#include "Point.hpp" #include "Line.hpp" #include "MultiPoint.hpp" #include #include namespace Slic3r { Point::Point(double x, double y) { this->x = lrint(x); this->y = lrint(y); } bool Point::operator==(const Point& rhs) const { return this->coincides_with(rhs); } std::string Point::wkt() const { std::ostringstream ss; ss << "POINT(" << this->x << " " << this->y << ")"; return ss.str(); } std::string Point::dump_perl() const { std::ostringstream ss; ss << "[" << this->x << "," << this->y << "]"; return ss.str(); } void Point::scale(double factor) { this->x *= factor; this->y *= factor; } void Point::translate(double x, double y) { this->x += x; this->y += y; } void Point::translate(const Vector &vector) { this->translate(vector.x, vector.y); } void Point::rotate(double angle) { double cur_x = (double)this->x; double cur_y = (double)this->y; double s = sin(angle); double c = cos(angle); this->x = (coord_t)round(c * cur_x - s * cur_y); this->y = (coord_t)round(c * cur_y + s * cur_x); } void Point::rotate(double angle, const Point ¢er) { double cur_x = (double)this->x; double cur_y = (double)this->y; double s = sin(angle); double c = cos(angle); double dx = cur_x - (double)center.x; double dy = cur_y - (double)center.y; this->x = (coord_t)round( (double)center.x + c * dx - s * dy ); this->y = (coord_t)round( (double)center.y + c * dy + s * dx ); } bool Point::coincides_with_epsilon(const Point &point) const { return std::abs(this->x - point.x) < SCALED_EPSILON && std::abs(this->y - point.y) < SCALED_EPSILON; } int Point::nearest_point_index(const Points &points) const { PointConstPtrs p; p.reserve(points.size()); for (Points::const_iterator it = points.begin(); it != points.end(); ++it) p.push_back(&*it); return this->nearest_point_index(p); } int Point::nearest_point_index(const PointConstPtrs &points) const { int idx = -1; double distance = -1; // double because long is limited to 2147483647 on some platforms and it's not enough for (PointConstPtrs::const_iterator it = points.begin(); it != points.end(); ++it) { /* If the X distance of the candidate is > than the total distance of the best previous candidate, we know we don't want it */ double d = pow(this->x - (*it)->x, 2); if (distance != -1 && d > distance) continue; /* If the Y distance of the candidate is > than the total distance of the best previous candidate, we know we don't want it */ d += pow(this->y - (*it)->y, 2); if (distance != -1 && d > distance) continue; idx = it - points.begin(); distance = d; if (distance < EPSILON) break; } return idx; } /* This method finds the point that is closest to both this point and the supplied one */ size_t Point::nearest_waypoint_index(const Points &points, const Point &dest) const { size_t idx = -1; double distance = -1; // double because long is limited to 2147483647 on some platforms and it's not enough for (Points::const_iterator p = points.begin(); p != points.end(); ++p) { // distance from this to candidate double d = pow(this->x - p->x, 2) + pow(this->y - p->y, 2); // distance from candidate to dest d += pow(p->x - dest.x, 2) + pow(p->y - dest.y, 2); // if the total distance is greater than current min distance, ignore it if (distance != -1 && d > distance) continue; idx = p - points.begin(); distance = d; if (distance < EPSILON) break; } return idx; } int Point::nearest_point_index(const PointPtrs &points) const { PointConstPtrs p; p.reserve(points.size()); for (PointPtrs::const_iterator it = points.begin(); it != points.end(); ++it) p.push_back(*it); return this->nearest_point_index(p); } bool Point::nearest_point(const Points &points, Point* point) const { int idx = this->nearest_point_index(points); if (idx == -1) return false; *point = points.at(idx); return true; } bool Point::nearest_waypoint(const Points &points, const Point &dest, Point* point) const { int idx = this->nearest_waypoint_index(points, dest); if (idx == -1) return false; *point = points.at(idx); return true; } double Point::distance_to(const Point &point) const { double dx = ((double)point.x - this->x); double dy = ((double)point.y - this->y); return sqrt(dx*dx + dy*dy); } /* distance to the closest point of line */ double Point::distance_to(const Line &line) const { const double dx = line.b.x - line.a.x; const double dy = line.b.y - line.a.y; const double l2 = dx*dx + dy*dy; // avoid a sqrt if (l2 == 0.0) return this->distance_to(line.a); // line.a == line.b case // Consider the line extending the segment, parameterized as line.a + t (line.b - line.a). // We find projection of this point onto the line. // It falls where t = [(this-line.a) . (line.b-line.a)] / |line.b-line.a|^2 const double t = ((this->x - line.a.x) * dx + (this->y - line.a.y) * dy) / l2; if (t < 0.0) return this->distance_to(line.a); // beyond the 'a' end of the segment else if (t > 1.0) return this->distance_to(line.b); // beyond the 'b' end of the segment Point projection( line.a.x + t * dx, line.a.y + t * dy ); return this->distance_to(projection); } double Point::perp_distance_to(const Line &line) const { if (line.a.coincides_with(line.b)) return this->distance_to(line.a); double