package Slic3r::STL; use Moo; use Slic3r::Geometry qw(X Y Z triangle_normal); use XXX; sub read_file { my $self = shift; my ($file) = @_; open my $fh, '<', $file or die "Failed to open $file\n"; # let's detect whether file is ASCII or binary my $mode; { my $size = +(stat $fh)[7]; $mode = 'ascii' if $size < 80 + 4; # skip binary header seek $fh, 80, 0; read $fh, my $buf, 4; my $triangle_count = unpack 'L', $buf; die "STL file seems invalid, could not read facet count\n" if !defined $triangle_count; my $expected_size = + 80 # header + 4 # count + $triangle_count * ( + 4 # normal, pt,pt,pt (vectors) * 4 # bytes per value * 3 # values per vector + 2 # the trailing 'short' ); $mode = ($size == $expected_size) ? 'binary' : 'ascii'; } my $facets = []; $mode eq 'ascii' ? _read_ascii($fh, $facets) : _read_binary($fh, $facets); close $fh; my $vertices = []; { my %vertices_map = (); # given a vertex's coordinates, what's its index? my @vertices_facets = (); # given a vertex index, what are the indexes of its tangent facets? for (my $f = 0; $f <= $#$facets; $f++) { for (1..3) { my $point_id = join ',', @{$facets->[$f][$_]}; if (exists $vertices_map{$point_id}) { $facets->[$f][$_] = $vertices_map{$point_id}; push @{$vertices_facets[$facets->[$f][$_]]}, $f; } else { push @$vertices, $facets->[$f][$_]; $facets->[$f][$_] = $vertices_map{$point_id} = $#$vertices; $vertices_facets[$#$vertices] = [$f]; } } } # The following loop checks that @vertices_facets only groups facets that # are really connected together (i.e. neighbors or sharing neighbors); # in other words it takes care of multiple vertices occupying the same # point in space. It enforces topological correctness which is needed by # the slicing algorithm. # I'm keeping it disabled until I find a good test case. if (0) { my $vertices_count = $#$vertices; # store it to avoid processing newly created vertices for (my $v = 0; $v <= $vertices_count; $v++) { my $more_than_one_vertex_in_this_point = 0; while (@{$vertices_facets[$v]}) { my @facets_indexes = @{$vertices_facets[$v]}; @{$vertices_facets[$v]} = (); my @this_f = shift @facets_indexes; CYCLE: while (@facets_indexes && @this_f) { # look for a facet that is connected to $this_f[-1] and whose common line contains $v my @other_vertices_indexes = grep $_ != $v, @{$facets->[$this_f[-1]]}[1..3]; OTHER: for my $other_f (@facets_indexes) { # facet is connected if it shares one more point for (grep $_ != $v, @{$facets->[$other_f]}[1..3]) { if ($_ ~~ @other_vertices_indexes) { #printf "facet %d is connected to $other_f (sharing vertices $v and $_)\n", $this_f[-1]; # TODO: we should ensure that the common edge has a different orientation # for each of the two adjacent facets push @this_f, $other_f; @facets_indexes = grep $_ != $other_f, @facets_indexes; next CYCLE; } } } # if we're here, then we couldn't find any facet connected to $this_f[-1] # so we should move this one to a different cluster (that is, a new vertex) # (or ignore it if it turns to be a non-manifold facet) if (@this_f > 1) { push @{$vertices_facets[$v]}, $this_f[-1]; pop @this_f; $more_than_one_vertex_in_this_point++; } else { last CYCLE; } } if ($more_than_one_vertex_in_this_point) { Slic3r::debugf " more than one vertex in the same point\n"; push @$vertices, $vertices->[$v]; for my $f (@this_f) { $facets->[$f][$_] = $#$vertices for grep $facets->[$f][$_] == $v, 1..3; } } } } } } return Slic3r::TriangleMesh->new(vertices => $vertices, facets => $facets); } sub _read_ascii { my ($fh, $facets) = @_; my $point_re = qr/([^ ]+)\s+([^ ]+)\s+([^ ]+)\s*$/; my $facet; seek $fh, 0, 0; while (my $_ = <$fh>) { s/\R+$//; if (!$facet) { /^\s*facet\s+normal\s+$point_re/ or next; $facet = [ [$1, $2, $3] ]; } else { if (/^\s*endfacet/) { push @$facets, $facet; undef $facet; } else { /^\s*vertex\s+$point_re/ or next; push @$facet, [map $_ * 1, $1, $2, $3]; } } } if ($facet) { die "STL file seems invalid\n"; } } sub _read_binary { my ($fh, $facets) = @_; die "bigfloat" unless length(pack "f", 1) == 4; binmode $fh; seek $fh, 80 + 4, 0; while (read $fh, my $_, 4*4*3+2) { my @v = unpack '(f<3)4'; push @$facets, [ [@v[0..2]], [@v[3..5]], [@v[6..8]], [@v[9..11]] ]; } } sub write_file { my $self = shift; my ($file, $mesh, $binary) = @_; open my $fh, '>', $file; $binary ? _write_binary($fh, $mesh) : _write_ascii($fh, $mesh); close $fh; } sub _write_binary { my ($fh, $mesh) = @_; die "bigfloat" unless length(pack "f", 1) == 4; binmode $fh; print $fh pack 'x80'; print $fh pack 'L', scalar(@{$mesh->facets}); foreach my $facet (@{$mesh->facets}) { print $fh pack '(f<3)4S', @{_facet_normal($mesh, $facet)}, (map @{$mesh->vertices->[$_]}, @$facet[1,2,3]), 0; } } sub _write_ascii { my ($fh, $mesh) = @_; printf $fh "solid\n"; foreach my $facet (@{$mesh->facets}) { printf $fh " facet normal %f %f %f\n", @{_facet_normal($mesh, $facet)}; printf $fh " outer loop\n"; printf $fh " vertex %f %f %f\n", @{$mesh->vertices->[$_]} for @$facet[1,2,3]; printf $fh " endloop\n"; printf $fh " endfacet\n"; } printf $fh "endsolid\n"; } sub _facet_normal { my ($mesh, $facet) = @_; return triangle_normal(map $mesh->vertices->[$_], @$facet[1,2,3]); } 1;