx_by_layer_idx(const size_t layer_idx) const { const CustomGCode::Item value{layers[layer_idx]->print_z + EPSILON, "", 0, ""}; auto it = std::lower_bound(color_print_values->begin(), color_print_values->end(), value); return (it - color_print_values->begin()) % number_tools(); } const size_t color_print_color_idx_by_layer_idx_and_extruder(const size_t layer_idx, const int extruder) const { const coordf_t print_z = layers[layer_idx]->print_z; auto it = std::find_if(color_print_values->begin(), color_print_values->end(), [print_z](const CustomGCode::Item& code) { return fabs(code.print_z - print_z) < EPSILON; }); if (it != color_print_values->end()) { const std::string& code = it->gcode; // pause print or custom Gcode if (code == PausePrintCode || (code != ColorChangeCode && code != ToolChangeCode)) return number_tools()-1; // last color item is a gray color for pause print or custom G-code // change tool (extruder) if (code == ToolChangeCode) return get_color_idx_for_tool_change(it, extruder); // change color for current extruder if (code == ColorChangeCode) { int color_idx = get_color_idx_for_color_change(it, extruder); if (color_idx >= 0) return color_idx; } } const CustomGCode::Item value{print_z + EPSILON, "", 0, ""}; it = std::lower_bound(color_print_values->begin(), color_print_values->end(), value); while (it != color_print_values->begin()) { --it; // change color for current extruder if (it->gcode == ColorChangeCode) { int color_idx = get_color_idx_for_color_change(it, extruder); if (color_idx >= 0) return color_idx; } // change tool (extruder) if (it->gcode == ToolChangeCode) return get_color_idx_for_tool_change(it, extruder); } return std::min(extruders_cnt - 1, std::max(extruder - 1, 0));; } private: int get_m600_color_idx(std::vector::const_iterator it) const { int shift = 0; while (it != color_print_values->begin()) { --it; if (it->gcode == ColorChangeCode) shift++; } return extruders_cnt + shift; } int get_color_idx_for_tool_change(std::vector::const_iterator it, const int extruder) const { const int current_extruder = it->extruder == 0 ? extruder : it->extruder; if (number_tools() == extruders_cnt + 1) // there is no one "M600" return std::min(extruders_cnt - 1, std::max(current_extruder - 1, 0)); auto it_n = it; while (it_n != color_print_values->begin()) { --it_n; if (it_n->gcode == ColorChangeCode && it_n->extruder == current_extruder) return get_m600_color_idx(it_n); } return std::min(extruders_cnt - 1, std::max(current_extruder - 1, 0)); } int get_color_idx_for_color_change(std::vector::const_iterator it, const int extruder) const { if (extruders_cnt == 1) return get_m600_color_idx(it); auto it_n = it; bool is_tool_change = false; while (it_n != color_print_values->begin()) { --it_n; if (it_n->gcode == ToolChangeCode) { is_tool_change = true; if (it_n->extruder == it->extruder || (it_n->extruder == 0 && it->extruder == extruder)) return get_m600_color_idx(it); break; } } if (!is_tool_change && it->extruder == extruder) return get_m600_color_idx(it); return -1; } } ctxt; ctxt.has_perimeters = print_object.is_step_done(posPerimeters); ctxt.has_infill = print_object.is_step_done(posInfill); ctxt.has_support = print_object.is_step_done(posSupportMaterial); ctxt.tool_colors = tool_colors.empty() ? nullptr : &tool_colors; ctxt.color_print_values = color_print_values.empty() ? nullptr : &color_print_values; ctxt.is_single_material_print = this->fff_print()->extruders().size()==1; ctxt.extruders_cnt = wxGetApp().extruders_edited_cnt(); ctxt.shifted_copies = &print_object.instances(); // order layers by print_z { size_t nlayers = 0; if (ctxt.has_perimeters || ctxt.has_infill) nlayers = print_object.layers().size(); if (ctxt.has_support) nlayers += print_object.support_layers().size(); ctxt.layers.reserve(nlayers); } if (ctxt.has_perimeters || ctxt.has_infill) for (const Layer *layer : print_object.layers()) ctxt.layers.emplace_back(layer); if (ctxt.has_support) for (const Layer *layer : print_object.support_layers()) ctxt.layers.emplace_back(layer); std::sort(ctxt.layers.begin(), ctxt.layers.end(), [](const Layer *l1, const Layer *l2) { return l1->print_z < l2->print_z; }); // Maximum size of an allocation block: 32MB / sizeof(float) BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - start" << m_volumes.log_memory_info() << log_memory_info(); const bool is_selected_separate_extruder = m_selected_extruder > 0 && ctxt.color_by_color_print(); //FIXME Improve the heuristics for a grain size. size_t grain_size = std::max(ctxt.layers.size() / 16, size_t(1)); tbb::spin_mutex new_volume_mutex; auto new_volume = [this, &new_volume_mutex](const float *color) -> GLVolume* { // Allocate the volume before locking. GLVolume *volume = new GLVolume(color); volume->is_extrusion_path = true; tbb::spin_mutex::scoped_lock lock; // Lock by ROII, so if the emplace_back() fails, the lock will be