package Slic3r::Geometry; use strict; use warnings; use Slic3r::Geometry::DouglasPeucker; use XXX; use constant PI => 4 * atan2(1, 1); use constant A => 0; use constant B => 1; use constant X => 0; use constant Y => 1; use constant epsilon => 1E-6; our $parallel_degrees_limit = abs(deg2rad(3)); sub slope { my ($line) = @_; return undef if abs($line->[B][X] - $line->[A][X]) < epsilon; # line is vertical return ($line->[B][Y] - $line->[A][Y]) / ($line->[B][X] - $line->[A][X]); } sub line_atan { my ($line) = @_; return atan2($line->[B][Y] - $line->[A][Y], $line->[B][X] - $line->[A][X]); } sub lines_parallel { my ($line1, $line2) = @_; return abs(line_atan($line1) - line_atan($line2)) < $parallel_degrees_limit; } # this subroutine checks whether a given point may belong to a given # segment given the hypothesis that it belongs to the line containing # the segment sub line_point_belongs_to_segment { my ($point, $segment) = @_; #printf " checking whether %f,%f may belong to segment %f,%f - %f,%f\n", # @$point, map @$_, @$segment; my @segment_extents = ( [ sort { $a <=> $b } map $_->[X], @$segment ], [ sort { $a <=> $b } map $_->[Y], @$segment ], ); return 0 if $point->[X] < ($segment_extents[X][0] - epsilon) || $point->[X] > ($segment_extents[X][1] + epsilon); return 0 if $point->[Y] < ($segment_extents[Y][0] - epsilon) || $point->[Y] > ($segment_extents[Y][1] + epsilon); return 1; } sub points_coincide { my ($p1, $p2) = @_; return 1 if abs($p2->[X] - $p1->[X]) < epsilon && abs($p2->[Y] - $p1->[Y]) < epsilon; return 0; } sub distance_between_points { my ($p1, $p2) = @_; return sqrt(($p1->[X] - $p2->[X])**2 + ($p1->[Y] - $p2->[Y])**2); } sub point_in_polygon { my ($point, $polygon) = @_; my ($x, $y) = @$point; my @xy = map @$_, @$polygon; # Derived from the comp.graphics.algorithms FAQ, # courtesy of Wm. Randolph Franklin my $n = @xy / 2; # Number of points in polygon my @i = map { 2*$_ } 0..(@xy/2); # The even indices of @xy my @x = map { $xy[$_] } @i; # Even indices: x-coordinates my @y = map { $xy[$_ + 1] } @i; # Odd indices: y-coordinates my ($i, $j); my $side = 0; # 0 = outside; 1 = inside for ($i = 0, $j = $n - 1; $i < $n; $j = $i++) { if ( # If the y is between the (y-) borders... ($y[$i] <= $y && $y < $y[$j]) || ($y[$j] <= $y && $y < $y[$i]) and # ...the (x,y) to infinity line crosses the edge # from the ith point to the jth point... ($x < ($x[$j] - $x[$i]) * ($y - $y[$i]) / ($y[$j] - $y[$i]) + $x[$i]) ) { $side = not $side; # Jump the fence } } # if point is not in polygon, let's check whether it belongs to the contour if (!$side && 0) { foreach my $line (polygon_lines($polygon)) { return 1 if point_in_segment($point, $line); } } return $side; } sub point_in_segment { my ($point, $line) = @_; my ($x, $y) = @$point; my @line_x = sort { $a <=> $b } $line->[A][X], $line->[B][X]; my @line_y = sort { $a <=> $b } $line->[A][Y], $line->[B][Y]; # check whether the point is in the segment bounding box return 0 unless $x >= ($line_x[0] - epsilon) && $x <= ($line_x[1] + epsilon) && $y >= ($line_y[0] - epsilon) && $y <= ($line_y[1] + epsilon); # if line is vertical, check whether point's X is the same as the line if ($line->[A][X] == $line->[B][X]) { return 1 if abs($x - $line->[A][X]) < epsilon; } # calculate the Y in line at X of the point my $y3 = $line->[A][Y] + ($line->[B][Y] - $line->[A][Y]) * ($x - $line->[A][X]) / ($line->[B][X] - $line->[A][X]); return abs($y3 - $y) < epsilon ? 