n = (double)(line.b.x - line.a.x) * (double)(line.a.y - this->y) - (double)(line.a.x - this->x) * (double)(line.b.y - line.a.y); return std::abs(n) / line.length(); } /* Three points are a counter-clockwise turn if ccw > 0, clockwise if * ccw < 0, and collinear if ccw = 0 because ccw is a determinant that * gives the signed area of the triangle formed by p1, p2 and this point. * In other words it is the 2D cross product of p1-p2 and p1-this, i.e. * z-component of their 3D cross product. * We return double because it must be big enough to hold 2*max(|coordinate|)^2 */ double Point::ccw(const Point &p1, const Point &p2) const { return (double)(p2.x - p1.x)*(double)(this->y - p1.y) - (double)(p2.y - p1.y)*(double)(this->x - p1.x); } double Point::ccw(const Line &line) const { return this->ccw(line.a, line.b); } // returns the CCW angle between this-p1 and this-p2 // i.e. this assumes a CCW rotation from p1 to p2 around this double Point::ccw_angle(const Point &p1, const Point &p2) const { double angle = atan2(p1.x - this->x, p1.y - this->y) - atan2(p2.x - this->x, p2.y - this->y); // we only want to return only positive angles return angle <= 0 ? angle + 2*PI : angle; } Point Point::projection_onto(const MultiPoint &poly) const { Point running_projection = poly.first_point(); double running_min = this->distance_to(running_projection); Lines lines = poly.lines(); for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line) { Point point_temp = this->projection_onto(*line); if (this->distance_to(point_temp) < running_min) { running_projection = point_temp; running_min = this->distance_to(running_projection); } } return running_projection; } Point Point::projection_onto(const Line &line) const { if (line.a.coincides_with(line.b)) return line.a; /* (Ported from VisiLibity by Karl J. Obermeyer) The projection of point_temp onto the line determined by line_segment_temp can be represented as an affine combination expressed in the form projection of Point = theta*line_segment_temp.first + (1.0-theta)*line_segment_temp.second. If theta is outside the interval [0,1], then one of the Line_Segment's endpoints must be closest to calling Point. */ double theta = ( (double)(line.b.x - this->x)*(double)(line.b.x - line.a.x) + (double)(line.b.y- this->y)*(double)(line.b.y - line.a.y) ) / ( (double)pow(line.b.x - line.a.x, 2) + (double)pow(line.b.y - line.a.y, 2) ); if (0.0 <= theta && theta <= 1.0) return theta * line.a + (1.0-theta) * line.b; // Else pick closest endpoint. if (this->distance_to(line.a) < this->distance_to(line.b)) { return line.a; } else { return line.b; } } Point Point::negative() const { return Point(-this->x, -this->y); } Vector Point::vector_to(const Point &point) const { return Vector(point.x - this->x, point.y - this->y); } Point operator+(const Point& point1, const Point& point2) { return Point(point1.x + point2.x, point1.y + point2.y); } Point operator-(const Point& point1, const Point& point2) { return Point(point1.x - point2.x, point1.y - point2.y); } Point operator*(double scalar, const Point& point2) { return Point(scalar * point2.x, scalar * point2.y); } std::ostream& operator<<(std::ostream &stm, const Pointf &pointf) { return stm << pointf.x << "," << pointf.y; } std::string Pointf::wkt() const { std::ostringstream ss; ss << "POINT(" << this->x << " " << this->y << ")"; return ss.str(); } std::string Pointf::dump_perl() const { std::ostringstream ss; ss << "[" << this->x << "," << this->y << "]"; return ss.str(); } void Pointf::scale(double factor) { this->x *= factor; this->y *= factor; } void Pointf::translate(double x, double y) { this->x += x; this->y += y; } void Pointf::translate(const Vectorf &vector) { this->translate(vector.x, vector.y); } void Pointf::rotate(double angle) { double cur_x = this->x; double cur_y = this->y; double s = sin(angle); double c = cos(angle); this->x = c * cur_x - s * cur_y; this->y = c * cur_y + s * cur_x; } void Pointf::rotate(double angle, const Pointf ¢er) { double cur_x = this->x; double cur_y = this->y; double s = sin(angle); double c = cos(angle); double dx = cur_x - center.x; double dy = cur_y - center.y; this->x = center.x + c * dx - s * dy; this->y = center.y + c * dy + s * dx; } Pointf Pointf::negative() const { return Pointf(-this->x, -this->y); } Vectorf Pointf::vector_to(const Pointf &point) const { return Vectorf(point.x - this->x, point.y - this->y); } void Pointf3::scale(double factor) { Pointf::scale(factor); this->z *= factor; } void Pointf3::translate(const Vectorf3 &vector) { this->translate(vector.x, vector.y, vector.z); } void Pointf3::translate(double x, double y, double z) { Pointf::translate(x, y); this->z += z; } double Pointf3::distance_to(const Pointf3 &point) const { double dx = ((double)point.x - this->x); double dy = ((double)point.y - this->y); double dz = ((double)point.z - this->z); return sqrt(dx*dx + dy*dy + dz*dz); } Pointf3 Pointf3::negative() const { return Pointf3(-this->x, -this->y, -this->z); } Vectorf3 Pointf3::vector_to(const Pointf3 &point) const { return Vectorf3(point.x - this->x, point.y - this->y, point.z - this->z); } }