released. lock.acquire(new_volume_mutex); m_volumes.volumes.emplace_back(volume); lock.release(); return volume; }; const size_t volumes_cnt_initial = m_volumes.volumes.size(); tbb::parallel_for( tbb::blocked_range(0, ctxt.layers.size(), grain_size), [&ctxt, &new_volume, is_selected_separate_extruder, this](const tbb::blocked_range& range) { GLVolumePtrs vols; std::vector color_print_layer_to_glvolume; auto volume = [&ctxt, &vols, &color_print_layer_to_glvolume, &range](size_t layer_idx, int extruder, int feature) -> GLVolume& { return *vols[ctxt.color_by_color_print()? ctxt.color_print_color_idx_by_layer_idx_and_extruder(layer_idx, extruder) : ctxt.color_by_tool() ? std::min(ctxt.number_tools() - 1, std::max(extruder - 1, 0)) : feature ]; }; if (ctxt.color_by_color_print() || ctxt.color_by_tool()) { for (size_t i = 0; i < ctxt.number_tools(); ++i) vols.emplace_back(new_volume(ctxt.color_tool(i))); } else vols = { new_volume(ctxt.color_perimeters()), new_volume(ctxt.color_infill()), new_volume(ctxt.color_support()) }; for (GLVolume *vol : vols) // Reserving number of vertices (3x position + 3x color) vol->indexed_vertex_array.reserve(VERTEX_BUFFER_RESERVE_SIZE / 6); for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) { const Layer *layer = ctxt.layers[idx_layer]; if (is_selected_separate_extruder) { bool at_least_one_has_correct_extruder = false; for (const LayerRegion* layerm : layer->regions()) { if (layerm->slices.surfaces.empty()) continue; const PrintRegionConfig& cfg = layerm->region()->config(); if (cfg.perimeter_extruder.value == m_selected_extruder || cfg.infill_extruder.value == m_selected_extruder || cfg.solid_infill_extruder.value == m_selected_extruder ) { at_least_one_has_correct_extruder = true; break; } } if (!at_least_one_has_correct_extruder) continue; } for (GLVolume *vol : vols) if (vol->print_zs.empty() || vol->print_zs.back() != layer->print_z) { vol->print_zs.emplace_back(layer->print_z); vol->offsets.emplace_back(vol->indexed_vertex_array.quad_indices.size()); vol->offsets.emplace_back(vol->indexed_vertex_array.triangle_indices.size()); } for (const PrintInstance &instance : *ctxt.shifted_copies) { const Point © = instance.shift; for (const LayerRegion *layerm : layer->regions()) { if (is_selected_separate_extruder) { const PrintRegionConfig& cfg = layerm->region()->config(); if (cfg.perimeter_extruder.value != m_selected_extruder || cfg.infill_extruder.value != m_selected_extruder || cfg.solid_infill_extruder.value != m_selected_extruder) continue; } if (ctxt.has_perimeters) _3DScene::extrusionentity_to_verts(layerm->perimeters, float(layer->print_z), copy, volume(idx_layer, layerm->region()->config().perimeter_extruder.value, 0)); if (ctxt.has_infill) { for (const ExtrusionEntity *ee : layerm->fills.entities) { // fill represents infill extrusions of a single island. const auto *fill = dynamic_cast(ee); if (! fill->entities.empty()) _3DScene::extrusionentity_to_verts(*fill, float(layer->print_z), copy, volume(idx_layer, is_solid_infill(fill->entities.front()->role()) ? layerm->region()->config().solid_infill_extruder : layerm->region()->config().infill_extruder, 1)); } } } if (ctxt.has_support) { const SupportLayer *support_layer = dynamic_cast(layer); if (support_layer) { for (const ExtrusionEntity *extrusion_entity : support_layer->support_fills.entities) _3DScene::extrusionentity_to_verts(extrusion_entity, float(layer->print_z), copy, volume(idx_layer, (extrusion_entity->role() == erSupportMaterial) ? support_layer->object()->config().support_material_extruder : support_layer->object()->config().support_material_interface_extruder, 2)); } } } // Ensure that no volume grows over the limits. If the volume is too large, allocate a new one. for (size_t i = 0; i < vols.size(); ++i) { GLVolume &vol = *vols[i]; if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() > MAX_VERTEX_BUFFER_SIZE) { vols[i] = new_volume(vol.color); reserve_new_volume_finalize_old_volume(*vols[i], vol, false); } } } for (GLVolume *vol : vols) // Ideally one would call vol->indexed_vertex_array.finalize() here to move the buffers to the OpenGL driver, // but this code runs in parallel and the OpenGL driver is not thread safe. vol->indexed_vertex_array.shrink_to_fit(); }); BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - finalizing results" << m_volumes.log_memory_info() << log_memory_info(); // Remove empty volumes from the newly added volumes. m_volumes.volumes.erase( std::remove_if(m_volumes.volumes.begin() + volumes_cnt_initial, m_volumes.volumes.end(), [](const GLVolume *volume) { return volume->empty(); }), m_volumes.volumes.end()); for (size_t i = volumes_cnt_initial; i < m_volumes.volumes.size(); ++i) m_volumes.volumes[i]->indexed_vertex_array.finalize_geometry(m_initialized); BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - end" << m_volumes.log_memory_info() << log_memory_info(); } void