1 : 0; } sub polygon_lines { my ($polygon) = @_; my @lines = (); my $last_point = $polygon->[-1]; foreach my $point (@$polygon) { push @lines, [ $last_point, $point ]; $last_point = $point; } return @lines; } sub nearest_point { my ($point, $points) = @_; my ($nearest_point, $distance); foreach my $p (@$points) { my $d = distance_between_points($point, $p); if (!defined $distance || $d < $distance) { $nearest_point = $p; $distance = $d; return $p if $distance < epsilon; } } return $nearest_point; } sub point_along_segment { my ($p1, $p2, $distance) = @_; my $point = [ @$p1 ]; my $line_length = sqrt( (($p2->[X] - $p1->[X])**2) + (($p2->[Y] - $p1->[Y])**2) ); for (X, Y) { if ($p1->[$_] != $p2->[$_]) { $point->[$_] = $p1->[$_] + ($p2->[$_] - $p1->[$_]) * $distance / $line_length; } } return $point; } sub deg2rad { my ($degrees) = @_; return PI() * $degrees / 180; } sub rotate_points { my ($radians, $center, @points) = @_; $center ||= [0,0]; return map { [ $center->[X] + cos($radians) * ($_->[X] - $center->[X]) - sin($radians) * ($_->[Y] - $center->[Y]), $center->[Y] + cos($radians) * ($_->[Y] - $center->[Y]) + sin($radians) * ($_->[X] - $center->[X]), ] } @points; } sub move_points { my ($shift, @points) = @_; return map [ $shift->[X] + $_->[X], $shift->[Y] + $_->[Y] ], @points; } # preserves order sub remove_coinciding_points { my ($points) = @_; my %p = map { sprintf('%f,%f', @$_) => "$_" } @$points; %p = reverse %p; @$points = grep $p{"$_"}, @$points; } # implementation of Liang-Barsky algorithm # polygon must be convex and ccw sub clip_segment_polygon { my ($line, $polygon) = @_; if (@$line == 1) { # the segment is a point, check for inclusion return point_in_polygon($line, $polygon); } my @V = (@$polygon, $polygon->[0]); my $tE = 0; # the maximum entering segment parameter my $tL = 1; # the minimum entering segment parameter my $dS = subtract_vectors($line->[B], $line->[A]); # the segment direction vector for (my $i = 0; $i < $#V; $i++) { # process polygon edge V[i]V[Vi+1] my $e = subtract_vectors($V[$i+1], $V[$i]); my $N = perp($e, subtract_vectors($line->[A], $V[$i])); my $D = -perp($e, $dS); if (abs($D) < epsilon) { # $line is nearly parallel to this edge ($N < 0) ? return : next; # P0 outside this edge ? $line is outside : $line cannot cross edge, thus ignoring } my $t = $N / $D; if ($D < 0) { # $line is entering across this edge if ($t > $tE) { # new max $tE $tE = $t; return if $tE > $tL; # $line enters after leaving polygon? } } else { # $line is leaving across this edge if ($t < $tL) { # new min $tL $tL = $t; return if $tL < $tE; # $line leaves before entering polygon? } } } # $tE <= $tL implies that there is a valid intersection subsegment return [ sum_vectors($line->[A], multiply_vector($dS, $tE)), # = P(tE) = point where S enters polygon sum_vectors($line->[A], multiply_vector($dS, $tL)), # = P(tE) = point where S enters polygon ]; } sub sum_vectors { my ($v1, $v2) = @_; return [ $v1->[X] + $v2->[X], $v1->[Y] + $v2->[Y] ]; } sub multiply_vector { my ($line, $scalar) = @_; return [ $line->[X] * $scalar, $line->[Y] * $scalar ]; } sub subtract_vectors { my ($line2, $line1) = @_; return [ $line2->[X] - $line1->[X], $line2->[Y] - $line1->[Y] ]; } # 2D dot product sub dot { my ($u, $v) = @_; return $u->[X] * $v->[X] + $u->[Y] * $v->[Y]; } # 2D perp product sub perp { my ($u, $v) = @_; return $u->[X] * $v->[Y] - $u->[Y] * $v->[X]; } 1;