#ifndef slic3r_Model_hpp_ #define slic3r_Model_hpp_ #include "libslic3r.h" #include "PrintConfig.hpp" #include "Layer.hpp" #include "Point.hpp" #include "TriangleMesh.hpp" #include "Slicing.hpp" #include #include #include #include #if ENABLE_MODELVOLUME_TRANSFORM #include "Geometry.hpp" #endif // ENABLE_MODELVOLUME_TRANSFORM namespace Slic3r { class Model; class ModelInstance; class ModelMaterial; class ModelObject; class ModelVolume; class Print; class SLAPrint; typedef std::string t_model_material_id; typedef std::string t_model_material_attribute; typedef std::map t_model_material_attributes; typedef std::map ModelMaterialMap; typedef std::vector ModelObjectPtrs; typedef std::vector ModelVolumePtrs; typedef std::vector ModelInstancePtrs; // Unique identifier of a Model, ModelObject, ModelVolume, ModelInstance or ModelMaterial. // Used to synchronize the front end (UI) with the back end (BackgroundSlicingProcess / Print / PrintObject) // Valid IDs are strictly positive (non zero). // It is declared as an object, as some compilers (notably msvcc) consider a typedef size_t equivalent to size_t // for parameter overload. struct ModelID { ModelID(size_t id) : id(id) {} bool operator==(const ModelID &rhs) const { return this->id == rhs.id; } bool operator!=(const ModelID &rhs) const { return this->id != rhs.id; } bool operator< (const ModelID &rhs) const { return this->id < rhs.id; } bool operator> (const ModelID &rhs) const { return this->id > rhs.id; } bool operator<=(const ModelID &rhs) const { return this->id <= rhs.id; } bool operator>=(const ModelID &rhs) const { return this->id >= rhs.id; } size_t id; }; // Base for Model, ModelObject, ModelVolume, ModelInstance or ModelMaterial to provide a unique ID // to synchronize the front end (UI) with the back end (BackgroundSlicingProcess / Print / PrintObject). // Achtung! The s_last_id counter is not thread safe, so it is expected, that the ModelBase derived instances // are only instantiated from the main thread. class ModelBase { public: ModelID id() const { return m_id; } protected: // Constructors to be only called by derived classes. // Default constructor to assign a unique ID. ModelBase() : m_id(generate_new_id()) {} // Constructor with ignored int parameter to assign an invalid ID, to be replaced // by an existing ID copied from elsewhere. ModelBase(int) : m_id(ModelID(0)) {} // Use with caution! void set_new_unique_id() { m_id = generate_new_id(); } void set_invalid_id() { m_id = 0; } // Use with caution! void copy_id(const ModelBase &rhs) { m_id = rhs.id(); } // Override this method if a ModelBase derived class owns other ModelBase derived instances. void assign_new_unique_ids_recursive() { this->set_new_unique_id(); } private: ModelID m_id; static inline ModelID generate_new_id() { return ModelID(++ s_last_id); } static size_t s_last_id; }; #define MODELBASE_DERIVED_COPY_MOVE_CLONE(TYPE) \ /* Copy a model, copy the IDs. The Print::apply() will call the TYPE::copy() method */ \ /* to make a private copy for background processing. */ \ static TYPE* new_copy(const TYPE &rhs) { return new TYPE(rhs); } \ static TYPE* new_copy(TYPE &&rhs) { return new TYPE(std::move(rhs)); } \ static TYPE make_copy(const TYPE &rhs) { return TYPE(rhs); } \ static TYPE make_copy(TYPE &&rhs) { return TYPE(std::move(rhs)); } \ TYPE& assign_copy(const TYPE &rhs); \ TYPE& assign_copy(TYPE &&rhs); \ /* Copy a TYPE, generate new IDs. The front end will use this call. */ \ static TYPE* new_clone(const TYPE &rhs) { \ /* Default constructor assigning an invalid ID. */ \ auto obj = new TYPE(-1); \ obj->assign_clone(rhs); \ return obj; \ } \ TYPE make_clone(const TYPE &rhs) { \ /* Default constructor assigning an invalid ID. */ \ TYPE obj(-1); \ obj.assign_clone(rhs); \ return obj; \ } \ TYPE& assign_clone(const TYPE &rhs) { \ this->assign_copy(rhs); \ this->assign_new_unique_ids_recursive(); \ return *this; \ } #define MODELBASE_DERIVED_PRIVATE_COPY_MOVE(TYPE) \ private: \ /* Private constructor with an unused int parameter will create a TYPE instance with an invalid ID. */ \ explicit TYPE(int) : ModelBase(-1) {}; \ void assign_new_unique_ids_recursive(); // Material, which may be shared across multiple ModelObjects of a single Model. class ModelMaterial : public ModelBase { public: // Attributes are defined by the