#include #include #include #include #include #include "sla_test_utils.hpp" #include #include #include namespace { const char *const BELOW_PAD_TEST_OBJECTS[] = { "20mm_cube.obj", "V.obj", }; const char *const AROUND_PAD_TEST_OBJECTS[] = { "20mm_cube.obj", "V.obj", "frog_legs.obj", "cube_with_concave_hole_enlarged.obj", }; const char *const SUPPORT_TEST_MODELS[] = { "cube_with_concave_hole_enlarged_standing.obj", "A_upsidedown.obj", "extruder_idler.obj" }; } // namespace TEST_CASE("Pillar pairhash should be unique", "[SLASupportGeneration]") { test_pairhash(); test_pairhash(); test_pairhash(); test_pairhash(); } TEST_CASE("Support point generator should be deterministic if seeded", "[SLASupportGeneration], [SLAPointGen]") { TriangleMesh mesh = load_model("A_upsidedown.obj"); AABBMesh emesh{mesh}; sla::SupportTreeConfig supportcfg; sla::SupportPointGenerator::Config autogencfg; autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm); sla::SupportPointGenerator point_gen{emesh, autogencfg, [] {}, [](int) {}}; auto bb = mesh.bounding_box(); double zmin = bb.min.z(); double zmax = bb.max.z(); double gnd = zmin - supportcfg.object_elevation_mm; auto layer_h = 0.05f; auto slicegrid = grid(float(gnd), float(zmax), layer_h); std::vector slices = slice_mesh_ex(mesh.its, slicegrid, CLOSING_RADIUS); point_gen.seed(0); point_gen.execute(slices, slicegrid); auto get_chksum = [](const std::vector &pts){ int64_t chksum = 0; for (auto &pt : pts) { auto p = scaled(pt.pos); chksum += p.x() + p.y() + p.z(); } return chksum; }; int64_t checksum = get_chksum(point_gen.output()); size_t ptnum = point_gen.output().size(); REQUIRE(point_gen.output().size() > 0); for (int i = 0; i < 20; ++i) { point_gen.output().clear(); point_gen.seed(0); point_gen.execute(slices, slicegrid); REQUIRE(point_gen.output().size() == ptnum); REQUIRE(checksum == get_chksum(point_gen.output())); } } TEST_CASE("Flat pad geometry is valid", "[SLASupportGeneration]") { sla::PadConfig padcfg; // Disable wings padcfg.wall_height_mm = .0; for (auto &fname : BELOW_PAD_TEST_OBJECTS) test_pad(fname, padcfg); } TEST_CASE("WingedPadGeometryIsValid", "[SLASupportGeneration]") { sla::PadConfig padcfg; // Add some wings to the pad to test the cavity padcfg.wall_height_mm = 1.; for (auto &fname : BELOW_PAD_TEST_OBJECTS) test_pad(fname, padcfg); } TEST_CASE("FlatPadAroundObjectIsValid", "[SLASupportGeneration]") { sla::PadConfig padcfg; // Add some wings to the pad to test the cavity padcfg.wall_height_mm = 0.; // padcfg.embed_object.stick_stride_mm = 0.; padcfg.embed_object.enabled = true; padcfg.embed_object.everywhere = true; for (auto &fname : AROUND_PAD_TEST_OBJECTS) test_pad(fname, padcfg); } TEST_CASE("WingedPadAroundObjectIsValid", "[SLASupportGeneration]") { sla::PadConfig padcfg; // Add some wings to the pad to test the cavity padcfg.wall_height_mm = 1.; padcfg.embed_object.enabled = true; padcfg.embed_object.everywhere = true; for (auto &fname : AROUND_PAD_TEST_OBJECTS) test_pad(fname, padcfg); } TEST_CASE("DefaultSupports::ElevatedSupportGeometryIsValid", "[SLASupportGeneration]") { sla::SupportTreeConfig supportcfg; supportcfg.object_elevation_mm = 10.; for (auto fname : SUPPORT_TEST_MODELS) test_supports(fname, supportcfg); } TEST_CASE("DefaultSupports::FloorSupportGeometryIsValid", "[SLASupportGeneration]") { sla::SupportTreeConfig supportcfg; supportcfg.object_elevation_mm = 0; for (auto &fname: SUPPORT_TEST_MODELS) test_supports(fname, supportcfg); } TEST_CASE("DefaultSupports::ElevatedSupportsDoNotPierceModel", "[SLASupportGeneration]") { sla::SupportTreeConfig