GLCanvas3D::_load_wipe_tower_toolpaths(const std::vector& str_tool_colors) { const Print *print = this->fff_print(); if ((print == nullptr) || print->wipe_tower_data().tool_changes.empty()) return; if (!print->is_step_done(psWipeTower)) return; std::vector tool_colors = _parse_colors(str_tool_colors); struct Ctxt { const Print *print; const std::vector *tool_colors; Vec2f wipe_tower_pos; float wipe_tower_angle; static const float* color_support() { static float color[4] = { 0.5f, 1.0f, 0.5f, 1.f }; return color; } // greenish // For cloring by a tool, return a parsed color. bool color_by_tool() const { return tool_colors != nullptr; } size_t number_tools() const { return this->color_by_tool() ? tool_colors->size() / 4 : 0; } const float* color_tool(size_t tool) const { return tool_colors->data() + tool * 4; } int volume_idx(int tool, int feature) const { return this->color_by_tool() ? std::min(this->number_tools() - 1, std::max(tool, 0)) : feature; } const std::vector& tool_change(size_t idx) { const auto &tool_changes = print->wipe_tower_data().tool_changes; return priming.empty() ? ((idx == tool_changes.size()) ? final : tool_changes[idx]) : ((idx == 0) ? priming : (idx == tool_changes.size() + 1) ? final : tool_changes[idx - 1]); } std::vector priming; std::vector final; } ctxt; ctxt.print = print; ctxt.tool_colors = tool_colors.empty() ? nullptr : &tool_colors; if (print->wipe_tower_data().priming && print->config().single_extruder_multi_material_priming) for (int i=0; i<(int)print->wipe_tower_data().priming.get()->size(); ++i) ctxt.priming.emplace_back(print->wipe_tower_data().priming.get()->at(i)); if (print->wipe_tower_data().final_purge) ctxt.final.emplace_back(*print->wipe_tower_data().final_purge.get()); ctxt.wipe_tower_angle = ctxt.print->config().wipe_tower_rotation_angle.value/180.f * PI; ctxt.wipe_tower_pos = Vec2f(ctxt.print->config().wipe_tower_x.value, ctxt.print->config().wipe_tower_y.value); BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - start" << m_volumes.log_memory_info() << log_memory_info(); //FIXME Improve the heuristics for a grain size. size_t n_items = print->wipe_tower_data().tool_changes.size() + (ctxt.priming.empty() ? 0 : 1); size_t grain_size = std::max(n_items / 128, size_t(1)); tbb::spin_mutex new_volume_mutex; auto new_volume = [this, &new_volume_mutex](const float *color) -> GLVolume* { auto *volume = new GLVolume(color); volume->is_extrusion_path = true; tbb::spin_mutex::scoped_lock lock; lock.acquire(new_volume_mutex); m_volumes.volumes.emplace_back(volume); lock.release(); return volume; }; const size_t volumes_cnt_initial = m_volumes.volumes.size(); std::vector volumes_per_thread(n_items); tbb::parallel_for( tbb::blocked_range(0, n_items, grain_size), [&ctxt, &new_volume](const tbb::blocked_range& range) { // Bounding box of this slab of a wipe tower. GLVolumePtrs vols; if (ctxt.color_by_tool()) { for (size_t i = 0; i < ctxt.number_tools(); ++i) vols.emplace_back(new_volume(ctxt.color_tool(i))); } else vols = { new_volume(ctxt.color_support()) }; for (GLVolume *volume : vols) // Reserving number of vertices (3x position + 3x color) volume->indexed_vertex_array.reserve(VERTEX_BUFFER_RESERVE_SIZE / 6); for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++idx_layer) { const std::vector &layer = ctxt.tool_change(idx_layer); for (size_t i = 0; i < vols.size(); ++i) { GLVolume &vol = *vols[i]; if (vol.print_zs.empty() || vol.print_zs.back() != layer.front().print_z) { vol.print_zs.emplace_back(layer.front().print_z); vol.offsets.emplace_back(vol.indexed_vertex_array.quad_indices.size()); vol.offsets.emplace_back(vol.indexed_vertex_array.triangle_indices.size()); } } for (const WipeTower::ToolChangeResult &extrusions : layer) { for (size_t i = 1; i < extrusions.extrusions.size();) { const WipeTower::Extrusion &e = extrusions.extrusions[i]; if (e.width == 0.) { ++i; continue; } size_t j = i + 1; if (ctxt.color_by_tool()) for (; j < extrusions.extrusions.size() && extrusions.extrusions[j].tool == e.tool && extrusions.extrusions[j].width > 0.f; ++j); else for (; j < extrusions.extrusions.size() && extrusions.extrusions[j].width > 0.f; ++j); size_t n_lines = j - i; Lines lines; std::vector widths; std::vector heights; lines.reserve(n_lines); widths.reserve(n_lines); heights.assign(n_lines, extrusions.layer_height); WipeTower::Extrusion e_prev = extrusions.extrusions[i-1]; if (!extrusions.priming) { // wipe tower extrusions describe the wipe tower at the origin with no rotation e_prev.pos = Eigen::Rotation2Df(ctxt.wipe_tower_angle) * e_prev.pos; e_prev.pos += ctxt.wipe_tower_pos; } for (; i < j; ++i) { WipeTower::Extrusion e = extrusions.extrusions[i]; assert(e.width > 0.f); if (!extrusions.priming) { e.pos = Eigen::Rotation2Df(ctxt.wipe_tower_angle) * e.pos; e.pos += ctxt.wipe_tower_pos; } lines.emplace_back(Point::new_scale(e_prev.pos.x(), e_prev.pos.y()), Point::new_scale(e.pos.x(), e.pos.y())); widths.emplace_back(e.width); e_prev = e; } _3DScene::thick_lines_to_verts(lines, widths, heights, lines.front().a == lines.back().b, extrusions.print_z, *vols[ctxt.volume_idx(e.tool, 0)]); } } } for (size_t i = 0; i < vols.size(); ++i) { GLVolume &vol = *vols[i]; if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() > MAX_VERTEX_BUFFER_SIZE) { vols[i] = new_volume(vol.color); reserve_new_volume_finalize_old_volume(*vols[i], vol, false); } } for (GLVolume *vol : vols) vol->indexed_vertex_array.shrink_to_fit(); }); BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - finalizing results" << m_volumes.log_memory_info() << log_memory_info(); // Remove empty volumes from the newly added volumes. m_volumes.volumes.erase( std::remove_if(m_volumes.volumes.begin() + volumes_cnt_initial, m_volumes.volumes.end(), [](const GLVolume *volume) { return volume->empty(); }), m_volumes.volumes.end()); for (size_t i = volumes_cnt_initial; i < m_volumes.volumes.size(); ++i) m_volumes.volumes[i]->indexed_vertex_array.finalize_geometry(m_initialized); BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - end" << m_volumes.log_memory_info() << log_memory_info(); } static inline int hex_digit_to_int(const char c) { return (c >= '0' && c <= '9') ? int(c - '0') : (c >= 'A' && c <= 'F') ? int(c - 'A') + 10 : (c >= 'a' && c <= 'f') ? int(c - 'a') + 10 : -1; } void GLCanvas3D::_load_gcode_extrusion_paths(const GCodePreviewData& preview_data, const std::vector& tool_colors) { BOOST_LOG_TRIVIAL(debug) << "Loading G-code extrusion paths - start" << m_volumes.log_memory_info() << log_memory_info(); // helper functions to select data in dependence of the extrusion view type struct Helper { static float path_filter(GCodePreviewData::Extrusion::EViewType type, const GCodePreviewData::Extrusion::Path& path) { switch (type) { case GCodePreviewData::Extrusion::FeatureType: // The role here is used for coloring. return (float)path.extrusion_role; case GCodePreviewData::Extrusion::Height: return path.height; case GCodePreviewData::Extrusion::Width: return path.width; case GCodePreviewData::Extrusion::Feedrate: return path.feedrate; case GCodePreviewData::Extrusion::FanSpeed: return path.fan_speed; case GCodePreviewData::Extrusion::VolumetricRate: return path.feedrate * (float)path.mm3_per_mm; case GCodePreviewData::Extrusion::Tool: return (float)path.extruder_id; case GCodePreviewData::Extrusion::ColorPrint: return (float)path.cp_color_id; default: return 0.0f; } return 0.0f; } static Color path_color(const GCodePreviewData& data, const std::vector& tool_colors, float value) { switch (data.extrusion.view_type) { case GCodePreviewData::Extrusion::FeatureType: return data.get_extrusion_role_color((ExtrusionRole)(int)value); case GCodePreviewData::Extrusion::Height: return data.get_height_color(value); case GCodePreviewData::Extrusion::Width: return data.get_width_color(value); case GCodePreviewData::Extrusion::Feedrate: return data.get_feedrate_color(value); case GCodePreviewData::Extrusion::FanSpeed: return data.get_fan_speed_color(value); case GCodePreviewData::Extrusion::VolumetricRate: return data.get_volumetric_rate_color(value); case GCodePreviewData::Extrusion::Tool: { Color color; ::memcpy((void*)color.rgba.data(), (const void*)(tool_colors.data() + (unsigned int)value * 4), 4 * sizeof(float)); return color; } case GCodePreviewData::Extrusion::ColorPrint: { int color_cnt = (int)tool_colors.size() / 4; int val = value > color_cnt ? color_cnt - 1 : value; Color color; ::memcpy((void*)color.rgba.data(), (const void*)(tool_colors.data() + val * 4), 4 * sizeof(float)); return color; } default: return Color{}; } return Color{}; } }; size_t initial_volumes_count = m_volumes.volumes.size(); size_t initial_volume_index_count = m_gcode_preview_volume_index.first_volumes.size(); try { BOOST_LOG_TRIVIAL(debug) << "Loading G-code extrusion paths - create volumes" << m_volumes.log_memory_info() << log_memory_info(); // detects filters size_t vertex_buffer_prealloc_size = 0; std::vector>> roles_filters; { std::vector num_paths_per_role(size_t(erCount), 0); for (const GCodePreviewData::Extrusion::Layer &layer : preview_data.extrusion.layers) for (const GCodePreviewData::Extrusion::Path &path : layer.paths) ++ num_paths_per_role[size_t(path.extrusion_role)]; std::vector> roles_values; roles_values.assign(size_t(erCount), std::vector()); for (size_t i = 0; i < roles_values.size(); ++ i) roles_values[i].reserve(num_paths_per_role[i]); for (const GCodePreviewData::Extrusion::Layer& layer : preview_data.extrusion.layers) for (const GCodePreviewData::Extrusion::Path &path : layer.paths) roles_values[size_t(path.extrusion_role)].emplace_back(Helper::path_filter(preview_data.extrusion.view_type, path)); roles_filters.reserve(size_t(erCount)); size_t num_buffers = 0; for (std::vector &values : roles_values) { sort_remove_duplicates(values); num_buffers += values.size(); } if (num_buffers == 0) // nothing to render, return return; vertex_buffer_prealloc_size = (uint64_t(num_buffers) * uint64_t(VERTEX_BUFFER_RESERVE_SIZE) < VERTEX_BUFFER_RESERVE_SIZE_SUM_MAX) ? VERTEX_BUFFER_RESERVE_SIZE : next_highest_power_of_2(VERTEX_BUFFER_RESERVE_SIZE_SUM_MAX / num_buffers) / 2; for (std::vector &values : roles_values) { size_t role = &values - &roles_values.front(); roles_filters.emplace_back(); if (! values.empty()) { m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Extrusion, role, (unsigned int)m_volumes.volumes.size()); for (const float value : values) roles_filters.back().emplace_back(value, m_volumes.new_toolpath_volume(Helper::path_color(preview_data, tool_colors, value).rgba.data(), vertex_buffer_prealloc_size)); } } } BOOST_LOG_TRIVIAL(debug) << "Loading G-code extrusion paths - populate volumes" << m_volumes.log_memory_info() << log_memory_info(); // populates volumes const bool is_selected_separate_extruder = m_selected_extruder > 0 && preview_data.extrusion.view_type == GCodePreviewData::Extrusion::ColorPrint; for (const GCodePreviewData::Extrusion::Layer& layer : preview_data.extrusion.layers) { for (const GCodePreviewData::Extrusion::Path& path : layer.paths) { if (is_selected_separate_extruder && path.extruder_id != m_selected_extruder - 1) continue; std::vector> &filters = roles_filters[size_t(path.extrusion_role)]; auto key = std::make_pair(Helper::path_filter(preview_data.extrusion.view_type, path), nullptr); auto it_filter = std::lower_bound(filters.begin(), filters.end(), key); assert(it_filter != filters.end() && key.first == it_filter->first); GLVolume& vol = *it_filter->second; vol.print_zs.emplace_back(layer.z); vol.offsets.emplace_back(vol.indexed_vertex_array.quad_indices.size()); vol.offsets.emplace_back(vol.indexed_vertex_array.triangle_indices.size()); _3DScene::extrusionentity_to_verts(path.polyline, path.width, path.height, layer.z, vol); } // Ensure that no volume grows over the limits. If the volume is too large, allocate a new one. for (std::vector> &filters : roles_filters) { unsigned int role = (unsigned int)(&filters - &roles_filters.front()); for (std::pair &filter : filters) if (filter.second->indexed_vertex_array.vertices_and_normals_interleaved.size() > MAX_VERTEX_BUFFER_SIZE) { if (m_gcode_preview_volume_index.first_volumes.back().type != GCodePreviewVolumeIndex::Extrusion || m_gcode_preview_volume_index.first_volumes.back().flag != role) m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Extrusion, role, (unsigned int)m_volumes.volumes.size()); GLVolume& vol = *filter.second; filter.second = m_volumes.new_toolpath_volume(vol.color); reserve_new_volume_finalize_old_volume(*filter.second, vol, m_initialized, vertex_buffer_prealloc_size); } } } // Finalize volumes and sends geometry to gpu for (std::vector> &filters : roles_filters) for (std::pair &filter : filters) filter.second->indexed_vertex_array.finalize_geometry(m_initialized); BOOST_LOG_TRIVIAL(debug) << "Loading G-code extrusion paths - end" << m_volumes.log_memory_info() << log_memory_info(); } catch (const std::bad_alloc & /* err */) { // an error occourred - restore to previous state and return GLVolumePtrs::iterator begin = m_volumes.volumes.begin() + initial_volumes_count; GLVolumePtrs::iterator end = m_volumes.volumes.end(); for (GLVolumePtrs::iterator it = begin; it < end; ++it) delete *it; m_volumes.volumes.erase(begin, end); m_gcode_preview_volume_index.first_volumes.erase(m_gcode_preview_volume_index.first_volumes.begin() + initial_volume_index_count, m_gcode_preview_volume_index.first_volumes.end()); BOOST_LOG_TRIVIAL(debug) << "Loading G-code extrusion paths - failed on low memory" << m_volumes.log_memory_info() << log_memory_info(); //FIXME rethrow bad_alloc? } } template inline void travel_paths_internal( // input const GCodePreviewData &preview_data, // accessors FUNC_VALUE func_value, FUNC_COLOR func_color, // output GLVolumeCollection &volumes, bool gl_initialized) { // colors travels by type std::vector> by_type; { std::vector values; values.reserve(preview_data.travel.polylines.size()); for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines) values.emplace_back(func_value(polyline)); sort_remove_duplicates(values); by_type.reserve(values.size()); // creates a new volume for each feedrate for (TYPE type : values) by_type.emplace_back(type, volumes.new_nontoolpath_volume(func_color(type).rgba.data(), VERTEX_BUFFER_RESERVE_SIZE)); } // populates volumes std::pair key(0.f, nullptr); for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines) { key.first = func_value(polyline); auto it = std::lower_bound(by_type.begin(), by_type.end(), key, [](const std::pair& l, const std::pair& r) { return l.first < r.first; }); assert(it != by_type.end() && it->first == func_value(polyline)); GLVolume& vol = *it->second; vol.print_zs.emplace_back(unscale(polyline.polyline.bounding_box().min(2))); vol.offsets.emplace_back(vol.indexed_vertex_array.quad_indices.size()); vol.offsets.emplace_back(vol.indexed_vertex_array.triangle_indices.size()); _3DScene::polyline3_to_verts(polyline.polyline, preview_data.travel.width, preview_data.travel.height, vol); // Ensure that no volume grows over the limits. If the volume is too large, allocate a new one. if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() > MAX_VERTEX_BUFFER_SIZE) { it->second = volumes.new_nontoolpath_volume(vol.color); reserve_new_volume_finalize_old_volume(*it->second, vol, gl_initialized); } } for (auto &feedrate : by_type) feedrate.second->finalize_geometry(gl_initialized); } void GLCanvas3D::_load_gcode_travel_paths(const GCodePreviewData& preview_data, const std::vector& tool_colors) { // nothing to render, return if (preview_data.travel.polylines.empty()) return; size_t initial_volumes_count = m_volumes.volumes.size(); size_t volume_index_allocated = false; try { m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Travel, 0, (unsigned int)initial_volumes_count); volume_index_allocated = true; switch (preview_data.extrusion.view_type) { case GCodePreviewData::Extrusion::Feedrate: travel_paths_internal(preview_data, [](const GCodePreviewData::Travel::Polyline &polyline) { return polyline.feedrate; }, [&preview_data](const float feedrate) -> const Color { return preview_data.get_feedrate_color(feedrate); }, m_volumes, m_initialized); break; case GCodePreviewData::Extrusion::Tool: travel_paths_internal(preview_data, [](const GCodePreviewData::Travel::Polyline &polyline) { return polyline.extruder_id; }, [&tool_colors](const unsigned int extruder_id) -> const Color { assert((extruder_id + 1) * 4 <= tool_colors.size()); return Color(tool_colors.data() + extruder_id * 4); }, m_volumes, m_initialized); break; default: travel_paths_internal(preview_data, [](const GCodePreviewData::Travel::Polyline &polyline) { return polyline.type; }, [&preview_data](const unsigned int type) -> const Color& { return preview_data.travel.type_colors[type]; }, m_volumes, m_initialized); break; } } catch (const std::bad_alloc & /* ex */) { // an error occourred - restore to previous state and return GLVolumePtrs::iterator begin = m_volumes.volumes.begin() + initial_volumes_count; GLVolumePtrs::iterator end = m_volumes.volumes.end(); for (GLVolumePtrs::iterator it = begin; it < end; ++it) delete *it; m_volumes.volumes.erase(begin, end); if (volume_index_allocated) m_gcode_preview_volume_index.first_volumes.pop_back(); //FIXME report the memory issue? } } void GLCanvas3D::_load_fff_shells() { size_t initial_volumes_count = m_volumes.volumes.size(); m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Shell, 0, (unsigned int)initial_volumes_count); const Print *print = this->fff_print(); if (print->objects().empty()) // nothing to render, return return; // adds objects' volumes int object_id = 0; for (const PrintObject* obj : print->objects()) { const ModelObject* model_obj = obj->model_object(); std::vector instance_ids(model_obj->instances.size()); for (int i = 0; i < (int)model_obj->instances.size(); ++i) { instance_ids[i] = i; } m_volumes.load_object(model_obj, object_id, instance_ids, "object", m_initialized); ++object_id; } if (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() == ptFFF) { // adds wipe tower's volume double max_z = print->objects()[0]->model_object()->get_model()->bounding_box().max(2); const PrintConfig& config = print->config(); size_t extruders_count = config.nozzle_diameter.size(); if ((extruders_count > 1) && config.wipe_tower && !config.complete_objects) { const DynamicPrintConfig &print_config = wxGetApp().preset_bundle->prints.get_edited_preset().config; double layer_height = print_config.opt_float("layer_height"); double first_layer_height = print_config.get_abs_value("first_layer_height", layer_height); double nozzle_diameter = print->config().nozzle_diameter.values[0]; float depth = print->wipe_tower_data(extruders_count, first_layer_height, nozzle_diameter).depth; float brim_width = print->wipe_tower_data(extruders_count, first_layer_height, nozzle_diameter).brim_width; m_volumes.load_wipe_tower_preview(1000, config.wipe_tower_x, config.wipe_tower_y, config.wipe_tower_width, depth, max_z, config.wipe_tower_rotation_angle, !print->is_step_done(psWipeTower), brim_width, m_initialized); } } } // While it looks like we can call // this->reload_scene(true, true) // the two functions are quite different: // 1) This function only loads objects, for which the step slaposSliceSupports already finished. Therefore objects outside of the print bed never load. // 2) This function loads object mesh with the relative scaling correction (the "relative_correction" parameter) was applied, // therefore the