AMF file format, but they don't seem to be used by Slic3r for any purpose. t_model_material_attributes attributes; // Dynamic configuration storage for the object specific configuration values, overriding the global configuration. DynamicPrintConfig config; Model* get_model() const { return m_model; } void apply(const t_model_material_attributes &attributes) { this->attributes.insert(attributes.begin(), attributes.end()); } protected: friend class Model; // Constructor, which assigns a new unique ID. ModelMaterial(Model *model) : m_model(model) {} // Copy constructor copies the ID and m_model! ModelMaterial(const ModelMaterial &rhs) = default; void set_model(Model *model) { m_model = model; } private: // Parent, owning this material. Model *m_model; ModelMaterial() = delete; ModelMaterial(ModelMaterial &&rhs) = delete; ModelMaterial& operator=(const ModelMaterial &rhs) = delete; ModelMaterial& operator=(ModelMaterial &&rhs) = delete; }; // A printable object, possibly having multiple print volumes (each with its own set of parameters and materials), // and possibly having multiple modifier volumes, each modifier volume with its set of parameters and materials. // Each ModelObject may be instantiated mutliple times, each instance having different placement on the print bed, // different rotation and different uniform scaling. class ModelObject : public ModelBase { friend class Model; public: std::string name; std::string input_file; // XXX: consider fs::path // Instances of this ModelObject. Each instance defines a shift on the print bed, rotation around the Z axis and a uniform scaling. // Instances are owned by this ModelObject. ModelInstancePtrs instances; // Printable and modifier volumes, each with its material ID and a set of override parameters. // ModelVolumes are owned by this ModelObject. ModelVolumePtrs volumes; // Configuration parameters specific to a single ModelObject, overriding the global Slic3r settings. DynamicPrintConfig config; // Variation of a layer thickness for spans of Z coordinates. t_layer_height_ranges layer_height_ranges; // Profile of increasing z to a layer height, to be linearly interpolated when calculating the layers. // The pairs of are packed into a 1D array to simplify handling by the Perl XS. std::vector layer_height_profile; // layer_height_profile is initialized when the layer editing mode is entered. // Only if the user really modified the layer height, layer_height_profile_valid is set // and used subsequently by the PrintObject. bool layer_height_profile_valid; // This vector holds position of selected support points for SLA. The data are // saved in mesh coordinates to allow using them for several instances. std::vector sla_support_points; /* This vector accumulates the total translation applied to the object by the center_around_origin() method. Callers might want to apply the same translation to new volumes before adding them to this object in order to preserve alignment when user expects that. */ Vec3d origin_translation; Model* get_model() { return m_model; }; const Model* get_model() const { return m_model; }; ModelVolume* add_volume(const TriangleMesh &mesh); ModelVolume* add_volume(TriangleMesh &&mesh); ModelVolume* add_volume(const ModelVolume &volume); ModelVolume* add_volume(const ModelVolume &volume, TriangleMesh &&mesh); void delete_volume(size_t idx); void clear_volumes(); bool is_multiparts() const { return volumes.size() > 1; } ModelInstance* add_instance(); ModelInstance* add_instance(const ModelInstance &instance); ModelInstance* add_instance(const Vec3d &offset, const Vec3d &scaling_factor, const Vec3d &rotation); void delete_instance(size_t idx); void delete_last_instance(); void clear_instances(); // Returns the bounding box of the transformed instances. // This bounding box is approximate and not snug. // This bounding box is being cached. const BoundingBoxf3& bounding_box() const; void invalidate_bounding_box() { m_bounding_box_valid = false; } // A mesh containing all transformed instances of this object. TriangleMesh mesh() const; // Non-transformed (non-rotated, non-scaled, non-translated) sum of non-modifier object volumes. // Currently used by ModelObject::mesh() and to calculate the 2D envelope for 2D platter. TriangleMesh raw_mesh() const; // Non-transformed (non-rotated, non-scaled, non-translated) sum of all object volumes. TriangleMesh full_raw_mesh() const; // A transformed snug bounding box around the non-modifier object volumes, without the translation applied. // This bounding box is only used for the actual slicing. BoundingBoxf3 raw_bounding_box() const; // A snug bounding box around the transformed non-modifier object volumes. BoundingBoxf3 instance_bounding_box(size_t instance_idx, bool dont_translate = false) const; void center_around_origin(); void ensure_on_bed(); void translate_instances(const Vec3d& vector); void translate_instance(size_t instance_idx, const Vec3d& vector); void translate(const Vec3d &vector) { this->translate(vector(0), vector(1), vector(2)); } void translate(double x, double y, double z); void scale(const Vec3d &versor); void scale(const double s) { this->scale(Vec3d(s, s, s)); } void scale(double x, double y, double z) { this->scale(Vec3d(x, y, z)); } void rotate(double angle, Axis axis); void rotate(double angle, const Vec3d& axis); void mirror(Axis axis); void scale_mesh(const Vec3d& versor); size_t materials_count() const; size_t facets_count() const; bool needed_repair() const; ModelObjectPtrs cut(size_t instance, coordf_t z, bool keep_upper = true, bool keep_lower = true, bool rotate_lower = false); // Note: z is in world coordinates void split(ModelObjectPtrs* new_objects); void repair(); double get_min_z() const; double get_instance_min_z(size_t instance_idx) const; // Called by Print::validate() from the UI thread. unsigned int check_instances_print_volume_state(const BoundingBoxf3& print_volume); // Print object statistics to console. void print_info() const; protected: friend class Print; friend class SLAPrint; // Called by Print::apply() to set the model pointer after making a copy. void set_model(Model *model) { m_model = model; } private: ModelObject(Model *model) : layer_height_profile_valid(false), m_model(model), origin_translation(Vec3d::Zero()), m_bounding_box_valid(false) {} ~ModelObject(); /* To be able to return an object from own copy / clone methods. Hopefully the compiler will do the "Copy elision" */ /* (Omits copy and move(since C++11) constructors, resulting in zero - copy pass - by - value semantics). */ ModelObject(const ModelObject &rhs) : ModelBase(-1), m_model(rhs.m_model) { this->assign_copy(rhs); } explicit ModelObject(ModelObject &&rhs) : ModelBase(-1) { this->assign_copy(std::move(rhs)); } ModelObject& operator=(const ModelObject &rhs) { this->assign_copy(rhs); m_model = rhs.m_model; return *this; } ModelObject& operator=(ModelObject &&rhs) { this->assign_copy(std::move(rhs)); m_model = rhs.m_model; return *this; } MODELBASE_DERIVED_COPY_MOVE_CLONE(ModelObject) MODELBASE_DERIVED_PRIVATE_COPY_MOVE(ModelObject) // Parent object, owning this ModelObject. Set to nullptr here, so the macros above will have it initialized. Model *m_model = nullptr; // Bounding box, cached. mutable BoundingBoxf3 m_bounding_box; mutable bool m_bounding_box_valid; }; // An object STL, or a modifier volume, over which a different set of parameters shall be applied. // ModelVolume instances are owned by a ModelObject. class ModelVolume : public ModelBase { public: std::string name; // The triangular model. TriangleMesh mesh; // Configuration parameters specific to an object model geometry or a modifier volume, // overriding the global Slic3r settings and the ModelObject settings. DynamicPrintConfig config; enum Type { MODEL_TYPE_INVALID = -1, MODEL_PART = 0, PARAMETER_MODIFIER, SUPPORT_ENFORCER, SUPPORT_BLOCKER, }; // A parent object owning this modifier volume. ModelObject* get_object() const { return this->object; }; Type type() const { return m_type; } void set_type(const Type t) { m_type = t; } bool is_model_part() const { return m_type == MODEL_PART; } bool is_modifier() const { return m_type == PARAMETER_MODIFIER; } bool is_support_enforcer() const { return m_type == SUPPORT_ENFORCER; } bool is_support_blocker() const { return m_type == SUPPORT_BLOCKER; } bool is_support_modifier() const { return m_type == SUPPORT_BLOCKER || m_type == SUPPORT_ENFORCER; } t_model_material_id material_id() const { return m_material_id; } void set_material_id(t_model_material_id material_id); ModelMaterial* material() const; void set_material(t_model_material_id material_id, const