supportcfg; supportcfg.object_elevation_mm = 10.; for (auto fname : SUPPORT_TEST_MODELS) test_support_model_collision(fname, supportcfg); } TEST_CASE("DefaultSupports::FloorSupportsDoNotPierceModel", "[SLASupportGeneration]") { sla::SupportTreeConfig supportcfg; supportcfg.object_elevation_mm = 0; for (auto fname : SUPPORT_TEST_MODELS) test_support_model_collision(fname, supportcfg); } //TEST_CASE("BranchingSupports::ElevatedSupportGeometryIsValid", "[SLASupportGeneration][Branching]") { // sla::SupportTreeConfig supportcfg; // supportcfg.object_elevation_mm = 10.; // supportcfg.tree_type = sla::SupportTreeType::Branching; // for (auto fname : SUPPORT_TEST_MODELS) test_supports(fname, supportcfg); //} //TEST_CASE("BranchingSupports::FloorSupportGeometryIsValid", "[SLASupportGeneration][Branching]") { // sla::SupportTreeConfig supportcfg; // supportcfg.object_elevation_mm = 0; // supportcfg.tree_type = sla::SupportTreeType::Branching; // for (auto &fname: SUPPORT_TEST_MODELS) test_supports(fname, supportcfg); //} bool is_outside_support_cone(const Vec3f &supp, const Vec3f &pt, float angle) { Vec3d D = (pt - supp).cast(); double dot_sq = -D.z() * std::abs(-D.z()); return dot_sq < D.squaredNorm() * std::cos(angle) * std::abs(std::cos(angle)); } TEST_CASE("BranchingSupports::MergePointFinder", "[SLASupportGeneration][Branching]") { SECTION("Identical points have the same merge point") { Vec3f a{0.f, 0.f, 0.f}, b = a; auto slope = float(PI / 4.); auto mergept = branchingtree::find_merge_pt(a, b, slope); REQUIRE(bool(mergept)); REQUIRE((*mergept - b).norm() < EPSILON); REQUIRE((*mergept - a).norm() < EPSILON); } // ^ Z // | a * // | // | b * <= mergept SECTION("Points at different heights have the lower point as mergepoint") { Vec3f a{0.f, 0.f, 0.f}, b = {0.f, 0.f, -1.f}; auto slope = float(PI / 4.); auto mergept = branchingtree::find_merge_pt(a, b, slope); REQUIRE(bool(mergept)); REQUIRE((*mergept - b).squaredNorm() < 2 * EPSILON); } // -|---------> X // a b // * * // * <= mergept SECTION("Points at different X have mergept in the middle at lower Z") { Vec3f a{0.f, 0.f, 0.f}, b = {1.f, 0.f, 0.f}; auto slope = float(PI / 4.); auto mergept = branchingtree::find_merge_pt(a, b, slope); REQUIRE(bool(mergept)); // Distance of mergept should be equal from both input points float D = std::abs((*mergept - b).squaredNorm() - (*mergept - a).squaredNorm()); REQUIRE(D < EPSILON); REQUIRE(!is_outside_support_cone(a, *mergept, slope)); REQUIRE(!is_outside_support_cone(b, *mergept, slope)); } // -|---------> Y // a b // * * // * <= mergept SECTION("Points at different Y have mergept in the middle at lower Z") { Vec3f a{0.f, 0.f, 0.f}, b = {0.f, 1.f, 0.f}; auto slope = float(PI / 4.); auto mergept = branchingtree::find_merge_pt(a, b, slope); REQUIRE(bool(mergept)); // Distance of mergept should be equal from both input points float D = std::abs((*mergept - b).squaredNorm() - (*mergept - a).squaredNorm()); REQUIRE(D < EPSILON); REQUIRE(!is_outside_support_cone(a, *mergept, slope)); REQUIRE(!is_outside_support_cone(b, *mergept, slope)); } SECTION("Points separated by less than critical angle have the lower point as mergept") { Vec3f a{-1.f, -1.f, -1.f}, b = {-1.5f, -1.5f, -2.f}; auto slope = float(PI / 4.); auto mergept = branchingtree::find_merge_pt(a, b, slope); REQUIRE(bool(mergept)); REQUIRE((*mergept - b).norm() < 2 * EPSILON); } // -|----------------------------> Y // a b // * * <= mergept * // SECTION("Points at same height have mergepoint in the middle if critical angle is zero ") { Vec3f a{-1.f, -1.f, -1.f}, b = {-1.5f, -1.5f, -1.f}; auto slope = EPSILON; auto mergept = branchingtree::find_merge_pt(a, b, slope); REQUIRE(bool(mergept)); Vec3f middle = (b + a) / 2.; REQUIRE((*mergept - middle).norm() < 4 * EPSILON); } } TEST_CASE("BranchingSupports::ElevatedSupportsDoNotPierceModel", "[SLASupportGeneration][Branching]") { sla::SupportTreeConfig supportcfg; supportcfg.object_elevation_mm = 10.; supportcfg.tree_type = sla::SupportTreeType::Branching; for (auto fname : SUPPORT_TEST_MODELS) test_support_model_collision(fname, supportcfg); } TEST_CASE("BranchingSupports::FloorSupportsDoNotPierceModel", "[SLASupportGeneration][Branching]") { sla::SupportTreeConfig supportcfg; supportcfg.object_elevation_mm = 0; supportcfg.tree_type = sla::SupportTreeType::Branching; for (auto fname : SUPPORT_TEST_MODELS) test_support_model_collision(fname, supportcfg); } TEST_CASE("InitializedRasterShouldBeNONEmpty", "[SLARasterOutput]") { // Default Prusa SL1 display parameters sla::Resolution res{2560, 1440}; sla::PixelDim pixdim{120. / res.width_px, 68. / res.height_px}; sla::RasterGrayscaleAAGammaPower raster(res, pixdim, {}, 1.); REQUIRE(raster.resolution().width_px == res.width_px); REQUIRE(raster.resolution().height_px == res.height_px); REQUIRE(raster.pixel_dimensions().w_mm == Approx(pixdim.w_mm)); REQUIRE(raster.pixel_dimensions().h_mm == Approx(pixdim.h_mm)); } TEST_CASE("MirroringShouldBeCorrect", "[SLARasterOutput]") { sla::RasterBase::TMirroring mirrorings[] = {sla::RasterBase::NoMirror, sla::RasterBase::MirrorX, sla::RasterBase::MirrorY, sla::RasterBase::MirrorXY}; sla::RasterBase::Orientation orientations[] = {sla::RasterBase::roLandscape, sla::RasterBase::roPortrait}; for (auto orientation : orientations) for (auto &mirror : mirrorings) check_raster_transformations(orientation, mirror); } TEST_CASE("RasterizedPolygonAreaShouldMatch", "[SLARasterOutput]") { double disp_w = 120., disp_h = 68.; sla::Resolution res{2560, 1440}; sla::PixelDim pixdim{disp_w / res.width_px, disp_h / res.height_px}; double gamma = 1.; sla::RasterGrayscaleAAGammaPower raster(res, pixdim, {}, gamma); auto bb = BoundingBox({0, 0}, {scaled(disp_w), scaled(disp_h)}); ExPolygon poly = square_with_hole(10.); poly.translate(bb.center().x(), bb.center().y()); raster.draw(poly); double a = poly.area() / (scaled(1.) * scaled(1.)); double ra = raster_white_area(raster); double diff = std::abs(a - ra); REQUIRE(diff <= predict_error(poly, pixdim)); raster.clear(); poly = square_with_hole(60.); poly.translate(bb.center().x(), bb.center().y()); raster.draw(poly); a = poly.area() / (scaled(1.) * scaled(1.)); ra = raster_white_area(raster); diff = std::abs(a - ra); REQUIRE(diff <= predict_error(poly, pixdim)); sla::RasterGrayscaleAA raster0(res, pixdim, {}, [](double) { return 0.; }); REQUIRE(raster_pxsum(raster0) == 0); raster0.draw(poly); ra = raster_white_area(raster); REQUIRE(raster_pxsum(raster0) == 0); } TEST_CASE("halfcone test", "[halfcone]") { sla::DiffBridge br{Vec3d{1., 1., 1.}, Vec3d{10., 10., 10.}, 0.25, 0.5}; indexed_triangle_set m = sla::get_mesh(br, 45); its_merge_vertices(m); its_write_obj(m, "Halfcone.obj"); } TEST_CASE("Test concurrency") { std::vector vals = grid(0., 100., 10.); double ref = std::accumulate(vals.begin(), vals.end(), 0.); double s = execution::accumulate(ex_tbb, vals.begin(), vals.end(), 0.); REQUIRE(s == Approx(ref)); }