#include "Flow.hpp" #include namespace Slic3r { /* This constructor builds a Flow object from an extrusion width config setting and other context properties. */ Flow Flow::new_from_config_width(FlowRole role, const ConfigOptionFloatOrPercent &width, float nozzle_diameter, float height, float bridge_flow_ratio) { // we need layer height unless it's a bridge if (height <= 0 && bridge_flow_ratio == 0) CONFESS("Invalid flow height supplied to new_from_config_width()"); float w; if (bridge_flow_ratio > 0) { // if bridge flow was requested, calculate bridge width w = Flow::_bridge_width(nozzle_diameter, bridge_flow_ratio); } else if (!width.percent && width.value == 0) { // if user left option to 0, calculate a sane default width w = Flow::_auto_width(role, nozzle_diameter, height); } else { // if user set a manual value, use it w = width.get_abs_value(height); } return Flow(w, height, nozzle_diameter, bridge_flow_ratio > 0); } /* This constructor builds a Flow object from a given centerline spacing. */ Flow Flow::new_from_spacing(float spacing, float nozzle_diameter, float height, bool bridge) { // we need layer height unless it's a bridge if (height <= 0 && !bridge) CONFESS("Invalid flow height supplied to new_from_spacing()"); float w = Flow::_width_from_spacing(spacing, nozzle_diameter, height, bridge); return Flow(w, height, nozzle_diameter, bridge); } /* This method returns the centerline spacing between two adjacent extrusions having the same extrusion width (and other properties). */ float Flow::spacing() const { if (this->bridge) { return this->width + BRIDGE_EXTRA_SPACING; } float min_flow_spacing; if (this->width >= (this->nozzle_diameter + this->height)) { // rectangle with semicircles at the ends min_flow_spacing = this->width - this->height * (1 - PI/4.0); } else { // rectangle with shrunk semicircles at the ends min_flow_spacing = this->nozzle_diameter * (1 - PI/4.0) + this->width * PI/4.0; } return this->width - OVERLAP_FACTOR * (this->width - min_flow_spacing); } /* This method returns the centerline spacing between an extrusion using this flow and another one using another flow. this->spacing(other) shall return the same value as other.spacing(*this) */ float Flow::spacing(const Flow &other) const { assert(this->height == other.height); assert(this->bridge == other.bridge); if (this->bridge) { return this->width/2 + other.width/2 + BRIDGE_EXTRA_SPACING; } return this->spacing()/2 + other.spacing()/2; } /* This method returns extrusion volume per head move unit. */ double Flow::mm3_per_mm() const { if (this->bridge) { return (this->width * this->width) * PI/4.0; } else if (this->width >= (this->nozzle_diameter + this->height)) { // rectangle with semicircles at the ends return this->width * this->height + (this->height*this->height) / 4.0 * (PI-4.0); } else { // rectangle with shrunk semicircles at the ends return this->nozzle_diameter * this->height * (1 - PI/4.0) + this->height * this->width * PI/4.0; } } /* This static method returns bridge width for a given nozzle diameter. */ float Flow::_bridge_width(float nozzle_diameter, float bridge_flow_ratio) { if (bridge_flow_ratio == 1) return nozzle_diameter; // optimization to avoid sqrt() return sqrt(bridge_flow_ratio * (nozzle_diameter*nozzle_diameter)); } /* This static method returns a sane extrusion width default. */ float Flow::_auto_width(FlowRole role, float nozzle_diameter, float height) { // here we calculate a sane default by matching the flow speed (at the nozzle) and the feed rate float volume = (nozzle_diameter*nozzle_diameter) * PI/4.0; float shape_threshold = nozzle_diameter * height + (height*height) * PI/4.0; float width; if (volume >= shape_threshold) { // rectangle with semicircles at the ends width = ((nozzle_diameter*nozzle_diameter) * PI + (height*height) * (4.0 - PI)) / (4.0 * height); } else { // rectangle with squished semicircles at the ends width = nozzle_diameter * (nozzle_diameter/height - 4.0/PI + 1); } float min = nozzle_diameter * 1.05; float max = -1; if (role == frExternalPerimeter || role == frSupportMaterial) { min = max = nozzle_diameter; } else if (role != frInfill) { // do not limit width for sparse infill so that we use full native flow for it max = nozzle_diameter * 1.7; } if (max != -1 && width > max) width = max; if (width < min) width = min; return width; } /* This static method returns the extrusion width value corresponding to the supplied centerline spacing. */ float Flow::_width_from_spacing(float spacing, float nozzle_diameter, float height, bool bridge) { if (bridge) { return spacing - BRIDGE_EXTRA_SPACING; } float w_threshold = height + nozzle_diameter; float s_threshold = w_threshold - OVERLAP_FACTOR * (w_threshold - (w_threshold - height * (1 - PI/4.0))); if (spacing >= s_threshold) { // rectangle with semicircles at the ends return spacing + OVERLAP_FACTOR * height * (1 - PI/4.0); } else { // rectangle with shrunk semicircles at the ends return (spacing + nozzle_diameter * OVERLAP_FACTOR * (PI/4.0 - 1)) / (1 + OVERLAP_FACTOR * (PI/4.0 - 1)); } } #ifdef SLIC3RXS REGISTER_CLASS(Flow, "Flow"); #endif }