ModelMaterial &material); // Extract the current extruder ID based on this ModelVolume's config and the parent ModelObject's config. // Extruder ID is only valid for FFF. Returns -1 for SLA or if the extruder ID is not applicable (support volumes). int extruder_id() const; // Split this volume, append the result to the object owning this volume. // Return the number of volumes created from this one. // This is useful to assign different materials to different volumes of an object. size_t split(unsigned int max_extruders); void translate(double x, double y, double z) { translate(Vec3d(x, y, z)); } void translate(const Vec3d& displacement); void scale(const Vec3d& scaling_factors); void scale(double x, double y, double z) { scale(Vec3d(x, y, z)); } void scale(double s) { scale(Vec3d(s, s, s)); } void rotate(double angle, Axis axis); void rotate(double angle, const Vec3d& axis); void mirror(Axis axis); void scale_geometry(const Vec3d& versor); #if ENABLE_MODELVOLUME_TRANSFORM // translates the mesh and the convex hull so that the origin of their vertices is in the center of this volume's bounding box void center_geometry(); #endif // ENABLE_MODELVOLUME_TRANSFORM void calculate_convex_hull(); const TriangleMesh& get_convex_hull() const; // Helpers for loading / storing into AMF / 3MF files. static Type type_from_string(const std::string &s); static std::string type_to_string(const Type t); #if ENABLE_MODELVOLUME_TRANSFORM const Geometry::Transformation& get_transformation() const { return m_transformation; } void set_transformation(const Geometry::Transformation& transformation) { m_transformation = transformation; } const Vec3d& get_offset() const { return m_transformation.get_offset(); } double get_offset(Axis axis) const { return m_transformation.get_offset(axis); } void set_offset(const Vec3d& offset) { m_transformation.set_offset(offset); } void set_offset(Axis axis, double offset) { m_transformation.set_offset(axis, offset); } const Vec3d& get_rotation() const { return m_transformation.get_rotation(); } double get_rotation(Axis axis) const { return m_transformation.get_rotation(axis); } void set_rotation(const Vec3d& rotation) { m_transformation.set_rotation(rotation); } void set_rotation(Axis axis, double rotation) { m_transformation.set_rotation(axis, rotation); } Vec3d get_scaling_factor() const { return m_transformation.get_scaling_factor(); } double get_scaling_factor(Axis axis) const { return m_transformation.get_scaling_factor(axis); } void set_scaling_factor(const Vec3d& scaling_factor) { m_transformation.set_scaling_factor(scaling_factor); } void set_scaling_factor(Axis axis, double scaling_factor) { m_transformation.set_scaling_factor(axis, scaling_factor); } const Vec3d& get_mirror() const { return m_transformation.get_mirror(); } double get_mirror(Axis axis) const { return m_transformation.get_mirror(axis); } void set_mirror(const Vec3d& mirror) { m_transformation.set_mirror(mirror); } void set_mirror(Axis axis, double mirror) { m_transformation.set_mirror(axis, mirror); } const Transform3d& get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const { return m_transformation.get_matrix(dont_translate, dont_rotate, dont_scale, dont_mirror); } #endif // ENABLE_MODELVOLUME_TRANSFORM protected: friend class Print; friend class SLAPrint; friend class ModelObject; explicit ModelVolume(const ModelVolume &rhs) = default; void set_model_object(ModelObject *model_object) { object = model_object; } private: // Parent object owning this ModelVolume. ModelObject* object; // Is it an object to be printed, or a modifier volume? Type m_type; t_model_material_id m_material_id; // The convex hull of this model's mesh. TriangleMesh m_convex_hull; #if ENABLE_MODELVOLUME_TRANSFORM Geometry::Transformation m_transformation; #endif // ENABLE_MODELVOLUME_TRANSFORM ModelVolume(ModelObject *object, const TriangleMesh &mesh) : mesh(mesh), m_type(MODEL_PART), object(object) { if (mesh.stl.stats.number_of_facets > 1) calculate_convex_hull(); } ModelVolume(ModelObject *object, TriangleMesh &&mesh, TriangleMesh &&convex_hull) : mesh(std::move(mesh)), m_convex_hull(std::move(convex_hull)), m_type(MODEL_PART), object(object) {} #if ENABLE_MODELVOLUME_TRANSFORM // Copying an existing volume, therefore this volume will get a copy of the ID assigned. ModelVolume(ModelObject *object, const ModelVolume &other) : ModelBase(other), // copy the ID name(other.name), mesh(other.mesh), m_convex_hull(other.m_convex_hull), config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation) { this->set_material_id(other.material_id()); } // Providing a new mesh, therefore this volume will get a new unique ID assigned. ModelVolume(ModelObject *object, const ModelVolume &other, const TriangleMesh &&mesh) : name(other.name), mesh(std::move(mesh)), config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation) { this->set_material_id(other.material_id()); if (mesh.stl.stats.number_of_facets > 1) calculate_convex_hull(); } #else // Copying an existing volume, therefore this volume will get a copy of the ID assigned. ModelVolume(ModelObject *object, const ModelVolume &other) : ModelBase(other), // copy the ID name(other.name), mesh(other.mesh), m_convex_hull(other.m_convex_hull), config(other.config), m_type(other.m_type), object(object) { if (! other.material_id().empty()) this->set_material_id(other.material_id()); } // Providing a new mesh, therefore this volume will get a new unique ID assigned. ModelVolume(ModelObject *object, const ModelVolume &other, TriangleMesh &&mesh) : name(other.name), mesh(std::move(mesh)), config(other.config), m_type(other.m_type), object(object) { if (! other.material_id().empty()) this->set_material_id(other.material_id()); if (mesh.stl.stats.number_of_facets > 1) calculate_convex_hull(); } #endif // ENABLE_MODELVOLUME_TRANSFORM ModelVolume& operator=(ModelVolume &rhs) = delete; }; // A single instance of a ModelObject. // Knows the affine transformation of an object. class ModelInstance : public ModelBase { public: enum EPrintVolumeState : unsigned char { PVS_Inside, PVS_Partly_Outside, PVS_Fully_Outside, Num_BedStates }; private: #if ENABLE_MODELVOLUME_TRANSFORM Geometry::Transformation m_transformation; #else Vec3d m_offset; // in unscaled coordinates Vec3d m_rotation; // Rotation around the three axes, in radians around mesh center point Vec3d m_scaling_factor; // Scaling factors along the three axes Vec3d m_mirror; // Mirroring along the three axes #endif // ENABLE_MODELVOLUME_TRANSFORM public: // flag showing the position of this instance with respect to the print volume (set by Print::validate() using ModelObject::check_instances_print_volume_state()) EPrintVolumeState print_volume_state; ModelObject* get_object() const { return this->object; } #if ENABLE_MODELVOLUME_TRANSFORM const Geometry::Transformation& get_transformation() const { return m_transformation; } void set_transformation(const Geometry::Transformation& transformation) { m_transformation = transformation; } const Vec3d& get_offset() const { return m_transformation.get_offset(); } double get_offset(Axis axis) const { return m_transformation.get_offset(axis); } void set_offset(const Vec3d& offset) { m_transformation.set_offset(offset); } void set_offset(Axis axis, double offset) { m_transformation.set_offset(axis, offset); } const Vec3d& get_rotation() const { return m_transformation.get_rotation(); } double get_rotation(Axis axis) const { return m_transformation.get_rotation(axis); } void set_rotation(const Vec3d& rotation) { m_transformation.set_rotation(rotation); } void set_rotation(Axis axis, double rotation) { m_transformation.set_rotation(axis, rotation); } Vec3d get_scaling_factor() const { return m_transformation.get_scaling_factor(); } double get_scaling_factor(Axis axis) const { return m_transformation.get_scaling_factor(axis); } void set_scaling_factor(const Vec3d& scaling_factor) { m_transformation.set_scaling_factor(scaling_factor); } void set_scaling_factor(Axis axis, double scaling_factor) { m_transformation.set_scaling_factor(axis, scaling_factor); } const Vec3d& get_mirror() const { return m_transformation.get_mirror(); } double get_mirror(Axis axis) const { return m_transformation.get_mirror(axis); } void set_mirror(const Vec3d& mirror) { m_transformation.set_mirror(mirror); } void set_mirror(Axis axis, double mirror) { m_transformation.set_mirror(axis, mirror); } #else const Vec3d& get_offset() const { return m_offset; } double get_offset(Axis axis) const { return m_offset(axis); } void set_offset(const Vec3d& offset) { m_offset = offset; } void set_offset(Axis axis, double