mesh may be slightly larger or smaller than the mesh shown in the 3D scene. void GLCanvas3D::_load_sla_shells() { const SLAPrint* print = this->sla_print(); if (print->objects().empty()) // nothing to render, return return; auto add_volume = [this](const SLAPrintObject &object, int volume_id, const SLAPrintObject::Instance& instance, const TriangleMesh &mesh, const float color[4], bool outside_printer_detection_enabled) { m_volumes.volumes.emplace_back(new GLVolume(color)); GLVolume& v = *m_volumes.volumes.back(); v.indexed_vertex_array.load_mesh(mesh); v.indexed_vertex_array.finalize_geometry(this->m_initialized); v.shader_outside_printer_detection_enabled = outside_printer_detection_enabled; v.composite_id.volume_id = volume_id; v.set_instance_offset(unscale(instance.shift.x(), instance.shift.y(), 0)); v.set_instance_rotation(Vec3d(0.0, 0.0, (double)instance.rotation)); v.set_instance_mirror(X, object.is_left_handed() ? -1. : 1.); v.set_convex_hull(mesh.convex_hull_3d()); }; // adds objects' volumes for (const SLAPrintObject* obj : print->objects()) if (obj->is_step_done(slaposSliceSupports)) { unsigned int initial_volumes_count = (unsigned int)m_volumes.volumes.size(); for (const SLAPrintObject::Instance& instance : obj->instances()) { add_volume(*obj, 0, instance, obj->get_mesh_to_print(), GLVolume::MODEL_COLOR[0], true); // Set the extruder_id and volume_id to achieve the same color as in the 3D scene when // through the update_volumes_colors_by_extruder() call. m_volumes.volumes.back()->extruder_id = obj->model_object()->volumes.front()->extruder_id(); if (obj->is_step_done(slaposSupportTree) && obj->has_mesh(slaposSupportTree)) add_volume(*obj, -int(slaposSupportTree), instance, obj->support_mesh(), GLVolume::SLA_SUPPORT_COLOR, true); if (obj->is_step_done(slaposPad) && obj->has_mesh(slaposPad)) add_volume(*obj, -int(slaposPad), instance, obj->pad_mesh(), GLVolume::SLA_PAD_COLOR, false); } double shift_z = obj->get_current_elevation(); for (unsigned int i = initial_volumes_count; i < m_volumes.volumes.size(); ++ i) { GLVolume& v = *m_volumes.volumes[i]; // apply shift z v.set_sla_shift_z(shift_z); } } update_volumes_colors_by_extruder(); } void GLCanvas3D::_update_gcode_volumes_visibility(const GCodePreviewData& preview_data) { unsigned int size = (unsigned int)m_gcode_preview_volume_index.first_volumes.size(); for (unsigned int i = 0; i < size; ++i) { GLVolumePtrs::iterator begin = m_volumes.volumes.begin() + m_gcode_preview_volume_index.first_volumes[i].id; GLVolumePtrs::iterator end = (i + 1 < size) ? m_volumes.volumes.begin() + m_gcode_preview_volume_index.first_volumes[i + 1].id : m_volumes.volumes.end(); for (GLVolumePtrs::iterator it = begin; it != end; ++it) { GLVolume* volume = *it; switch (m_gcode_preview_volume_index.first_volumes[i].type) { case GCodePreviewVolumeIndex::Extrusion: { if ((ExtrusionRole)m_gcode_preview_volume_index.first_volumes[i].flag == erCustom) volume->zoom_to_volumes = false; volume->is_active = preview_data.extrusion.is_role_flag_set((ExtrusionRole)m_gcode_preview_volume_index.first_volumes[i].flag); break; } case GCodePreviewVolumeIndex::Travel: { volume->is_active = preview_data.travel.is_visible; volume->zoom_to_volumes = false; break; } case GCodePreviewVolumeIndex::Retraction: { volume->is_active = preview_data.retraction.is_visible; volume->zoom_to_volumes = false; break; } case GCodePreviewVolumeIndex::Unretraction: { volume->is_active = preview_data.unretraction.is_visible; volume->zoom_to_volumes = false; break; } case GCodePreviewVolumeIndex::Shell: { volume->is_active = preview_data.shell.is_visible; volume->color[3] = 0.25f; volume->zoom_to_volumes = false; break; } default: { volume->is_active = false; volume->zoom_to_volumes = false; break; } } } } } void GLCanvas3D::_update_toolpath_volumes_outside_state() { // tolerance to avoid false detection at bed edges static const double tolerance_x = 0.05; static const double tolerance_y = 0.05; BoundingBoxf3 print_volume; if (m_config != nullptr) { const ConfigOptionPoints* opt = dynamic_cast(m_config->option("bed_shape")); if (opt != nullptr) { BoundingBox bed_box_2D = get_extents(Polygon::new_scale(opt->values)); print_volume = BoundingBoxf3(Vec3d(unscale(bed_box_2D.min(0)) - tolerance_x, unscale(bed_box_2D.min(1)) - tolerance_y, 0.0), Vec3d(unscale(bed_box_2D.max(0)) + tolerance_x, unscale(bed_box_2D.max(1)) + tolerance_y, m_config->opt_float("max_print_height"))); // Allow the objects to protrude below the print bed print_volume.min(2) = -1e10; } } for (GLVolume* volume : m_volumes.volumes) { volume->is_outside = ((print_volume.radius() > 0.0) && volume->is_extrusion_path) ? !print_volume.contains(volume->bounding_box()) : false; } } void GLCanvas3D::_update_sla_shells_outside_state() { // tolerance to avoid false detection at bed edges static const double tolerance_x = 0.05; static const double