offset) { m_offset(axis) = offset; } const Vec3d& get_rotation() const { return m_rotation; } double get_rotation(Axis axis) const { return m_rotation(axis); } void set_rotation(const Vec3d& rotation); void set_rotation(Axis axis, double rotation); Vec3d get_scaling_factor() const { return m_scaling_factor; } double get_scaling_factor(Axis axis) const { return m_scaling_factor(axis); } void set_scaling_factor(const Vec3d& scaling_factor); void set_scaling_factor(Axis axis, double scaling_factor); const Vec3d& get_mirror() const { return m_mirror; } double get_mirror(Axis axis) const { return m_mirror(axis); } void set_mirror(const Vec3d& mirror); void set_mirror(Axis axis, double mirror); #endif // ENABLE_MODELVOLUME_TRANSFORM // To be called on an external mesh void transform_mesh(TriangleMesh* mesh, bool dont_translate = false) const; // Calculate a bounding box of a transformed mesh. To be called on an external mesh. BoundingBoxf3 transform_mesh_bounding_box(const TriangleMesh& mesh, bool dont_translate = false) const; // Transform an external bounding box. BoundingBoxf3 transform_bounding_box(const BoundingBoxf3 &bbox, bool dont_translate = false) const; // Transform an external vector. Vec3d transform_vector(const Vec3d& v, bool dont_translate = false) const; // To be called on an external polygon. It does not translate the polygon, only rotates and scales. void transform_polygon(Polygon* polygon) const; #if ENABLE_MODELVOLUME_TRANSFORM const Transform3d& get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const { return m_transformation.get_matrix(dont_translate, dont_rotate, dont_scale, dont_mirror); } #else Transform3d get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const; #endif // ENABLE_MODELVOLUME_TRANSFORM bool is_printable() const { return print_volume_state == PVS_Inside; } protected: friend class Print; friend class SLAPrint; friend class ModelObject; explicit ModelInstance(const ModelInstance &rhs) = default; void set_model_object(ModelObject *model_object) { object = model_object; } private: // Parent object, owning this instance. ModelObject* object; #if ENABLE_MODELVOLUME_TRANSFORM // Constructor, which assigns a new unique ID. explicit ModelInstance(ModelObject *object) : object(object), print_volume_state(PVS_Inside) {} // Constructor, which assigns a new unique ID. explicit ModelInstance(ModelObject *object, const ModelInstance &other) : m_transformation(other.m_transformation), object(object), print_volume_state(PVS_Inside) {} #else explicit ModelInstance(ModelObject *object) : m_offset(Vec3d::Zero()), m_rotation(Vec3d::Zero()), m_scaling_factor(Vec3d::Ones()), m_mirror(Vec3d::Ones()), object(object), print_volume_state(PVS_Inside) {} explicit ModelInstance(ModelObject *object, const ModelInstance &other) : m_offset(other.m_offset), m_rotation(other.m_rotation), m_scaling_factor(other.m_scaling_factor), m_mirror(other.m_mirror), object(object), print_volume_state(PVS_Inside) {} #endif // ENABLE_MODELVOLUME_TRANSFORM ModelInstance() = delete; explicit ModelInstance(ModelInstance &&rhs) = delete; ModelInstance& operator=(const ModelInstance &rhs) = delete; ModelInstance& operator=(ModelInstance &&rhs) = delete; }; // The print bed content. // Description of a triangular model with multiple materials, multiple instances with various affine transformations // and with multiple modifier meshes. // A model groups multiple objects, each object having possibly multiple instances, // all objects may share mutliple materials. class Model : public ModelBase { static unsigned int s_auto_extruder_id; public: // Materials are owned by a model and referenced by objects through t_model_material_id. // Single material may be shared by multiple models. ModelMaterialMap materials; // Objects are owned by a model. Each model may have multiple instances, each instance having its own transformation (shift, scale, rotation). ModelObjectPtrs objects; // Default constructor assigns a new ID to the model. Model() {} ~Model() { this->clear_objects(); this->clear_materials(); } /* To be able to return an object from own copy / clone methods. Hopefully the compiler will do the "Copy elision" */ /* (Omits copy and move(since C++11) constructors, resulting in zero - copy pass - by - value semantics). */ Model(const Model &rhs) : ModelBase(-1) { this->assign_copy(rhs); } explicit