tolerance_y = 0.05; BoundingBoxf3 print_volume; if (m_config != nullptr) { const ConfigOptionPoints* opt = dynamic_cast(m_config->option("bed_shape")); if (opt != nullptr) { BoundingBox bed_box_2D = get_extents(Polygon::new_scale(opt->values)); print_volume = BoundingBoxf3(Vec3d(unscale(bed_box_2D.min(0)) - tolerance_x, unscale(bed_box_2D.min(1)) - tolerance_y, 0.0), Vec3d(unscale(bed_box_2D.max(0)) + tolerance_x, unscale(bed_box_2D.max(1)) + tolerance_y, m_config->opt_float("max_print_height"))); // Allow the objects to protrude below the print bed print_volume.min(2) = -1e10; } } for (GLVolume* volume : m_volumes.volumes) { volume->is_outside = ((print_volume.radius() > 0.0) && volume->shader_outside_printer_detection_enabled) ? !print_volume.contains(volume->transformed_convex_hull_bounding_box()) : false; } } void GLCanvas3D::_show_warning_texture_if_needed(WarningTexture::Warning warning) { _set_current(); _set_warning_texture(warning, _is_any_volume_outside()); } std::vector GLCanvas3D::_parse_colors(const std::vector& colors) { static const float INV_255 = 1.0f / 255.0f; std::vector output(colors.size() * 4, 1.0f); for (size_t i = 0; i < colors.size(); ++i) { const std::string& color = colors[i]; const char* c = color.data() + 1; if ((color.size() == 7) && (color.front() == '#')) { for (size_t j = 0; j < 3; ++j) { int digit1 = hex_digit_to_int(*c++); int digit2 = hex_digit_to_int(*c++); if ((digit1 == -1) || (digit2 == -1)) break; output[i * 4 + j] = float(digit1 * 16 + digit2) * INV_255; } } } return output; } void GLCanvas3D::_generate_legend_texture(const GCodePreviewData& preview_data, const std::vector& tool_colors) { m_legend_texture.generate(preview_data, tool_colors, *this, true); } void GLCanvas3D::_set_warning_texture(WarningTexture::Warning warning, bool state) { m_warning_texture.activate(warning, state, *this); } bool GLCanvas3D::_is_any_volume_outside() const { for (const GLVolume* volume : m_volumes.volumes) { if ((volume != nullptr) && volume->is_outside) return true; } return false; } void GLCanvas3D::_update_selection_from_hover() { bool ctrl_pressed = wxGetKeyState(WXK_CONTROL); if (m_hover_volume_idxs.empty()) { if (!ctrl_pressed && (m_rectangle_selection.get_state() == GLSelectionRectangle::Select)) m_selection.remove_all(); return; } GLSelectionRectangle::EState state = m_rectangle_selection.get_state(); bool hover_modifiers_only = true; for (int i : m_hover_volume_idxs) { if (!m_volumes.volumes[i]->is_modifier) { hover_modifiers_only = false; break; } } bool selection_changed = false; if (state == GLSelectionRectangle::Select) { bool contains_all = true; for (int i : m_hover_volume_idxs) { if (!m_selection.contains_volume((unsigned int)i)) { contains_all = false; break; } } // the selection is going to be modified (Add) if (!contains_all) { wxGetApp().plater()->take_snapshot(_(L("Selection-Add from rectangle"))); selection_changed = true; } } else { bool contains_any = false; for (int i : m_hover_volume_idxs) { if (m_selection.contains_volume((unsigned int)i)) { contains_any = true; break; } } // the selection is going to be modified (Remove) if (contains_any) { wxGetApp().plater()->take_snapshot(_(L("Selection-Remove from rectangle"))); selection_changed = true; } } if (!selection_changed) return; Plater::SuppressSnapshots suppress(wxGetApp().plater()); if ((state == GLSelectionRectangle::Select) && !ctrl_pressed) m_selection.clear(); for (int i : m_hover_volume_idxs) { if (state == GLSelectionRectangle::Select) { if (hover_modifiers_only) { const GLVolume& v = *m_volumes.volumes[i]; m_selection.add_volume(v.object_idx(), v.volume_idx(), v.instance_idx(), false); } else m_selection.add(i, false); } else m_selection.remove(i); } if (m_selection.is_empty()) m_gizmos.reset_all_states(); else m_gizmos.refresh_on_off_state(); m_gizmos.update_data(); post_event(SimpleEvent(EVT_GLCANVAS_OBJECT_SELECT)); m_dirty = true; } bool GLCanvas3D::_deactivate_undo_redo_toolbar_items() { if (m_undoredo_toolbar.is_item_pressed("undo")) { m_undoredo_toolbar.force_right_action(m_undoredo_toolbar.get_item_id("undo"), *this); return true; } else if (m_undoredo_toolbar.is_item_pressed("redo")) { m_undoredo_toolbar.force_right_action(m_undoredo_toolbar.get_item_id("redo"), *this); return true; } return false; } const Print* GLCanvas3D::fff_print() const { return (m_process == nullptr) ? nullptr : m_process->fff_print(); } const SLAPrint* GLCanvas3D::sla_print() const { return (m_process == nullptr) ? nullptr : m_process->sla_print(); } void GLCanvas3D::WipeTowerInfo::apply_wipe_tower() const { DynamicPrintConfig cfg; cfg.opt("wipe_tower_x", true)->value = m_pos(X); cfg.opt("wipe_tower_y", true)->value = m_pos(Y); cfg.opt("wipe_tower_rotation_angle", true)->value = (180./M_PI) * m_rotation; wxGetApp().get_tab(Preset::TYPE_PRINT)->load_config(cfg); } } // namespace GUI } // namespace Slic3r