Model(Model &&rhs) : ModelBase(-1) { this->assign_copy(std::move(rhs)); } Model& operator=(const Model &rhs) { this->assign_copy(rhs); return *this; } Model& operator=(Model &&rhs) { this->assign_copy(std::move(rhs)); return *this; } MODELBASE_DERIVED_COPY_MOVE_CLONE(Model) static Model read_from_file(const std::string &input_file, DynamicPrintConfig *config = nullptr, bool add_default_instances = true); static Model read_from_archive(const std::string &input_file, DynamicPrintConfig *config, bool add_default_instances = true); /// Repair the ModelObjects of the current Model. /// This function calls repair function on each TriangleMesh of each model object volume void repair(); // Add a new ModelObject to this Model, generate a new ID for this ModelObject. ModelObject* add_object(); ModelObject* add_object(const char *name, const char *path, const TriangleMesh &mesh); ModelObject* add_object(const char *name, const char *path, TriangleMesh &&mesh); ModelObject* add_object(const ModelObject &other); void delete_object(size_t idx); bool delete_object(ModelID id); bool delete_object(ModelObject* object); void clear_objects(); ModelMaterial* add_material(t_model_material_id material_id); ModelMaterial* add_material(t_model_material_id material_id, const ModelMaterial &other); ModelMaterial* get_material(t_model_material_id material_id) { ModelMaterialMap::iterator i = this->materials.find(material_id); return (i == this->materials.end()) ? nullptr : i->second; } void delete_material(t_model_material_id material_id); void clear_materials(); bool add_default_instances(); // Returns approximate axis aligned bounding box of this model BoundingBoxf3 bounding_box() const; // Set the print_volume_state of PrintObject::instances, // return total number of printable objects. unsigned int update_print_volume_state(const BoundingBoxf3 &print_volume); // Returns true if any ModelObject was modified. bool center_instances_around_point(const Vec2d &point); void translate(coordf_t x, coordf_t y, coordf_t z) { for (ModelObject *o : this->objects) o->translate(x, y, z); } TriangleMesh mesh() const; bool arrange_objects(coordf_t dist, const BoundingBoxf* bb = NULL); // Croaks if the duplicated objects do not fit the print bed. void duplicate(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL); void duplicate_objects(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL); void duplicate_objects_grid(size_t x, size_t y, coordf_t dist); bool looks_like_multipart_object() const; void convert_multipart_object(unsigned int max_extruders); // Ensures that the min z of the model is not negative void adjust_min_z(); void print_info() const { for (const ModelObject *o : this->objects) o->print_info(); } static unsigned int get_auto_extruder_id(unsigned int max_extruders); static std::string get_auto_extruder_id_as_string(unsigned int max_extruders); static void reset_auto_extruder_id(); // Propose an output file name based on the first printable object's name. std::string propose_export_file_name() const; private: MODELBASE_DERIVED_PRIVATE_COPY_MOVE(Model) }; #undef MODELBASE_DERIVED_COPY_MOVE_CLONE #undef MODELBASE_DERIVED_PRIVATE_COPY_MOVE // Test whether the two models contain the same number of ModelObjects with the same set of IDs // ordered in the same order. In that case it is not necessary to kill the background processing. extern bool model_object_list_equal(const Model &model_old, const Model &model_new); // Test whether the new model is just an extension of the old model (new objects were added // to the end of the original list. In that case it is not necessary to kill the background processing. extern bool model_object_list_extended(const Model &model_old, const Model &model_new); // Test whether the new ModelObject contains a different set of volumes (or sorted in a different order) // than the old ModelObject. extern bool model_volume_list_changed(const ModelObject &model_object_old, const ModelObject &model_object_new, const ModelVolume::Type type); #ifdef _DEBUG // Verify whether the IDs of Model / ModelObject / ModelVolume / ModelInstance / ModelMaterial are valid and unique. void check_model_ids_validity(const Model &model); void check_model_ids_equal(const Model &model1, const Model &model2); #endif /* _DEBUG */ } #endif